
In the name of God

Sharif University of Technology
Department of Computer Engineering

CE 874: Secure Software Systems
Mehdi Kharrazi Aban 4th, 1398

Homework 1
∗

1 BAT: Binary Analysis Tool
Part II: Disassembling elves with Capstone

1.1 Instructions
For simplicity, you only need to handle ELF executables for the rest of this assignment.

In the previous assignment, we made a parser for executables in Windows and Linux, now we
are going to make use of that to disassemble the code in an executable. Covering an ISA like x86 (or
almost any ISA) is a daunting task which fortunately we do not have to handle thanks to Capstone.
You can use the tutorial on S4Lab blog to help you get started with this tool.
What Capstone does is fairly simple: you give Capstone the bytes and get back the instructions in a
human-friendly format. Notice that besides C/C++ there are other bindings for Capstone in most
programming languages.

The task expected of you in this assignment, is to use your parser to find code sections and output
the disassembled instructions in a file. Mistaking data for code is one of the challenges you might
face in this assignment. Along with your program, you must hand in a short document explaining
your work, and the output of your disassembler for the given example programs.

1.2 Delivery
You should submit a report, explaining your program. You should also submit your code and explain
how to run it.

2 CFI with Binary Patching
2.1 Instructions
In this part of assignment, you get familiar with Static Instrumentation and its application in
CFI∗.

Imagine, that you are give the following vulnerable code:
∗Acknowledgement: This homework was developed by Iman Hosseini and Solmaz Salimi
∗The idea of this part of the assignment is partially based on ”A Ghetto Implementation of CFI on x86”, published

on PoC||GTFO, issue11.

https://www.capstone-engine.org/
http://s4.ce.sharif.edu/blog/2019/01/17/capstone/

CE 874 — Aban 4th, 1398 Homework 1 2

#include <string.h>
void smashme (char∗ blah) {
char smash [16] ;
strcpy (smash , blah) ;
}
int main (int argc , char∗∗ argv) {
if (argc >1) {
smashme (argv [1]) ;

}

We know that we can simply use BoF to overwrite the return address in smashme. If we knew the
exact return address in this function we can patch the binary code to guarantee the expected run.
To do so, you should add a check before ret instruction in smashme function.

You are expected to this binary patching, for the given vulnerable BoF program, you exploited
in HW0. You can use any tool for ELF binary modification, but your final Binary should be a valid
executable with proper check for both bar and foo functions.

2.2 Delivery
You should submit your new Valid ELF Binary and explain your modified code. Also answer the
following question in your report:
Explain is it possible to have an Automatic and General tool to fully statically find function
parent’s return address and patch the child function to enforce CFI.

3 Dynamic Taint Analysis
3.1 Instructions
For the given code, you should first compile it and then use PIN API to dynamically instrument
the compiled program to taint the read data.

int ce874(char a, char b, char c)
{

a = 8;
b = 7;
c = 4;
return 0;

}

int ce442(char∗ buf)
{

char c, b, a;

a = buf[0];
b = buf[4];
a = buf[8];
ce874(a, b, c);
return true;

}

int main(int argc, char∗∗ argv)
{

int fd;
char ∗ buf;
if (!(buf = malloc(32)))

return -1;
fd = open("./ce874.txt", O_RDONLY);
read(fd, buf, 32), close(fd);
ce442(buf);

}

CE 874 — Aban 4th, 1398 Homework 1 3

First create an input file for read function with proper data. You can compile the code yourself,
therefore you can have a binary that perfectly suits the PIN version and any other tools you prefer.
We strongly recommend reading Shell storm reference, but you are not allowed to copy any
part of its solution.

You can find the sample output in handouts repo. Your code should find the appropriate taint
range and taint both memory and registers. Pay attention that your code should work for other
programs with small changes.

3.2 Delivery
You should submit both code and its output in txt format. The report for this section should explain
the steps for taint analysis and different parts of your code.

http://shell-storm.org/blog/Taint-analysis-and-pattern-matching-with-Pin/

	 BAT: Binary Analysis Tool
	Instructions
	Delivery

	CFI with Binary Patching
	Instructions
	Delivery

	Dynamic Taint Analysis
	Instructions
	Delivery

