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ABSTRACT
Vulnerability detection is an important challenge in the security
community. Many different techniques have been proposed, rang-
ing from symbolic execution to fuzzing in order to help in iden-
tifying vulnerabilities. Even though there has been considerable
improvement in these approaches, they perform poorly on a large
scale code basis. There has also been an alternate approach, where
software metrics are calculated on the overall code structure with
the hope of predicting code segments more likely to be vulnerable.
The logic has been that more complex code with respect to the
software metrics, will be more likely to contain vulnerabilities.

In this paper, we conduct an empirical study with a large dataset
of vulnerable codes to discuss if we can change the way we measure
metrics to improve vulnerability characterization. More specifically,
we introduce vulnerable slices as vulnerable code units to measure
the software metrics and then use these new measured metrics to
characterize vulnerable codes. The result shows that vulnerable
slices significantly increase the accuracy of vulnerability character-
ization. Further, we utilize vulnerable slices to analyze the dataset
of known vulnerabilities, particularly to observe how by using
vulnerable slices the size and complexity changes in real-world
vulnerabilities.
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• Security and privacy→ Software and application security; Vul-
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1 INTRODUCTION
Vulnerability detection has been an important challenge ever since
programs have become an important part of our daily lives. Al-
though much more attention has been given to the challenge over
the past decade, where the challenge has been exasperated given
the huge volume of code, which is only expanding, and the com-
plexity of the vulnerabilities. There has been a multitude of tech-
niques proposed to search for vulnerabilities within code, these
range from black-box random fuzzing [37] to white-box symbolic
execution [11, 44] and path-sensitive software analysis [14].

There are two fundamental issues with all vulnerability detec-
tion approaches: (1) proposed techniques are not scalable enough
and therefore incapable of handling large code basis, regardless as
to whether these methods are designed to find vulnerability sta-
tistically or dynamically, and (2) proposed techniques suffer from
false positives as they are unable to understand or model vulnerable
behavior, which is impossible for all the static approaches [28] and
a good portion of dynamic approaches are incapable of producing
or reproducing vulnerable behavior [45], e.g., black-box fuzzing
can only generate crashes rather than the vulnerable behavior.

Nevertheless and even with the above noted limitations, there
has been a surge in the number of vulnerabilities detected in real-
world software applications over the past two decades. This large
trove of data has resulted in a new research direction where known-
vulnerability characteristics are leveraged to either prioritize sec-
tions of the program which are more prone to vulnerabilities,
e.g., vulnerability detection based on similarity to previous known
codes [19, 23, 26, 29–31, 40] or alternatively exclude large parts
of the code which is unlikely to contain vulnerabilities, therefore
minimizing the effect of both the scalability and false positive issues.

In fact the same approach has been used traditionally to expedite
the process of bug detection in software [13, 20, 22, 24, 33, 42, 49].
The logic has been constituted by observing that most previously
detected bugs exist in complex parts of programs, therefore com-
plex code is more likely to be buggy [34]. Similarly and follow-
ing on the same logic, many studies have been looking for the
correlation between different code metrics, and the probability of
finding software vulnerabilities. Seeking to find the most corre-
lated software metrics with vulnerabilities, has resulted in several
studies [7, 8, 15, 18, 35, 38, 39, 43, 50, 51].

In fact, a major problem with applying metrics directly on source
code is the fact that even though contiguous program statements
are related in the overall functionality provided, they may not all be
related to a vulnerability in the code. For example, a code segment
may include a call to the infamous strcpy function which may result
in a buffer overflow, but the statements before and after could be
concerned with how to parse the input. Now, any metric applied to
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the complete code would see many statements, some of which are
only related to the vulnerability. In other words, there are too many
unrelated statements that act as noise to any metric calculated on
the code.

We hypothesize that if one could remove unrelated statements to
vulnerability, then the metrics would be more precise in identifying
vulnerable code. Therefore, we propose using program slicing [48],
to decompose a given code to independent slices and instead of
measuring metrics for a part of code with pre-defined boundary,
i.e., function or file, we measure the metrics for slices obtained from
the code. In other words, we measure metrics for vulnerable slices
instead of vulnerable functions or vulnerable files.

Furthermore, there is a second benefit associated with slicing the
code. As code is decomposed into a set of slices, each slice would be
less complex in terms of the number nodes and edges in its control
flow graph as well as the number of variables among other things.
This minimized complexity would be beneficial to vulnerability
detection tools as they will concentrate on a smaller piece of code
with a smaller number of variables.

In order to investigate the above-noted issues, we gather a com-
prehensive dataset by aggregating a number of resources including,
NVD [5] and Red Hat vulnerability databases [6], GitHub [4] meta-
data collected with GitHub API, and other available open-source
projects metadata and their security tracker [2], and utilize this
massive metadata to select target projects and extract program
slices related to known vulnerabilities, which we call vulnerable
slices, and slices that are not related with any known vulnerabilities,
non-vulnerable slices. We then measure software metrics for all
slices and their corresponding functions to answer the following
research questions:

RQ1: Could program slices better characterize vulnerabilities in
programs? In other words, can program slicing preserves all source
code features that are related to vulnerability and yet makes vul-
nerable and non-vulnerable slices more distinguishable than their
corresponding vulnerable and non-vulnerable functions?

RQ2: How much does slicing help with providing less complex
code? This is an important issue that affects the performance and
effectiveness of vulnerability detection tools.

More specifically, we make the following contributions:
• We leverage a program slicing based approach to extract
(non-consecutive) code units that contain vulnerabilities
with utilizing public known CVEs and public open source
projects
• We conduct a comprehensive empirical study of extracted
vulnerabilities, investigate more than 6000 code commits
related to vulnerabilities with CVEs to build a dataset of
vulnerable functions and corresponding vulnerable slices,
and calculate software metrics over them to measure their
correlation with vulnerabilities.
• We show that vulnerable slices outperform vulnerable func-
tions in characterizing vulnerabilities.
• Finally, we statisticallymeasure a complexity and size change
rate between vulnerable function and its corresponding vul-
nerable slices for all known vulnerabilities in our dataset.

In what follows, we first introduce our high-level approach in
Section 2.In Section 3 we explain our data collection methodology,
dataset construction, and software metrics that we used in our
empirical study. In Section 4 we analyze the results to answer RQ1
and RQ2. In Section 5, we present the literature and related work.
Finally, in Section 6 we discuss some aspects of our approach and
previous approaches and we conclude.

2 APPROACH
Software boundaries are conceptual lines that divide parts of the
program that we want to study or relevant parts from other parts
of the program that are considered as irrelevant. Large programs
may have multiple boundaries and defining boundaries means de-
ciding what part of programs are relevant to the specific program
properties, which is an inherently undecidable problem. Due to this
fact, programs have pre-defined boundaries indicated by developers.
The most important pre-defined boundaries traditionally used in
the software are files and functions.

Functions are defined by developers and for specific functionality,
they inherently isolate parts of the programs that are relevant to
that particular functionality. Furthermore, using a function as a
boundary to pinpoint a vulnerability is used in previous studies
repeatedly [12, 18, 26] and it is obvious that they have a well-defined
input/output that may be enough for a vulnerability to trigger
and eliminate lots of irrelevant statements comparing to file-level
boundaries, although function-level boundaries still have irrelevant
data. Consider the fact that even though statements in a function
are executed sequentially and depending on the order in which they
are located in the function, two statements next two each other
may not necessarily affect each other.

This important observation could affect the way we calculate
metrics on the code, especially when considering vulnerable code,
as some of the statements in the code have no effect on the vul-
nerability, but are in the same region as the vulnerable code. For
example, consider the code snippet illustrated in Figure 1 obtained
from the GD Graphics Library [3] directly used in PHP source code,
which includes a heap-based buffer overflow vulnerability identi-
fied by CVE-2019-6977 [1]. In the same Figure, statements that are
related to the noted vulnerability are highlighted. As clearly shown
in this motivational example, only a fraction of the statements are
required for the vulnerability to be exploited and a large portion
of the code in this function would be redundant, where vulnera-
ble slice obtained by backward program slicing the code from the
vulnerability triggering statement to the top of the function.

In what follows, at first, we review how slices are obtained from
code, and then present our approach in investigating the effect of
slicing in improving the accuracy of metrics calculated on the code
units as opposed to when the metrics are calculated on functions.

2.1 Program Slicing
Program slicing [48] is one of the most practicable techniques
to extract code units of programs that are related to a particular
property. This technique was originally introduced to isolate parts
of the program that are related to a bug in order to minimize the
debug process for developers.
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1 BGD_DECLARE(int) gdImageColorMatch (gdImagePtr im1 , ←↩

gdImagePtr im2)

2 {

3 unsigned long *buf; /* stores our calculations

4 unsigned long *bp; /* buf ptr */

5 int color , rgb;

6 int x,y;

7 int count;

8

9 if (!im1->trueColor) {

10 return -1; /* im1 must be True Color */

11 }

12 if (im2->trueColor) {

13 return -2; /* im2 must be indexed */

14 }

15 if ((im1->sx != im2->sx) || (im1->sy != im2->sy)) {

16 return -3; /* the images are meant to be the same ←↩

dimensions */

17 }

18 if (im2->colorsTotal < 1) {

19 return -4; /* At least 1 color must be allocated */

20 }

21

22 buf = (unsigned long *)gdMalloc(sizeof(unsigned long) * 5 * gdMaxColors);

23 memset (buf, 0, sizeof(unsigned long) * 5 * gdMaxColors );

24 for (x=0; x < im1 ->sx; x++) {

25 for( y=0; y<im1 ->sy; y++ ) {

26 color = im2 ->pixels[y][x];

27 rgb = im1 ->tpixels[y][x];

28 bp = buf + (color * 5);

29 (*(bp++))++;

30 *(bp++) += gdTrueColorGetRed(rgb);

31 *(bp++) += gdTrueColorGetGreen(rgb);

32 *(bp++) += gdTrueColorGetBlue(rgb);

33 *(bp++) += gdTrueColorGetAlpha(rgb);

34 }

35 }

36 bp = buf;

37 for (color =0; color < im2 ->colorsTotal; color ++) {

38 count = *(bp++);

39 if( count > 0 ) {

40 im2 ->red[color] = *(bp++) / count;

41 im2 ->green[color] = *(bp++) / count;

42 im2 ->blue[color] = *(bp++) / count;

43 im2 ->alpha[color] = *(bp++) / count;

44 } else {

45 bp += 4;

46 }

47 }

48 gdFree(buf);

49 return 0;

50 }

Figure 1: Vulnerable function coupled with the vulnerability iden-
tified by CVE-2019-6977, a heap-based buffer overflow from GD
Graphics Library. By using vulnerable slice instead of a vulnerable
function, we can emit parts of code that are irrelevant to the vulner-
ability.

Because of the various applications of program slicing, various
algorithms exist that compute program slices [46], while one of the
most common program slicing approaches, is the original static
program slicing approach [48], which extracts slice, S , as an exe-
cutable and reduced part of the program, P , where S replicates a
particular behavior of P . This algorithm needs a slicing criterion,
which indicates a program point, and a set of program variables,
and by starting from the program point and moving to the top of

the program (i.e. backward slicing), it removes irrelevant part of the
program with respect to variable set until it reaches the beginning
of the program.

By using the original program slicing technique, to generate
a slice for any given function and statement of interest within
this function, at the first step, we extract function source code
from the project and build its control flow graph (CFG), then we
transform its CFG, such that every basic block corresponds to one
program statement. Then we generate program dependence graph
(PDG) from this CFG. Using so-called PDG is one of the established
program slicing methods. PDG is originally introduced in [27] as
a program representation, but due to an explicit representation
of dependencies between statements in the program that PDG
provides, utilizing it for program slicing is quite suitable. PDG is a
directed graph that has nodes from a CFG and two kinds of edges:
control dependence edges and data dependence edges. Given a PDG
of the program and a node of interest in this graph, we need to
recursively find all the nodes that the node of interest have data or
control dependence on them. As PDG nodes are equal to CFG nodes
(where each node corresponds to a single program statement), if
the slicing criterion is equal to the vulnerability point, the resulting
slice is vulnerable and if the criterion is selected independently of
the vulnerability, the resulting slice is non-vulnerable.

In this work, we gather slices for all nodes of functions and
mark them as non-vulnerable slices. When it comes to vulnerable
function, we pinpoint a slicing criterion, i.e., any statement in the
program and a set of all used variables within this statement which
result in the vulnerability, and by leveraging backward program
slicing, we obtain a vulnerable slice, which includes all the related
statements of the function that are necessary to reach that program
point. This would be separate from non-vulnerable slices obtained
from the vulnerable function. In our motivation example in Fig-
ure 1, line 23 is the vulnerability point, i.e., where vulnerability
is triggered. If we use this statement as a slice criterion and use
backward slicing to obtain its related program slice, highlighted
statements correspond to the slice. It should be noted that this func-
tion will also results in 38 non-vulnerable slices, given there are 38
statements that can be used as program points for slicing criteria
in this program.

2.2 Software Metrics
In this study, we reuse most of the software metrics introduced
in [18], due to the fact that they are already proved to be corre-
lated with vulnerabilities. we categorize software metrics based
on the way we measure them, as if they are computed by utilizing
the structures, we call them structure-level, or they are obtained
over code, we call statement-level metrics. For example, cyclomatic
metric is computed over the program CFG, regardless of code text,
while some other metrics like the number of variable declared in
the program are computed by checking source code of a target
program. Table 1 summarizes metrics and their categories we use
in our empirical study.

To measure the metrics, we utilize the CFG of the program and
transformed it where each of its block represent only one program
statement instead of a basic blocks. After this CFG transformation,
we measure each category of metrics as follows:
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Table 1: Software metrics used in our empirical study.
Structure-Based metrics are obtained by analyzing a pro-
gram structure, while Statement-Based metrics are com-
puted directly by using the program statement.

Category ID Metric

Structure-Based

M1 Cyclomatic complexity

M2 # loops
M3 # nested loops
M4 Maximum nesting level of loops
M5 # nested control structures
M6 Maximum nesting level of control

structures
M7 # if structures without else
M8 CFG Size

Statement-Based

M9 # variables as parameters for callee
function

M10 # pointer arithmetic
M11 # variables involved in pointer

arithmetic
M12 Max pointer arithmetic a variable

is involved in
M13 # variables involved in control pred-

icates
M14 # variables defined

• Structure-Based: These metrics can be computed directly
from the structure of CFG. We compute the cyclomatic com-
plexity metric (M1) by counting the number of nodes (N ) and
edges (E) of graph and M1 is calculated by using E − N + 2
formula. Metrics (M2-M4) are computed by using CFG loops
and metrics (M5-M7) are computed by counting nodes that
have more than one successors. Finally, CFG size metric (M8)
is equal to the N .
• Statement-Based: These metrics can be computed by pro-
cessing the text of each CFG node statement. During CFG
generation, we store text and each node’s special metadata
for each statement, where the most important data is state-
ment’s kind, i.e., a call, declaration, binary operation, etc. By
processing code unit’s AST, we aggregate all used variables
for each statement and compute M9. Then we use these men-
tioned variable lists and text of each statement to extract
pointers and other metrics related to pointers (M10-M12).
For M13 we use CFG to find control structure nodes, then
we find variables involved in these nodes. We extract all vari-
ables which are involved in each corresponding CFG node
and aggregate them in M14.

2.3 Evaluation Methodology
Figure 2 illustrates the flow of our empirical study, where we gather
a large dataset of vulnerabilities, leveraging the available corpus
of real-world vulnerabilities in public. We collect open-source pro-
grams in the C language from GitHub, and collect metadata about

known vulnerabilities to distinguish vulnerable and non-vulnerable
functions. We discuss the details on the the dataset is collected in
Section 3.

The dataset is employed to generate a large number of vulnerable
and non-vulnerable slices by utilizing the PDG-based backward
slicing approach we described previously. Afterwards, the software
metrics noted in Section 2.2 are applied to both the vulnerable
and non-vulnerable slices, as well as vulnerable and non-vulnerable
functions. Lastly, we leverage machine learning techniques with the
obtained dataset to classify vulnerable and non-vulnerable slices, as
well as vulnerable and non-vulnerable functions separately. More
details on the evaluation can be found in Section 4.2. By comparing
the obtained accuracy with slices vs. function as well as how the
value of the metrics changed between slices and function we could
evaluate RQ1 and RQ2, as noted in Section 1 with confidence.

3 DATA COLLECTION METHODOLOGY
In this section, we introduce our method to explore real-world appli-
cations to construct a dataset of the vulnerable and non-vulnerable
samples of functions and slices. As our study is based on software
metrics, we need to have access to program source codes on large
scale, therefore we leverage the large number of projects hosted on
GitHub to collect our dataset. Our main source of information for
vulnerabilities is obtained from the National Vulnerability Database
(NVD) [5], a database of publicly disclosed vulnerabilities where
each known vulnerability is identified with a unique id known as
CVE. We complement this database by Red Hat CVE Database [6].
In the following, we describe the process of collecting repositories
from GitHub, searching and extracting vulnerabilities with CVE id.

3.1 Vulnerability Metadata Collection
We crawled the public vulnerability database from NVD and Red
Hat.We leveragedNVDAPI and crawled its database onMarch 2020,
and obtained 141710 CVE identifiers. Further, we crawled Red Hat
CVE database on the same date, which resulted in 21620 identifiers.
Finally, our integrated database of CVE identifiers comprises 163330
unique CVE ids. This metadata is required, because even though
the CVE id structure is known (i.e. CVE-year-0∼1000000), in some
cases the vulnerability is assigned but never confirmed, so we need
to inquire public vulnerability metadata to assure the CVE identifier
is related to a confirmed vulnerability.

3.2 Selecting Project Repositories
GitHub provides a rich API to explore projects with various meta-
data, including the main language of projects, number of com-
mits, number of stars and forks (which show the popularity of the
project), and number of commits and collaborators (which show
how active the projects is). We developed a crawler by utilizing
this API to gather enough metadata from GitHub, more specifically
we crawled Github and obtained 3409172 entries for C and C++
language projects, then we selected the top projects by the number
of stars and number of forks and download 23,650 projects. We
then extract all commits for each project to count the number of its
commits with a reference to one or more confirmed CVE identifiers
in their commit message. Repositories are then ranked with respect
to the number of CVE-related commits and the top 10 projects are
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Figure 2: Our empirical study flow. In this flow, at first we collect data by using the public vulnerability database and public
open-source projects and construct our dataset. In the second step,we process the datawe collect and compute softwaremetrics.
Finally, we use the computedmetrics as a list of features to analyze vulnerabilities and their characteristics over these software
metrics. Particularly, we classify both vulnerable/non-vulnerable functions and slices and compare their models to answer
RQ1. Finally, we estimate complexity rate change to answer RQ2.

Table 2: List of selected projects for our empirical study and their metadata

Project #Commits #CVE #Stars #Forks SLoC (C)

samba 122150 1924 310 255 1427309
mptcp 799300 758 518 224 11701125
xen 41080 757 140 121 410014
postgres 49240 740 140 121 801782
libvirt 37082 534 422 311 458152
openssl 26101 500 8871 4050 384653
linux 916276 378 66686 24180 14368375
FFmpeg 97817 349 13058 5070 987113
libav 45202 332 658 299 518083
google kmsan 916433 385 175 31 14368466

Total 3050681 6657 - - 45425072

selected. The GitHub metadata and project source files were down-
loaded in March 2020. Table 2 summarizes the top 10 projects we
selected for our empirical study, the data for these selected project
was update in April 2020.

3.3 Identifying CVE Related Functions/Slices
In order to identify the program version which includes the vulner-
ability, we look for commit messages which point to a vulnerability
patch, including a confirmed CVE identifier. Hence we avoid em-
ploying buggy code instead of vulnerable code. Figure 3 illustrates
the process of vulnerability code sampling. Given a project, we
first extract all commit metadata, then search them to find any
of confirmed CVE identifiers. At the next step, for each commit
message with a CVE id, which we know as code that patches that
particular vulnerability, we find its parent commit, and change the
version of project to the parent commit, this version contains the
vulnerability. We also store the commit diff file for patch commit

which further we utilize to identify the root cause of vulnerability
in source code.

For each stored vulnerable and non-vulnerable function, we em-
ploy the slicing process as illustrated in Section 2.1. If the function
is vulnerable, we extract a vulnerable slice from that by process-
ing the diff file and store the rest of slices as non-vulnerable. For
non-vulnerable functions, we extract and store all of its slices as
non-vulnerable slices. In the end, we have a dataset composed of a
collection of functions and slices, where each item is either tagged
as vulnerable or non-vulnerable. Table 3 represents our final dataset
sample counts. It is worth mentioning that the dataset contains
more non-vulnerable samples, but during analysis, we used a bal-
anced portion of entries. Furthermore, as the table indicates, the
number of vulnerable slices is less than the number of vulnerable
functions; the main reason is that in some cases, mostly when the
patch only changes the function prototype, corresponding extracted
slices are empty and marked as invalid.
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Figure 3: Code sampling process. To construct our dataset,
for any given (git) project, we extract all its commits and
assume each commit corresponds to a specific version. We
explore the commit message to find any sample of CVE id
from known vulnerability database. Any version, i, updated
with commit message that contains a CVE identifier, is con-
sidered as the patch for the vulnerability with mentioned
CVE id, therefore version i−1 contains the vulnerability.We
rollback the project to version i − 1, localize the vulnerabil-
ity and find the file and the function that are changed in
version i and are related to the vulnerability. Then we store
the vulnerable function and all other functions from the file
as non-vulnerable in our dataset.

Table 3: Dataset information.

Tag #Samples

Non-vulnerable Function 54252
Non-Vulnerable Slice 108090
Vulnerable Function 3715
Vulnerable Slice 1403

Total 167460

4 ANALYSIS
In this section, we evaluate the two research questions put forth in
Section 1. In Section 4.2 we present our approach to build a model
with support-vector machines for both slice and function datasets.
By comparing these two models we can decide if vulnerable slices
are more suitable than vulnerable functions in characterizing vul-
nerabilities based on the software metrics discussed earlier and
answer RQ1. Further, in Section 4.3 we leverage our dataset to
measure the complexity change rate between a vulnerable function
and its corresponding vulnerable slice to answer RQ2. But first, we
provide some implementation details at 4.1.

4.1 Implementation Detail
We developed a metadata crawler that efficiently utilize GitHub
and Red Hat APIs to gather project’s metadata, which we devel-
oped in Python 3.7. For function CFG generation, we leveraged
Clang.8.0 [16] and its C++ API, and developed an accurate CFG
extractor. Our CFG nodes contains all metadata that Clangs’s pro-
vided for a given program statement, particularly we store each
program’s kind, e.g., deceleration, loop, etc. Finally, that we devel-
oped an efficient program slicer which accepts a CFG, change its
basic blocks to blocks with single statement and generates data and
control dependence graphs, and finally combines these two graphs
to build PDG. CFG and PDG have common nodes.

For slice generation phase, our slicer accepts a program’s state-
ment, finds its corresponding PDGnode as slicing criterion, explores
the PDG to find nodes that criterion node has dependence on them.
We should mention that both slicer and CFG generator are imple-
mented to work on stand-alone files and functions, while tools like
Frama-C [17] cannot be applied in stand-alone manner.

4.2 Vulnerability Classification
We have introduced the set of software metrics we want to use to
classify our dataset in Section 2.2. This set of metrics have been
previously shown [18] to be correlated with vulnerabilities. As we
pointed in our motivation and specified in RQ1, we want to inves-
tigate our data to see if this model improves when it is built with
vulnerable slices instead of vulnerable functions. Table 4 presents
the average and variance for each metric, measured for four cate-
gories of data available in our dataset.

Accordingly, we aim to build two models, one with vulnerable
and non-vulnerable function samples and one with vulnerable and
non-vulnerable slice samples and compare these two models to see
which one is preferable. Given the size of our dataset and various
previously proved correlated metrics we reuse as learning features,
we leverage support-vector machines [10] (SVM) for classification.
SVM inherently is proved to be promising if the set of supervised
data has enough features, meaning that it is very effective in high di-
mensional spaces and by tuning its various configurable parameters
it is possible to improve the model efficiently.

We setup SVM with the radial kernel. To tune kernel parame-
ters we utilize grid search and finally, we leverage 10-fold cross-
validation, i.e., using the dataset for both training and testing, to
evaluate our model. We train our models with our dataset which we
presented in Table 3, and we limit sample size to vulnerable slices
to get a balanced sized dataset. Table 5 presents the evaluation of
function-based and slice-based models. Further, Figure 4 illustrates
ROC score for 10-fold cross validation for both models. As evident
from the results, slice based metrics do outperform function based
metrics considerably.

4.3 Complexity Change Rate
In RQ2 we brought up the importance of other aspects of vulner-
ability characterization that are especially efficient for assessing
the process of vulnerability detection. Mainly we want to analyze
real-world vulnerabilities, and compare corresponding slice and
function for the specific vulnerability, and measure how the size
and complexity change. For instance, we know that slices are gen-
erally smaller than their corresponding functions, but how size
difference is changing for the known and real-world vulnerabili-
ties? If the size is not changing so much, using vulnerable slices
is not so beneficial. Also, if the size of slices is not changing as
expected, should we consider complexity changes? For instance, if
the vulnerable slice size is almost equal to the vulnerable function
size, but their complexity difference is high, it is still worth to use
slices for vulnerability identification tools.

As its has been previously studied, the average slice contains
just under one third of the program [9]. So our expectation is that
we should observe the same size change for vulnerable slice and its
corresponding function. Further, as we have the assumption that
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Table 4: Metrics’ average and variance over dataset.

NVS∗ VS⋄ NVF+ VF†

Mteric Avg. Variance Avg. Variance Avg. Variance Avg. Variance

M1 2.52 3.96 2.46 3.07 4.39 7.97 6.11 22.73

M2 0.80 2.16 0.62 1.41 0.25 0.58 0.40 1.11

M3 0.61 3.87 0.65 4.07 0.10 0.26 0.13 0.33

M4 0.25 0.44 0.20 0.32 0.00 0.00 0.07 0.06

M5 3.51 110.54 2.72 85.11 10.56 555.12 26.07 2800.49

M6 1.14 2.20 1.23 2.24 3.01 5.08 4.27 13.35

M7 1.18 1.69 1.39 2.37 0.03 0.03 0.08 0.14

M8 8.42 27.39 10.29 24.95 13.04 56.26 18.88 184.64

M9 0.49 1.05 0.55 0.98 0.18 0.24 0.27 0.46

M10 0.77 2.22 0.81 1.76 0.92 2.20 1.15 2.84

M11 0.44 0.93 0.43 0.75 0.18 0.24 0.25 0.44

M12 0.11 0.10 0.14 0.12 0.09 0.08 0.09 0.08

M13 0.44 1.12 0.51 0.85 0.72 0.98 0.75 1.00

M14 3.07 5.17 2.88 4.25 5.03 10.79 6.33 18.04
∗ Non-Vulnerable Slice, ⋄ Vulnerable Slice , +Non-Vulnerable Function , † Vulnerable Function

Table 5: Vulnerability models evaluation with 10-fold cross-
validation.

Model Accuracy Precision Recall F-1

Function-Based 62% 60% 63% 61%

Slice-Based 81% 75% 76% 75%

size cannot represent the complexity of code properly, as such we
used 14 metrics in our empirical study. Therefore, we also want to
measure the complexity difference between slice and vulnerable
function.

To conduct this statistical analysis, we assume that for any given
vulnerable function, we obtain sv ∈ Sf as its vulnerable slice where
Sf = {s1, s2, ..., sn } are the set of slices for f . We measure the
complexity change rate and size change rate as follows:

complexity change( f , sv ) =

14∑
i=1

(
Mi ( f ) −Mi (sv )

Mi ( f )

)
14

CFG size change( f , sv ) =
M8 ( f ) −M8i (sv )

M8 ( f )

Where eachMi is a metric that we described in Table 1, and i = 14
is the number of metrics. M8 in the size change equation is the
particular metric related to CFG size where it highly correlated with

code size. Figure 5 illustrates the distribution of the difference for
known vulnerable slices vs. vulnerable functions.

The average rate of complexity change measured for all vulnera-
bility samples in our dataset is 0.43. This means, that overall, slices
are simpler that functions. Also, the CFG size is smaller.

5 RELATEDWORK
There are two aspects that exist in previous work, but we use them
in different manner. At first we discuss these two aspects and then
we review the previous work.

• Bugs versus vulnerabilities:Aswe havementioned in Sec-
tion 3, for this study we focused on vulnerabilities rather
than bugs. There have been previous works that construct
their dataset based on bugs, and to do so they do not use
CVE identifiers. Therefore, they use some other keywords
that is coupled with software bugs, .e.g., they search com-
mit messages for "fix" keyword. This approach will result to
gather more data, yet they might contain lots of noisy data.
For the given example, developers use the "fix" keyword in
their commits to announce a functionality fix, or "bug" might
refer to a functionality bug rather than security bugs. This
particular intuition encourages us to focus on CVE identi-
fiers instead of other keywords.

• Slice-based metrics versus software metrics for slices:
Some previous works, including [7] focuses on improving
vulnerability characterization by using slice-based metrics
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Figure 4: Receiver Operating Characteristic (ROC) metric
to evaluate classifier output quality using 10-fold cross-
validation.

for file-level or function-level. Themost reputable slice-based
metrics are known as cohesion and coupling introduced
in [41]. The main goal of adding slice-based metrics is to
improve the function-based or file-based model for charac-
terizing vulnerabilities. We differ fundamentally from these
works since we introduced vulnerable slices and then train
a new model based on vulnerable and non-vulnerable slices
rather than adding slice-basedmetrics as features to function-
based model.

One of the main applications of characterizing software bugs
and vulnerabilities based on software metrics and with different
granularity levels (i.e., project, file, function, etc) is to make software
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Figure 5: The distribution of known vulnerability based on
complexity change rate

systems more secure. The characteristics of buggy and vulnerable
codes can be utilized in two distinct ways: (1) to examine off-the-
shelf software to measure the probability of finding vulnerable
and buggy codes and fixing them in software before they become
critical, and (2) to measure the trustworthiness [36] and security
level of available software systems [21] in order to benchmark them,
while the second way is out of the scope of this of our empirical
study, we focus on exploring the previous researches on the first
category, where the aim is to make characterization more precise
to find more vulnerabilities.

In [7] five new slice-based metrics in file-level granularity and
five other baseline metrics in function-level are introduced to build
a predictive model over a dataset of buggy files of code. The result
shows, as expected, that adding these new slice-based features
can improve the accuracy of buggy file detection. Although the
slice-based metrics are introduced in this work, the granularity
and boundary of buggy codes are still constant, they model their
dataset on files and functions again. While we have utilized the
slice as a unit that characterizes the vulnerability, in [7], the unit
that characterizes the vulnerability is still function.

In [50] a method is proposed to train vulnerability prediction
models with several project-level metrics including popularity met-
rics and developer metrics. In [15] a similar supervised model is
trained by leveraging complexity, coupling, and cohesion (CCC)
file-level metrics, and then the model is utilized to predict vulner-
ability existence in software systems. The same coupling metrics
with file-level granularity are used in [39].

In [43], a text mining approach is proposed to learn a model by
using token frequency metrics for each file, to predict vulnerabil-
ities, while later in [47], text mining approaches and metrics are
both examined to assess their effectiveness in vulnerability predic-
tion. Finally, in [51] both metrics and text mining approaches are
combined to train a more comprehensive model to predict vulnera-
ble codes. In [12] 36 supervised and 12 unsupervised methods are
assessed in file-level granularity using effort-aware performance
measures.
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There are a number of works [13, 20, 24, 33, 49] focusing on defect
prediction, they focus on comparing unsupervised and supervised
models in just-in-time [25] granularity level that considers changes
in metrics in each code churn. Tracy Hall et al. [22] review 36 fault
prediction studies and present a boxplot diagram for each level of
granularity: class, file, module, combination, or other (e.g., plug-ins,
binaries), and their diagram does not suggest a clear correlation
between granularity and performance.

In [18] 4 software complexitymetrics and 11 vulnerability-related
metrics are calculated with function-level granularity and a score is
measured for each function. Then by ranking metrics more poten-
tial vulnerable functions are discovered. In [32] software metrics
for the complexity of both files and functions is calculated in order
to find how vulnerabilities are distributed. In [8], a set of 27 soft-
ware metrics is used in function-level granularity to compute the
correlation between them and the number of vulnerabilities using
some coefficient like Spearman’s Rank. In [35] different project-
level, file-level, and function-level metrics are defined and a genetic
algorithm is applied to find the best set of metrics, which were more
correlated with number of vulnerabilities.

6 CONCLUSION
In conclusion, in this work we introduced vulnerable slices as base
code units to characterize vulnerabilities. We brought up two re-
search questions which by answering them we demonstrated how
useful are vulnerable slices. To answer if the vulnerable slices are
effective to improve the vulnerability characterization model, we
leveraged SVM classification to train two models for function-based
and slice-based samples. Then we evaluate them, and showed slice-
based model can improve the model accuracy at least 10%.

The other research question was brought up to investigate the
usefulness of vulnerable slices to assess the process of vulnerabil-
ity detection. To answer this question, we leveraged our dataset
to investigate the amount of difference between vulnerable slice
and its corresponding vulnerable function with respect to both
complexity metrics and size. Which we measured that the average
vulnerable slices contain just under one third of the vulnerable
function, meaning it changes almost 72% in size and we showed
that with respect to complexity metrics vulnerable slices are 45%
less complex to vulnerable functions.
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