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Abstract

There has been a multitude of techniques proposed for identifying vulnerabilities
in software. Forcing a program into a vulnerable state has become increasingly
unscalable, given the size of the programs and the number of possible execution
states. At the same time, techniques that are looking for vulnerability signa-
tures are marred with weak and incomplete signatures. This is not to say that
such techniques have failed to identify previously unknown vulnerabilities in
the code. However, they have inherent weaknesses, which result in identifying
vulnerabilities that are limited in type and complexity.

We propose a novel technique to extract succinct vulnerability-relevant state-
ments representing the self-contained nature of vulnerabilities and reproduce the
vulnerable behavior independently of the rest of the program. We also intro-
duce an innovative technique to slice target programs and search for similar
vulnerability-relevant statements in them. We developed VulSlicer, a prototype
system capable of extracting vulnerability-relevant statements from vulnerable
programs and searching for them on target programs at scale. Furthermore,
we have examined four candidate open-source projects and have been able to
identify 118 potential vulnerabilities, out of which 94 were found to be silently
patched, and from the remaining reported cases, three were confirmed by ob-
taining a CVE designation.

Keywords: Code Slicing, Static Analysis, Vulnerability Detection.

1. Introduction

Software vulnerabilities are the root cause of most security breaches while de-
tecting them in a complicated program is challenging. The dramatic increase in
the number of detected vulnerabilities [1] suggests that while newer vulnerability
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types are being discovered, e.g., speculative buffer overflows [2], known vulner-5

ability types, e.g., simple buffer overflows like strcpy misuse, remain prevalent
in common software. A good example of a recurring yet straightforward vul-
nerability is CVE-2019-1663, a simple strcpy buffer overflow discovered in the
web-based management interface of multiple Cisco devices, including popular
SOHO routers, which resulted in unauthorized access to at least 12000 devices10

online [3].
Even though many automated techniques have been proposed [4, 5, 6, 7, 8,

9, 10, 11] to help with identifying security vulnerabilities, with today’s growing
software complexity, there are still many remaining challenges. While some for-
mal approaches focus on proving the absence of certain types of vulnerabilities,15

vulnerability detection tools primarily focus on triggering a particular undefined
behavior as a sign for the existence of a vulnerability.

Given the size of current-day programs and the huge number of possible ex-
ecution paths within them, one of the most critical challenges for vulnerability
detection tools is exploring a program and pushing it into a vulnerable state20

while avoiding the path explosion problem. Alternatively, given the large size
of the programs, a set of techniques have focused on searching for the reoccur-
rence of vulnerability signatures (i.e., a set of program statements) in the code.
Nevertheless, using a contiguous code segment, i.e., a function, as the vulnera-
bility signature is inadequate since it may include unrelated statements to the25

vulnerability.
Therefore, instead of using a vulnerable program as a signature, by extract-

ing the chain of relevant statements with which the program enters a vulnerable
state, denoted as VRS (i.e., vulnerability-relevant statements), it is possible to
change the exhaustive search over the whole program, to an undoubtedly more30

limited search only on a subset of program statements.
Therefore two specific challenges need to be addressed: (i) automatically

extracting the VRS from known and patched vulnerabilities, and (ii) search
within target programs, given a set of VRSs, to identify parts of a target code
that contain new vulnerabilities similar to the known vulnerabilities.35

The problem of extracting VRSs has been studied previously [5, 12, 13].
Either the VRS is extracted from parts of the contiguous code, or the entire
vulnerable program is considered a basic signature to find similar vulnerabil-
ities. However, in most cases, there is a need for a systematic approach for
eliminating irrelevant statements to the vulnerability, particularly in the case of40

complicated vulnerabilities where the fragments of code related to vulnerabili-
ties are noncontiguous, similar to type-3 clone pairs [14, 15].

Motivated by the above-noted observation, we address the problem of ex-
tracting succinct, self-contained, and noncontiguous VRSs from known vulnera-
ble programs that can be found and searched for in real-world applications. We45

leveraged the static program slicing technique [16] as a tool to extract VRSs.
By using this technique, we find type-3 clone pairs with VRSs, resulting in new
yet similar vulnerabilities to VRSs in target programs.

By building upon identified vulnerabilities in the wild, we are able to extract
any vulnerability as a standalone VRS. In other words we extract slices that are50
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considered to be related to vulnerabilities from known vulnerable programs and
then abstract the statements in the slice by eliminating local naming conven-
tions used in variables and function names. Similarly we decompose the target
program into abstract program slices. Now if the target program contains vul-
nerabilities similar to the vulnerable programs we have used to generate VRSs,55

then we will be able to identify those vulnerabilities. In other words, instead of
comparing a target program with a vulnerable program, we compare program
slices obtained from a target program with previously obtained VRSs.

In summary, our main contributions are
• We introduce a method which, by leveraging program slicing [16], is capa-60

ble of extracting succinct and self-contained vulnerability-relevant state-
ments, VRS, from known vulnerable programs.

• We propose an efficient search technique, where by slicing the target pro-
gram for all possible slicing criteria and then comparing a given VRS with
the set of target program slices, can decide on the existence of vulnerabil-65

ities in the target program.

• To evaluate our approach, we developed a system called VulSlicer with two
primary goals: (i) to extract VRSs from known vulnerable programs, and
(ii) to search for vulnerabilities within target programs by decomposing
the program and preparing comparable code segments with VRSs.70

• We have been able to identify several new vulnerabilities, 3 of which have
been assigned a CVE number.

The remainder of this paper is structured as follows: In Section 2, we present
an overview of our proposed method. We discuss how the proposed method
extracts VRS in Section 3, and how it slices target programs in Section 4. The75

vulnerability search method in target programs is presented in Section 5. Our
implementation, and the evaluation results of VulSlicer, including comparing
VulSlicer with prior work, are presented in Section 6. Section 7 studies related
work. In Section 8 we discuss some limitation of VulSlier. Lastly, we conclude
in Section 9.80

2. Overview

In what follows, we first provide an overview of VulSlicer, discuss the chal-
lenges faced with VRS generation and search, and finally present a running
example with a real-world vulnerability for better illustration and motivation.

2.1. VulSlicer’s Overview85

VulSlicer works through three main stages to extract self-contained and suc-
cinct VRSs (i.e., vulnerability-relevant statements) from a known vulnerable
program and detect new vulnerabilities based on them in a target program.
Figure 1 illustrates the high-level workflow of our proposed system. The first
two stages prepare VRSs and target program slices which feed their resulting90

output as input to the search stage.
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Figure 1: An overview of VulSlicer. VulSlicer accepts vulnerable programs and their patched
versions for specific known vulnerabilities to build VRSs based on them. Further, every target
program is passed to the slice generation module to produce program slices based on all its slicing
criteria, where each slicing criterion is a combination of a program statement and its corresponding
set of program variables. At the final step, VulSlicer searches the set of target program slices to
find matches for VRSs.

VRS Extraction: Initially, VulSlicer analyzes a given vulnerable program
to find the vulnerability point, a program statement in a program where execu-
tion goes wrong, of a known vulnerability and identifies the required criterion
(i.e., a set of variables and a program statement) for slicing the program and ex-95

tracts the set of related statements that cause the vulnerability. Each vulnerable
slice is then abstracted to generate generic vulnerability-relevant statements or
VRS. This process is repeated for different known vulnerable programs. More
details on this stage is presented in Section 3.

Target Program Slice Generation: VulSlicer analyzes each target pro-100

gram being tested for vulnerabilities and slices it based on all program state-
ments. Every extracted slice is transformed into an abstracted form, which
is then used in the search stage. More details on this stage is presented in
Section 4.

VRS Search: After the first stage, there is a VRS database that contains105

a set of vulnerable slices stored in the form of abstracted code. In the second
stage, all possible abstracted slices are extracted from a target code being tested.
In this stage, the abstracted slices from the target code are searched in the VRS
database. Given the number of target program slices and the number of VRS
database entries, one of the key design points is the scalability of the search110

stage. Section 5 presents further detail on this stage.

2.2. Challenges

Challenges associated with VRS extraction and matching are summarized
as follows:

Challenge 1 (C1): Lacking a well-defined functionality and proper115

interface (I/O)
The idea of extracting fragments of a program that preserves a specific vul-
nerability context is similar to code re-use [17, 18, 19], where the focus is on
extracting a fragment of a program that preserves a specific functionality. The
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significant difference here is that in code re-use, the functionality is well-defined,120

mainly based on the function’s input and output pair. If the vulnerability and
its effects are known, it is possible to identify the set of variables which should
be monitored by the detection tools and understand how these variables would
be affected when the vulnerability is triggered. The challenge is that the vul-
nerability is considered as an unknown for most tools; hence, the concept of125

functionality and functions may not be directly applied in the context of vul-
nerabilities.

Challenge 2 (C2): Unknown search boundaries
For any program, it is possible to partition the code (either binary or source
code) into disjoint units at different granularities, i.e., functions are one of the130

more coarse-grained units while program instructions for binary code or program
statements for source code are fine-grained. The challenge here is to find a
program statement that we can use as the boundary, and select other program
statements with respect to this boundary, in order to be able to compare them
with the vulnerability definitions.135

Challenge 3 (C3): Noncontiguous code fragments
Any extracted VRS must only contain parts of the program related to vulnera-
bility and nothing more. More specifically, the challenge here is to decide which
parts of the code should be extracted from a set of noncontiguous fragments,
resulting in a self-contained fragment and, in turn, the expected vulnerable state140

without any irrelevant code statements.

2.3. Running Example

To cover both aspects of VulSlicer, the running example we selected has two
parts; the first part is a real-world vulnerability we use to extract a VRS from
it and the second part is a real-world target program that we search to find a145

match with VRS. In what follows, we introduce these two samples and utilize
them in the rest of the paper to describe the VulSlicer functionality.

2.3.1. Example Vulnerability

For the sample vulnerability that we build a VRS based on, we make use
of a critical vulnerability in the Linux kernel’s infrared serial module, prior to150

version 5.1.6, identified as CVE-2019-19543. The vulnerable code related to
this vulnerability is shown in Figure 2.

In this example, the code could be exploited because there exists a use-
after-free vulnerability in function serial_ir_init_module. Since there is al-
ready cleanup handling in serial_ir_init error path, there is no need to call155

serial_ir_exit again in serial_ir_init_module, otherwise the second call will
trigger a use-after-free issue. In more detail, if the result variable is not zero,
both functions enter the cleanup, hence the second cleanup uses the variable
that is already freed. The following section explores the associate patch for this
vulnerability and describes how VulSlicer extracts a VRS based on the patched160

and vulnerable code.
It is worth mentioning that by selecting the entire serial_ir_init_module

function of the example in Figure 2, as opposed to only selecting the highlighted
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1 static int __init serial ir init(void){
2 int result;
3 [...]
4 serial_ir.pdev = platform_device_alloc("serial_ir", 0);
5 if (! serial_ir.pdev) {
6 result = -ENOMEM;
7 goto exit_driver_unregister;
8 }
9 [...]

10 return 0;
11 [...]
12 exit_driver_unregister:
13 platform_driver_unregister (& serial_ir_driver);
14 return result;
15 }
16 static void serial ir exit (void){
17 [...]
18 platform_driver_unregister (& serial_ir_driver);
19 }
20 static int __init serial ir init module (void){

21 int result;

22 [...]

23 result = serial ir init (void());

24 if (!result)

25 return 0;

26 serial ir exit();

27 return result;

28 }

Figure 2: There is a use-after-free vulnerability in serial_ir_init_module, since it
calls the serial_ir_exit without any condition, if variable result is not equal to
zero, a clean-up is already called with exit_driver_unregister. Precisely, function
platform_driver_unregister is called twice once in line 13 and again in line 18, resulting
to free a memory variable, which is already freed. Highlighted statements are related to the vulner-
ability which are used by VulSlicer.

statements in the function, does preserves the vulnerability context, but it still
contains irrelevant program statements to the vulnerability. These irrelevant165

statements, i.e., line 22 code snippet in Figure 2 make the vulnerability signature
imprecise, which results in a false negative. This false negative is related to
Challenge 3 (C3) we listed in Section 2.2.

2.3.2. Example Target Program

For the example target program, we used Linux 4.10, released on 19 Feb170

2017. Among the vulnerabilities which existed in this particular version, there
is a vulnerability identified with CVE-2018-20836 that we concentrate on, in
order to show how we slice the program and find a match with the example
VRS we have. This example is illustrated in Figure 3.

In the next section, we will discuss each step of the proposed approach in175

more detail.
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1 /* ---------- SMP task management ---------- */
2 static void smp task timedout (struct timer_list *t){
3 [...]
4 complete (&task ->slow_task ->completion);
5 }
6 static void smp task done (struct sas_task *task){
7 if (! del_timer (&task ->slow_task ->timer))
8 return;
9 complete (&task ->slow_task ->completion);

10 }

Figure 3: Snippet code from file drivers/scsi/libsas/sas_expander.c in the Linux version
4.10, we utilize this code as the example target program. There is a use-after-free where
smp_task_timedout() will complete the task without any condition, meaning that the task
variable will be freed after this call. While, smp_task_done() is called after the timeout and
completes the task again, resulting to use the task variable after it has being freed.

3. VRS Extraction

VulSlicer, at its core and as the name suggests, backward slices a given
vulnerable program to isolate vulnerability-relevant statements or VRS. After
obtaining a vulnerable slice, VulSlicer abstracts it to remove dispensable parts,180

the information specific to the original vulnerable program, and generates an
abstracted version of the vulnerable slice. The generalized slices are then stored
in the VRS database. The rest of this section describes the process of VRS
extraction.

3.1. Vulnerability Point Identification185

VulSlicer finds the set of corresponding program statements that are re-
lated to a vulnerability. As we have mentioned in Section 2, for any known
vulnerability, we need both vulnerable and patched versions of the program,
further, we utilized the diff between these two versions and marked modi-
fied or deleted statements and the nearest statement before every inserted190

lines in the old vulnerable file. Utilizing diff file between vulnerable version
and patched version of code to locate vulnerability points is an approach used
extensively [13, 12, 20, 21, 5] which we leverage as well.

The output of this stage is a program statement that is assumed to be the
vulnerability point (i.e., where the vulnerability is triggered) that will be used195

to determine the slicing criteria.

3.2. Vulnerable Program Slicing

VulSlicer utilizes the static program slicing [16] technique, introduced orig-
inally to help programmers with fault isolation. More specifically, we leverage
backward slicing to extract noncontiguous program statements that isolate parts200

of the program related to a specific vulnerability. The list of the notations and
functions we used to describe the slicing approach is as follows:
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• Function LoDV(stmt)1 is used to obtain the list of defined (or modified)
variables in a given statement.

• LoUV(stmt)2 is used to obtain the list of used variables in a given state-205

ment.

• Function CFG(stmt) returns the CFG node that corresponds to stmt.

• Function STMT(node) returns a program statement from a node in CFG.

In order to backward slice a program, a slicing criterion C = (V, ps) is
required, where ps is a program statement in program P, and V is the set of vari-210

ables in program. VulSlicer can obtain the corresponding CFG node, including
the location of program statement, for vp by calling the CFG(vp). The CFG
that VulSlicer uses is a single-statement block CFG, which each basic block
corresponds to a single program statement.

There are various types of algorithms to compute backward static program215

slices, where we have employed the program dependence graph (PDG) [22, 23]
approach for slicing. A PDG is a directed graph that shares its node with CFG
and has two kinds of edges, control, and data dependence edges. That means a
PDG is constructed with subgraphs, control, and data dependence graph. We
leverage LoUV(stmt) and LoDV(stmt) during PDG construction. Since both220

graphs can be constructed with CFG, we need to generate the CFG at first.
After that, we construct PDG; by using the PDG-based slicing approach, the
slicing criterion is identified with a node ps corresponding to a single program
statement in the PDG. For backward slicing, it traverses the PDG to find all
nodes that directly or indirectly reach the criterion node, which allows the pro-225

gram to be sliced in linear time. Compared to Weiser’s algorithm [16], and as
explained in [24], this criterion is equal to C = (V, ps) where ps is the single-
statement block CFG node, and V is the set of all variables defined or used at ps
or LoDV(ps) ∪ LoUV(ps). The slicing algorithm VulSlicer employs is presented
in Algorithm 1.230

As for the running example presented earlier, Figure 4 shows the patch 3

that resolves the vulnerability illustrated in Figure 2. In fact, the last statement
that is modified in the patch is return result at line 27 and the only variable
involved in modified statements is result. Therefore, to extract a VRS, VulSlicer
uses the criterion CFG(return result;). During slicing, if any node in PDG235

involves calling a function, e.g., serial_ir_init at line 23, VulSlicer does not slice
within the callee function. Vulnerability-relevant statements are highlighted in
Figure 2.

3.3. Vulnerability Slice Abstraction

Vulnerability slice abstraction is an essential final step in order to eliminate240

1List of Defined Variables
2List of Used Variables
3The commit hash that patches this vulnerability is

56cd26b618855c9af48c8301aa6754ced8dd0beb.
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Algorithm 1 Vulnerability Slicer takes a vulnerable program as P and a program statement
as vp. At first, it generates CFG for the program P where each node of CFG represents a single
program statement, then it finds a CFG node, CFG(vp)), corresponding node in CFG that contains
the program statement vp. At the next step, it generates the PDG from the CFG, where PDG and
CFG nodes are common. PDG-based slicing approach traverses the graph to find nodes that can
reach directly or indirectly to the criterion node. After finding a set of nodes associated to the
criterion node, VulSlicer reconstructs the slice from each node corresponding program statement
using STMT(node).

1: function VulSlicer(P, vp) ▷ P = [ stmt1, ... , vp, ... , stmtn]
2: CFG ← CFGgen(P)
3: PDG ← PDGgen(CFG)
4: Criterion ← CFG(vp) ▷ vp ∈ P
5: Slice ← SLICEgen(PDG, Criterion)
6: VRS ← []
7: for node ∈ Slice do
8: V RS ← V RS ∪ STMT (node)
9: end for
10: return VRS ▷ VRS = [ stmtk, ... , vp]
11: end function

any local naming conventions and program-specific information from the slice
and therefore present the vulnerability more accurately. VulSlicer abstracts each
output program slice in the following steps:

1) Grammar-based transformation. VulSlicer employs Clang to parse
each program, identify statements, and generate a CFG. Additionally, the245

AST generated by Clang is used to label statements with the compiler
grammar. For example, a statement could be labeled as an If statement.

It further generates variants of available program abstraction. The most
important one is utilizing a simple symbolic transitive replacement devel-
oped for compiler-level optimization. For example, as shown in Figure 5,250

where a variable is defined to store the return value of a function, and it
never changes in the slice, it replaces the variable with a return value of a
function and removes the variable definition and assignment.

2) Arguments and variable names substitution. VulSlicer replaces all
the functions’ arguments in the slice with a generic string, shown as VAR.255

For each variable or argument involved in the slice, we need to have a pro-
gram statement that first defines them. For the variables, this statement
is already present in the PDG; therefore, the corresponding PDG node
that defines the variable for the first time is automatically selected and
appears in the final slice. For the function arguments, the PDG does not260

have any nodes that contain those definitions; therefore if such arguments
are present in the final slice, VulSlicer adds a program statement that
defines the argument for the first time.

3) Variable type substitution. VulSlicer replaces all the data types with
a generic name DATATYPE.265

4) Function name substitution. VulSlicer replaces all the local function
names with a generic name CALL. This means, during the parsing Vul-
Slicer extracts all function names, and later it replaces them. It should
be noted that when well known function names, known as C-standard
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1 @@ -773,8 +773,6 @@ static void serial_ir_exit(void)
2 static int __init serial ir init module (void)
3 {

4 - int result;

5 [...]
6 @@ -802,12 +800,7 @@ static int __init serial_ir_init_module(void)
7 if (sense != -1)
8 sense = !!sense;

9 - result = serial ir init();

10 - if (!result)

11 - return 0;

12

13 - serial ir exit();

14 - return result;

15 + return serial ir init();

16 }

Figure 4: The chunk of code that patched use-after-free vulnerability identified with CVE-2019-
19543. This chunk of code shows the underlying cause for the vulnerability. VulSlicer defines the
slicing criterion based on it and generates VRS.

functions [25] such as free(), memcpy(), or etc. from the libc library are270

used, the function names are kept unchanged and are not abstracted.

The abstracted version of the VRS for the running example vulnerability is
presented in Figure 5, which represents the sliced statements related to function
serial_ir_init_module. Further, we leverage abstract syntax tree and compiler-
level abstraction and replace lines 1-3 with only one line, line 3 in Figure 5,275

meaning that the slice is further abstracted by using the function call itself
rather than storing its return value in a new variable.

1 Defined DATATYPE VAR[VCONST ];
2 VAR[VCONST] = CALL[FCONST ]();
3 IF STMT (!VAR[VCONST ]) {RETURN STMT[CONST]}
4 ELSE STMT {CALL[F2CONST ];}
5 RETURN STMT VAR[VCONST ];

Figure 5: The VRS generated for the vulnerability CVE-2019-19543. The first three statements can
be replaced by only one statement, meaning that instead of storing the result of CALL[FCONST](),
it can be used directly without storing it on VAR[VCONST] variable.

3.4. Preserving Vulnerability Context

VulSlicer uses program slicing to slice parts of the original code assumed to
be related to a known vulnerability. The resulting slice, VRS, preserves the cor-280

responding vulnerability context represented with a chain of statements. After
extracting slices, an abstracted version of each slice is generated as described in
3.3.
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Algorithm 2 The TargetSlicer takes, as input, program P and generates slices based on
each program statement, ps. TargetSlicer function, which works like VulSlicer function in the
vulnerability slicing algorithm, where at first it extracts all program statements and then defines
the slicing criterion as the PDG node corresponding for the ps, then traverses the PDG to find
nodes associated with criterion and constructs the target slice using STMT(node) for each selected
node. If the resulting target slice, TS, is not already extracted, it adds it to the candidate set.

1: function TargetSlicer(P) ▷ P = [ stmt1, ... , stmtn]
2: Candidates ← []
3: CFG ← CFGgen(P)
4: PDG ← PDGgen(CFG)
5: for ps ∈ P do
6: Criterion ← CFG(vp) ▷ vp ∈ P
7: Slice ← SLICEgen(PDG, Criterion)
8: TS ← []
9: for node ∈ Slice do
10: TS ← TS ∪ STMT (node)
11: end for
12: Candidates ← Candidates ∪ {TS}
13: end for
14: return Candidates ▷ Candidates = [ slice1, ... , slicek]
15: end function

This transformation is required to remove information and data that are
only related to the original program and not the vulnerability context. The285

abstraction process targets the variable and local function names and is applied
after slicing, so it cannot affect the slicing itself. Such an abstraction is necessary
to detect similar slices in target programs with the same context and probably
with some code modifications, e.g., variable names and function names. More
specifically, this transformation is required to detect Type-2 clone slices.290

4. Target Program Slicing

After a program is submitted to the system for analysis, VulSlicer generates
a corresponding CFG and PDG for it. Then, it identifies all its program state-
ments, ps, which results in determining all slicing criteria corresponding to each
program statement and the set of its defined variables using LoDV(ps).295

VulSlicer slices target programs using all of its program statements; there-
fore, it needs to get all possible slicing criteria concerning program statements.
Since it needs both PDG and CFG for any target program, it generates these
two graphs for all of the program’s functions. Then, for a program statement
(ps), it first generates the criterion as C = (LoDV(ps),CFG(ps)) and extracts300

the corresponding slice by traversing the PDG. This means that each slice is a
subset of PDG nodes, which contains the ps node and all nodes that directly or
indirectly reach the ps. Last but not least, slices are abstracted using the same
approach as noted in Section 3.3.

The target program slicing algorithm is shown as Algorithm 2. The input305

of this algorithm is a target program P, TargetSlicer generates all the possi-
ble independent, self-contained code fragments, each corresponding to a single
program statement.

For instance as shown in example target program in Figure 3, one of the
slicing criteria is based on line 9, meaning that the program slice starts from310
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line 9, traces backward, and selects program statements that have any effect on
the corresponding node in PDG. VulSlicer repeats the same process for line 7
and line 8, and finally generates three distinct program slices for this function.
VulSlicer abstracts all slices it extracts, for instance, the abstracted form of the
target slice from line 9, is shown in Figure 6, other slices are abstracted in the315

same way.

1 IF STMT (!CALL[FCONST ]()) {RETURN STMT[CONST]}
2 ELSE STMT {CALL[F2CONST ];}

Figure 6: An abstracted slice from the target program shown in Figure 3 that matches with
VRS in Figure 5.

In the next section, we show how VulSlicer finds a match with the VRSs.

5. VRS Search

Searching for a VRS in real-world and complicated programs is a challenging
task. VulSlicer leverages the fact that VRS should not match the entire program;320

instead, it generates program slices of the target program and then compares
them with VRSs to find matches. Given that we have access to each program
statement original location and the abstraction is applied on each statement,
not the entire program, we sort the slice’s statements based on their location at
the beginning of the search process.325

5.1. VRS and Target Slice Matching

Each target program slice includes a subset of target program statements,
while dependencies between statements are preserved, meaning that each slice is
a projection of the target program. The number of slices for each target program
is equivalent to the number of slices over all possible criteria constructed over330

program statements.
VulSlicer exploits the fact that both the target program’s slice and VRSs

are program slices stored in abstracted forms meaning they do not contain
program-specific information. Therefore, the search problem turns into a prob-
lem of two (abstracted) slices comparison. Slice comparison is a classic problem335

in computer science [26], which has efficient solutions, like comparing slices’
program dependence graphs in linear time [27], and deciding if two graphs are
isomorphic. VulSlicer leverages a simple hash-based comparison (i.e., MD5) to
compare two abstracted slices instead of comparing two PDG graphs, which is
relatively faster.340

As for the running example, we can find a match between the given VRS
from stage 1, indicated as Figure 5, and the target program slice from stage 2,
depicted as Figure 6, which is a previously use-after-free vulnerability, identified
with CVE-2018-20836, in the Linux kernel. Where instead of defining a variable
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to store the return value of the function, the return value of the function is345

directly used.
One should note that if instead of using a pointer variable (i.e., &task->slow_task->timer)

in the example, a non-pointer related variable was used in Figure 6, then there
would have been a false positive as the same abstracted slices are generated for
this sample code in both cases. This is due to the fact that the abstracted slices350

are insensitive to the type of variables being used.
In the next section, we discuss how VulSlicer was implemented and discuss

the evaluation results.

6. Implementation and Evaluation

In this section we first present a summary of VulSlicer’s implementation de-355

tails in 6.1, and review the evaluation setup in Section 6.2. Furthermore, we
answer the following research questions:
I) Given a ground-truth dataset, how accurate is VulSlicer in identifying vul-
nerabilities? Evaluation results are discussed in Section 6.3.
II) Is VulSlicer capable of detecting new and unknown vulnerabilities in real-360

world programs? This question is looked at in Section 6.4.
III) How does VulSlicer compare to prior tools that are designed to detect
vulnerabilities based on previously known vulnerabilities? This question is an-
swered in detail in Section 6.5.

365

6.1. Implementation

VulSlicer is developed in a mixture of C++ and Python. The main parser
and static analyzer module are developed based on Clang 8.0 and by utilizing
its C++ binding [28].

We leveraged the CFG class available in Clang and fed .C files to get CFG370

objects, and further, we built both control and data dependence graphs using
single-statement block CFG. Clang uses the abstract syntax tree (AST) of the
target file to generate the CFG; therefore, CFG has access to compiler-level
keywords, which we utilize to apply abstraction levels described in 3.3.

In order to generate slices, VulSlicer queries PDG by sending a node as a375

slicing criterion and finding all nodes related to the slicing criterion. Given that
each node has the location and body of the program statement, VulSlicer can
stitch them together to return a program slice. Finally, we store the abstracted
version of slices. During the search phase, VulSlicer uses a hash-based (i.e.,
MD5) comparison and compares the hash of abstracted slices with that of VRS.380

Furthermore, to collect and build a comprehensive dataset of open source
projects, a GitHub parser was developed in Python 3.8 with 8K LoC. The result-
ing dataset containing all the known vulnerabilities collected from GitHub open-
source C projects is publicly available on https://zenodo.org/record/6059924.
Additionally, the Clang-based PDG generator and slicer source codes are pub-385

licly available on https://zenodo.org/record/6333819 as well.
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6.2. Evaluation Setup

In order to properly evaluate our implementation of VulSlicer, we collected
a dataset of program source codes from GitHub as the resource for real-world
and well-distributed (in terms of complexity and scalability) projects. More390

specifically, and by leveraging GitHub’s API, we developed a crawler with which
we crawled 26117 C projects. The data was initially collected in November 2018
and was later updated in December 2019. Further, we crawled all the known
CVE identifiers from the NVD database [29] to prepare the appropriate input
for the GitHub Parser.395

By employing the developed GitHub parser, all commit messages for each
project are analyzed, and commit messages which match with the CVE-\d{4}-\d{4,5}
regular expression are marked as commits that have patched a vulnerability with
a specific CVE id in the program. Considering that the NVD database has all
the meta-information for vulnerabilities, including CVE ids and involved project400

names, it is used to validate the CVE-related commits in the projects.
By removing duplicate (forked) projects and selecting only projects with at

least three commits to patch vulnerabilities, we obtained 2719 projects. These
projects have more than 14 million files and 3 billion lines of code in the latest
crawl.405

VulSlicer extracted 108154 vulnerability patches. These patches are then
further processed and patches that are not limited to only a unique vulnerability
and may also include code refactoring or feature development 4, patches that
only mention the CVE id as comments without actually patching the code, and
finally, patches that are larger than 2 MB in size are excluded, therefore we are410

left with 13540 patches which are used to extract VRSs.
Although it is possible to run the VulSlicer against a wide range of projects,

we focused on a limited set of candidate projects to evaluate our approach. This
allowed us to explore different versions of these projects over time, considering
each git commit hash as a new version. Furthermore, we investigated both415

known patched CVEs in the projects as well as silently patched bugs, where the
commit message of the patch does not directly mention a CVE id that matched
with our VRS database. Intuitively, known patched bugs are considered as
a ground-truth dataset to provide a measure of accuracy for the proposed
method.420

4We assume modifications to more than 2 C files could potentially indicate code refactoring
or feature development and exclude such patches.
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Figure 7: Projects collected from GitHub clustered with respect to the number of known patched
vulnerabilities, as noted in their logs and KLoC. For each cluster, we selected the cluster center’s
project for evaluating the VulSlicer for detecting new vulnerabilities indicated with ⋆ . denotes
projects with high KloC and high number of patched vulnerabilities, indicates projects with low
KloC and low number of patched vulnerabilities, Y illustrates projects with low KloC and high
number of patched vulnerabilities and finally + shows projects with high KloC and low number of
patched vulnerabilities.

GitHub’s API is designed to select projects based on various predefined
tags, including the number of commits, the number of issues, update timing.
There are no specific tags to sort projects based on the type or number of
vulnerabilities or other security-related features. To obtain such sorting, we
clustered all the crawled GitHub projects based on the number of known patched425

vulnerabilities noted in their logs and KLoC (i.e., kilo lines of code). Projects
are either large or small with respect to KLOC and either include many or few
patched vulnerabilities. In order to evaluate the effectiveness of our approach,
we clustered all the crawled C projects with respect to KLOC and the number
of security patches with K-means clustering algorithm, which results in four430

different clusters. The result of clustering is illustrated in Figure 7. We selected
the project at the center of each cluster as our test cases. More specifically,
Table 1 lists the projects selected for evaluating the VulSlicer and the related
information for each of them.

It should be noted that all experiments, including the VRS database gener-435

ation and the search in target projects conducted on a desktop machine with
Intel Core i7 CPU, 16GB memory, and a 6 TB SSD drive, running Linux 4.16
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Table 1: Description of selected projects from GitHub to evaluate VulSlicer for detecting new
vulnerability

Cluster Description Selected #CVEs KLoC

High KLoC/High #CVEs Linux kernel∗ 450 19281
Low KLoC/Low #CVEs libgd 28 58

Y Low KLoC/High #CVEs samba 364 3159
+ High KLoC/Low #CVEs libvirt 56 1791

∗Will be referenced as kernel for the rest of the paper.

with Debian Stretch.

6.3. VulSlicer Accuracy

To evaluate the accuracy of VRSs for finding similar vulnerabilities, we need440

to count the number of detected vulnerabilities from our ground-truth dataset
to measure false positive and false negative reports as general accuracy.

       Version    Version        Versioni i+ 1 n

Patched CVE: Vulnerability exists in 
version �  and patched in version              i

VRS 

Database

Remove VRS

related to patched CVE

1

2

Explore Different 

Versions

VulSlicer3Examine
Report 

Vulnerabilities

….

Time

i+ 1

Figure 8: Steps to measure VulSlicer’s errors: (1) Explore commits till a commit that indicates a
patched vulnerability is found, we call the version with this commit as version i + 1. (2) For each
known vulnerability in version i+1, we remove the VRS corresponding to the patched vulnerability
stored in our database, (3) and then run VulSlicer on version i, which we know that there is a
vulnerability in, and then check if it can detect the mentioned vulnerability or not.

Our ground-truth dataset is constructed by exploring different versions of
selected projects through time, as illustrated in Figure 8. More specifically, or
multiple versions of these projects, we can obtain various patches for known445

vulnerabilities and patches unrelated to known vulnerabilities, and we utilize
them to observe the accuracy of VulSlicer’s extracted VRSs. Since our dataset
projects are collected from GitHub, we consider each commit as a new version.
For a commit, that explicitly patches a vulnerability with assigned CVE, we
remove the VRS which is extracted based on this CVE in version i + 1 and run450

VulSlicer for a version before the commit (i.e., version i). If VulSlicer can detect
the removed vulnerability, we consider it as a true positive since it is already
patched, and we know the previous version is vulnerable. On the other hand,
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given a patched vulnerability in version i + 1, if VulSlicer fails to identify it in
version i, then there is a false negative.455

Alternatively, if we consider a commit that is not related to a CVE identifier
and VulSlicer alerts as to the existence of a vulnerability, it is a false positive,
and if it does not match the target slice with any VRS, then a true negative.
We sample and analyze the same number of non-CVE related commits as the
CVE commits to provide a balanced comparison and analysis. Although in a460

real life deployment the ratio of vulnerable code to non-vulnerable code would
not be equal and that would affect the results. Nevertheless, we consider that
discussion outside the scope of this work. Obtained results are summarized in
Table 2.

Table 2: VulSlicer’s error for selected candidate projects. #Commits indicates the number of all
commits we feed into VulSlicer, and #CVE are the commits that patch a vulnerability with an
explicit identifier.

Project #Commits #CVE #TP+ #FN† #TN‡ #FP⋄ Precision Recall

kernel 440 220 162 58 212 8 95% 74%
libgd 26 13 2 11 13 0 100% 15%
samba 168 84 31 53 80 4 88% 37%
libvirt 86 43 6 37 36 7 46% 14%

Total 720 360 201 159 341 19 91% 56%

+ Denotes all commits with a vulnerability patch in version i + 1 and VulSlicer detects the vul-
nerability in the version i.
† Denotes all commits with a vulnerability patch in version i + 1, but VulSlicer missed them in
version i.
‡ Denotes all commits without a vulnerability patch, and VulSlicer does not report any match for
the specif slice in version i.
⋄ Denotes all reported matches where version i+1 and i are without a vulnerability patch but the
old code mistakenly matches with at least one VRS.

6.4. Discovered Vulnerabilities465

In order to evaluate the practical impact of VulSlicer, we have checked all
the program’s slices for the four target projects. Among the bugs identified,
several true vulnerabilities have been confirmed. Others have been either silently
patched, that is, they are patched in the latest versions (latest version means
the version with the latest commit for a GitHub project), but no known CVEs470

are assigned to them, or previously patched, meaning they have been patched
with assigned CVEs in the latest versions. These two kinds of matches exist
because our target projects are being actively updated. In more detail:

libgd By examining Libgd project, we have identified 5 double-free vulnerabil-
ities all in the gdImage*Ptr functions, two of them were previously iden-475

tified and patched CVE-2017-6362 and CVE-2016-6912. These two
vulnerabilities exist in our ground truth dataset and correspond to the two
true positive samples denoted in Table 2. LibGD developers patched the
other three vulnerabilities we reported and assignedCVE-2018-1000222
and CVE-2019-6977 to these vulnerabilities in version 2.3.0, released on480

March 2020. The same three vulnerabilities also existed in the PHP source
project
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samba We have examined version 4.0, released in 2012, and found 37 vulnera-
bilities, while 31 of them, as denoted in Table 2 are already verified and
patched, and considered as true positive, we have found six new vulnera-485

bilities in version 4.9, released on 2018. Four of them are related to old
files and dead codes, and two other vulnerabilities are reported.

libvirt We have examined version 1.0.1, released in 2012, and found 7 silently
and previously patched vulnerabilities while we have found two new vul-
nerabilities in version 5.0.0 released in 2019, where both are patched as490

non-security-related bugs.

Linux kernel Linux Kernel is a very dense project with respect to KloC. We
have examined version 3.4 LTS that contains all kernel and driver files, up-
dated on December 2013 5 , and found 162 silently and previously patched
vulnerabilities. Most of these patched bugs existed multiple times in dif-495

ferent parts of the code.

6.5. Deep comparison with prior works

The main goal of VulSlicer is to improve an extracted VRS from known
vulnerabilities in a way that it finds similar unknown vulnerabilities more ac-
curately in other target projects. We have examined the accuracy of VulSlicer500

in Section 6.3. There are prior works that extract vulnerability signatures and
search them in target programs. The three most similar works to VulSlicer,
designed for detecting vulnerable code clones at scale, are VUDDY [13] and
ReDeBug [5] and Vulpecker’s [12], where the first one uses vulnerable functions
as a search pattern, while the second defines a line-based pattern on a given505

diff file with program statement-level granularity. Vulpecker leverages multiple
search algorithms to decide if each entry of the database can be found in a
target program. The Vulpecker’s public GitHub repository contains a database
of mapping CVEs and its related diff file(s). Given that search algorithms are
not accessible in the repository, it is not possible to reproduce their results.510

Likewise, as VCCFinder [7] is one of the recent and practical approaches that
can decide if a diff file patches a vulnerability in open-source projects, we opted
to compare our work and discuss the results.

To compare VulSlicer with VUDDY, ReDeBug, and VCCFinder we designed
a similar experiment, as explained in Section 6.3, and measured the same error515

for all of them. We reused the VUDDY vulnerability database found at [30]
and regenerated the ReDeBug database by implementing it. The database used
in VCCFinder is also not available, yet the code [31] of this project is used to
regenerate a database for the set of vulnerabilities used in the experiment. Most
importantly, given that the obtained VUDDY database covered vulnerabilities520

up to mid-2017, we rolled back ReDeBug and VulSlicer databases to that time
frame for a fair comparison which results in having 360 vulnerabilities in all
of the databases. We used ReDeBugs default similarity metrics (n = 4, c = 3,

5This version can be found by commit hash 2cc64b5655da65bbb6a760a722b5ab1f53f92cf7
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where n is the number of lines per window, and c is the amount of context). We
employed the highest abstraction level for VUDDY (abstraction level = 4) where525

formal parameters, local variables, data types, and function calls are abstracted;
with this level of abstraction, VUDDY can detect Type-2 vulnerable code clones.
We used 10K commits of the four projects, excluding the 720 commits used in
the experiment, as the training set to train the linear SVM model as described
in the paper, and choose similar metrics (cost = 1 and weight W = 100) to530

predict the state of vulnerability-related commits.
Table 3 summarizes results of this experiment. In this experiment, for Vul-

Slicer, ReDeBug, and VUDDY, we search for a vulnerability in the code of
projects. On the other hand, in the case of VCCFinder, we examine the com-
mit itself using the SVM model to decide if it patches a vulnerability or not.535

Table 3: Comparing VulSlicer with prior work targeting the selected four projects (Linux
kernel, libgd, libvirt and samba) to evaluate their results for 360 commits with vulnerabilities
and 360 commits without a vulnerability.

Tool #Reports #FP #FN #TN #TP Recall Precision

VulSlicer 220 19 159 341 201 56% 91%
VCCFinder 226 165 299 195 61 17% 27%
ReDeBug 199 68 229 292 131 36% 65%
VUDDY 190 39 209 321 151 42% 79%

The most important result of this experiment is the false negative(FN) re-
sults. VUDDY and ReDeBug, are designed to find exact syntactic clones of
previously known vulnerabilities. By removing the pattern extracted based on
the vulnerability, they fail to detect the same vulnerability in an older version,
which means they can find clone vulnerabilities very well, but when the clone540

changes, for example, by statement re-ordering VUDDY or syntactic changes for
ReDeBug, they cannot detect it. The same discussion is valid for VCCFinder,
while this tool is designed to predict if a given commit is related to vulnerability
or not based on extracted metrics of commits. Consequently, it can categorize
commits not contacting a patch very well. While VulSlicer is designed to extract545

a self-contained vulnerability signature; therefore, it is not dependent on an ex-
act patch to detect each vulnerability as it abstracts a vulnerable code while it
preserves the semantic of code by utilizing slices. While VulSlicer outperforms
the other tools, the low recall means there are almost 40% of vulnerabilities
without similar enough samples that we can employ to detect them.550

Further, in the evaluation step, we leveraged commits that contain approved
vulnerabilities, and we selected some other commits which do not indicate that
they patch a vulnerability. However, silently patch vulnerabilities might still ex-
ist; therefore, some false positive results might still be related to vulnerabilities,
but since there is no direct reference, we consider them false positive results.555

Last but not least, and in terms of performance comparison, ReDeBug uses
a similarity measurement to report a clone which makes it slow with respect to
the other three techniques. While VUDDY and VulSlicer utilize fast compar-
ison methods (i.e., hash-based comparison). The setup time VUDDY requires
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to prepare a candidate function is mostly, as mentioned in the paper, because560

of parsing. VulSlicer needs to slice each candidate target after parsing, which
results in a time increase compared to VUDDY, although the VulSlicer parser
works faster than VUDDY. It should be noted that creating the initial vulnera-
bility database is an off-line process for both VUDDY and VulSlicer that would
not affect the performance of the proposed techniques when deployed. That565

means VulSlicer needs 838 seconds on average (range 593 to 1069 seconds) to
prepare each VRS, compared to VUDDY that needs 1031 seconds on average
to generate a function-based vulnerability signature. On the other hand, the
VCCFinder training phase needs about 3.5 hours (about 12600 seconds) for a
training set of size 2000 commits. However, at the final step of deciding if a code570

contains a vulnerability or not, both VulSlicer and VUDDY need a fraction of
time to compare two hashes, and VCCFinder can predict if a commit contains
a patch for the vulnerability in a similar amount of time. On the contrary,
ReDeBug searches the target program, which takes 1030 seconds on average for
each query. All timing experiments were conducted on our server in order to575

obtain comparable results.

7. Related Work

There are several techniques [32, 4, 33, 8, 34, 35] introduced to detect vulner-
abilities without using known vulnerabilities. These techniques are considered
outside the scope of this work.580

Techniques that search for a specific vulnerability signature in the program
could be studied toward two important aspects. How a vulnerability signature
is defined and how the signature is searched within a code to detect new vul-
nerabilities. In what follows, we will review related works for the two noted
aspects:585

7.1. Vulnerability Signature Extraction

Accurate vulnerability signatures are the key to identifying complex and
subtle vulnerabilities, although the automatic generation of such signatures is
getting harder while newly discovered vulnerabilities are getting more compli-
cated and involve most parts of the programs [21]. As a remedy, one of the590

active branches of vulnerability detection research is the automatic generation
of vulnerability signatures.

There are also techniques [36] that identify the vulnerability in a program
by comparing it to its pre-patched version. ReDeBug [5] analyzes the security
patches of known vulnerabilities, and it defines a vulnerability signature based595

on code statements directly elicited from the patch concerning the file boundary
as diff chunks boundaries are defined on files. VUDDY [13] leverages the single
patch to extend the vulnerability signature for the function level degree. Al-
though both of these approaches preprocess the known vulnerabilities to remove
irrelevant data, they only focus on immediate patch chunks of code, leading to600

missing code fragments related to the vulnerability out of defined boundaries.
VUDDY is not capable of selecting noncontiguous parts of codes.
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Analyzing the usage of function and type names as signatures to find similar
vulnerabilities in API symbols is introduced in [10], which also presents the idea
of vulnerability extrapolation. An enhanced version of vulnerability extrapola-605

tion introduced in [37] utilizes AST trees to generate signatures with structural
code information and is granted as the generalized version of the vulnerability
extrapolation technique. It should be noted that vulnerability extrapolation is
the technique that is mostly considered as a solution for the vulnerability search,
yet in [37], the idea of having inter-procedural vulnerability signatures is intro-610

duced. Some other approaches focus mostly on the semantics of vulnerabilities,
i.e., inferring search vulnerability signatures for taint-style vulnerabilities in-
troduced in [11]. A similar approach that uses already known security issues
instead of patched vulnerabilities is JoanAudit [38], which computes a slice
based on the vulnerable sources and then searches the slice in a target program.615

Security slices determined by JoanAudit are similar to VRSs that VulSlicer gen-
erates. The core idea of using program slicing is common in both approaches,
yet VulSlicer leveraged this technique to search in target programs as well.

A different branch of security research has focused on modeling vulnerabil-
ities. Such models cannot necessarily be used as vulnerability signatures for620

source code. The most comprehensive approach is code property graph [9],
which merges abstract syntax trees, control flow graphs, and program depen-
dence graphs and generates vulnerability models for various kinds of (expert-
knowledge-defined) vulnerabilities.

Finally, some other approaches focus on extracting vulnerability signatures625

from binary and executable codes [39, 40, 41, 42, 43, 44] for noncontiguous
signatures and Byteweight [45] for intra-procedural signatures. Although the
signatures could be defined to be inter-procedural, selecting a proper boundary
is very difficult in binary programs.

7.2. Vulnerability Search Problem630

Scanning the source code to find vulnerabilities has a long history in soft-
ware, especially for auditing code by programmers. Therefore, there exist some
practical code scanners which primarily utilize simple, well-known vulnerability
signatures such as the boundary of arrays to detect buffer-overflows, e.g., [46, 47],
or they use manually defined vulnerability signatures [48]. The idea of using635

program slicing to find vulnerability-related predicates is proposed in [49]. In
this work, the program slicing approach is modified, introduced as thin slicing,
which can explore predicates related to security issues in one project.

Vector comparison and exact matching are two main categories of approaches
for a search problem. It is clear that the first category mainly focuses on the640

accuracy of the comparison algorithm, and the second category focuses on the
efficiency of the search algorithm. The core idea of using program slicing to
extract a more minimal part of a program that can help to find more specific
code clones studied in [50].

Among proposed methods, VulPecker [12] is a novel work that selects a645

different comparison algorithm based on the nature of vulnerability itself. In [9]
the search problem is addressed with the graph mining technique. Since the
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generated vulnerability signature is represented with the code property graph,
there is a need to transform any target program to code property representation
and then traverse it to find vulnerability-related graphs.650

As mentioned before, vulnerability extrapolation [37] is also a helpful tech-
nique that focuses on extrapolating a signature in target programs and, based
on the results, decides on whether there is a vulnerability. Although the search
method itself is function-level based and works with a single vulnerability as
input.655

Finally, the search methods that focus on scalability change the search prob-
lem domain to a query problem, i.e., targeting Java programs [51] and targeting
C programs [52] with predefined vulnerability formulas. More recent approaches
in this category are VUDDY [13] and ReDeBug [5]. VUDDY also utilized a hash
function to generate simple hashes of signatures to boost up the search algo-660

rithm. However, both of these approaches ignore the vulnerability point iden-
tification and use either function-level vulnerability signatures [13] or file-level
vulnerability signatures [5] with the program’s statement granularity.

8. VulSlicer Limitations

In what follows, we note some limitations VulSlicer has, which could be665

considered for further improvements or as future research questions.

• VulSlicer leveraged Clang, a wide-used and sophisticated compiler, as our
core parser and CFG/PDG generator; therefore, it is limited to its sup-
porting language-specific features of programs.

• VulSlicer requires the source code for both the vulnerable set of programs670

to extract the VRS and the target program to search the VRS within it.

• The abstracted form of slices may lead to false positive results in some
cases, as explained in Section 5.1. This can be resolved by applying a
more accurate approach, i.e., transforming slices to an intermediate rep-
resentation, is a straightforward approach for abstraction.675

9. Conclusion

This work presented a novel technique to obtain succinct and self-contained
VRSs and detect new vulnerabilities at scale by slicing target programs and
matching slices with VRSs. Given the source code of vulnerable programs, we
employed the vulnerability slicing technique for automatically extracting self-680

contained and noncontiguous parts of the program that preserve a vulnerability
context.

We developed a prototype called VulSlicer to analyze the proposed technique.
Moreover, we elaborated on the selection of several test case projects for the
evaluation. Last but not least, we discussed how VulSlicer could generate more685

acculturate VRSs, and compared to other similar approaches, it can reduce
both false positive and negative results. Finally, we explained how VulSlicer
successfully detects new vulnerabilities in target programs.
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