CE 874 - Secure Software Systems

Secure Architecture lll

Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Secure Architecture

- How to come up with a secure
architecture?

« W
fo

- W

- How do you trust the code getting
executed?

Spring

nat design principals is should be
lowed?

nat are the available mechanisms?

IF SOMEONE. STEALS MY LAPTOP WHILE T'M
LOGGED N, THEY CAN READ MY EMAIL, TRKE MY
MONEY AND [MPERSONATE. ME TO MY FRIENDS,

BUT AT LEAST THEY CANT INSTALL
DRNERS WHHOUT W PﬂiﬂlﬁﬁION. xkcd.com

1398 Ce 874 - Secure Architecture Il

Bootstrapping Trust in Commodity Computers,

Bryan Parno, Jonathan McCune, Adrian Perrig, |
2010

Spring 1398 Ce 874 - Secure Architecture I

- S&P,

A Travel Story

™ Your Trial of Keyl.ogger Express Has Expired!

Your 30 day trial of KeylL.ogger Express
has expired.

Please enter your registration code:
| - | = | - |

or visit our website:

http.//www.keylogger.com/

to purchase a license

OK ‘ Cancel ‘

Spring 1398 Ce 874 - Secure Architecture lll [Parno’10]

Trust is Critical

Will | regret
having done this?

Spring 1398 Ce 874 - Secure Architecture lll [Parno’10]

Does program P compute F?
Is F what the programmer intended?

Bootstrapping Irust

What F will this machine compute?

XOther YOther

XAlice YAlice

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

Bootstrapping Trust is Hard!

 Challenges:

AAp|App p>

 Hardware assurance 4 5

- Ephemeral software

. User Interaction Modt Module 3

OS5

Modt Module 4

H()

Spring 1398 Ce 874 - Secure Architecture || [Parno’10]

Bootstrapping Trust is Hard!

 Challenges: Evil

 Hardware assurance App

- Ephemeral software

 User Interaction

Safe?

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

Minimization’
Execution |nfrastructure for TCB
Flicker: An

et Potor Wi 8020

ABSTRACT

In the paper...

PM‘Bm“\ab\e
orme’ :!,' o
\ding aWg e conr
Bull secV oot
eI

‘The Digital Distributed System Sec
iy 8 S
. s S, o ST

Abstract
e Ditd it S Sty A

Gt ke s e

oM It 7 A At e

S s s gty S e e e b
el e sion s bl . -

Bootstrapping foundations

Transmitting bootstrap data

e e o i
e

Interpretation

Validation

- Applications

Human factors

Limitations

Future directions

Bootstrapping Trust in Commaodity Computers

... and much more!

Spring 1398

Ce 874 - Secure Architecture |l [Parno’10]

1) Establish Trust in Hardware

 Hardware is durable

4 N

Open Question: Can we do better?
_ J

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

2) Establish Trust in Software

- Software is ephemeral
« We care about the software currently in control
- Many properties matter:
* Proper control flow
 Type safety

—

-

VWNIch property matters most:
N /

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

A Simple Thought Experiment

- Imagine a perfect algorithm for analyzing control flow
- Guarantees a program always follows intended control flow
- Does this suffice to bootstrap trust? NO /

Spring 1398 [Parno’10]

What is Code |dentity?

- An attempt to capture the behavior of a program
- Current state of the art is the collection of:

* Program binary]_ ,
Function f

* Program libraries

* Program configuration files
Inputs to f

* |nitial inputs

« Often condensed into a hash of the above

Spring 1398 Ce 874 - Secure Architecture I

[Parno’10]

Code Identity as Trust Foundation

« From code identity, you may be able to infer:
 Proper control flow
 Type safety

« Correct information flow

 Reverse is not true!

Spring 1398 Ce 874 - Secure Architecture lll [Parno’10]

What Can Code Identity Do For You”

- Research applications

« Secure the boot process * Thwart insider attacks

- Count-limit objects * _Protect passwords

L+ Create a Trusted Third Party

* Improve security of network
protocols

- Commercial applications

* Secure disk encryption (e.g., Bitlocker)

* Improve network access control

* Secure boot on mobile phones

* Validate cloud computing platforms

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

—stablishing Code Identity

Spring 1398 Ce 874 - Secure Architecture lll [Parno’10]

XOther

Spring 1398

—stablishing Code Identity

Ce 874 - Secure Architecture Il

YAlice

[Parno’10]

—stablishing Code Identity

Root of
Trust

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

Trusted

Spring 1398 Ce 874 B ture I [Parno’10]

Attestation:
Conveying

Records to an External Entity

Software

»

Spring 1398

Slgn (! B

Softwa
1 andoq #, N-1.

pnv random #

Controls K,

Ce 877 [CUTe [Parno’10]

Interpreting Code Identity

Traditional
App 1...N [Gasser et al. ‘89], [Sailer et al. ‘04]

Drivers 1...N

Policy Enforcement
[Marchesini et al. ‘04], [Jaeger et al. ’06]

Bootloader

Option ROMs
BIOS

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

Interpreting Code Identity
Traditional

[Gasser et al. ‘89], [Sailer et al. ‘04]

: Policy Enforcement
\% rtual [Marchesini et al. ‘04], [Jaeger et al. ’06]

Machine

Virtualization
[England et al. ‘03], [Garfinkel et al. ‘03]

Bootloader
Option ROMs

BIOS

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

iIng Code Identity

Traditional

[Gasser et al. ‘89], [Sailer et al. ‘04]

Policy Enforcement
[Marchesini et al. ‘04], [Jaeger et al. ’06]

Virtual

Machine . o
Virtualization
[England et al. ‘03], [Garfinkel et al. ‘03]

Late Launch
[Kauer et al. ‘07], [Grawrock ‘08]

Bootloader
Option ROMs

BIOS

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

iIng Code Identity
Traditional

[Gasser et al. ‘89], [Sailer et al. ‘04]

Late
Launch

Policy Enforcement
[Marchesini et al. ‘04], [Jaeger et al. ’06]

~ Virtualization

\ | D [England et al. ‘03], [Garfinkel et al. ‘03]
> Late Launch

Flicker [Kauer et al. ‘07], [Grawrock ‘08]

|
Targeted Late Launch
[McCune et al. ‘07]

Attested

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

Interpreting Code Identity
App 1...N

Drivers 1...N

Ol —>

Bootloader
Option ROMs
BIOS

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

Load-Time vs. Run-Time Properties

- Code identity provides load-time guarantees
- What about run time?

- Approach #1: Static transformation ,
[Erlingsson et al. ‘06]

Run-Time Policy Attested

1

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

Load-Time vs Run-Time Properties

- Code identity provides load-time guarantees
- What about run time?

=

- | | - R
Open Question:

FIOW can we get wrn,)la fUN-time properties?
N /

Attested| IS m
Enforcer

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

Open Question:
VVhat tunctionality do wWe needa In haraware?

\rés-p‘o—rraﬂ'rg deTenses detaried HW

'Weingart ‘87]
'White et al. ‘91]
Yee ‘94]

Smith et al. ‘99]

Spring 1398

knowledge

ARM TrustZone ‘04] [Chun et al. ‘07] [Spinellis et al. ‘00]
TCG ‘04] [Levin et al. ‘09] [Seshadri et al. ‘05]

Zhuang et al. ‘04]

Ce 874 - Secure Architecture |ll [Parno’10]

actors

—
SV SV SW Sw
1 2 N-- N

A ——

Open Questions:

Conclusions

- Code identity is critical to bootstrapping trust
- Assorted hardware roots of trust available
- Many open questions remain!

Spring 1398 Ce 874 - Secure Architecture |l [Parno’10]

A Bad Dream: Subverting Trusted Platform Module
While You Are Sleeping, Seunghun Han, Wook Shin, Jun-
Hyeok Park, and HyoungChun Kim, Usenix Security 2018

Spring 1398 Ce 874 - Secure Architecture I

Trusted Computing Group (TCGQG)

 Defines global industry specifications and standards
- |s supportive of a hardware root of trust
- Trusted Platform Module (TPM) is the core technology
- TCG technology has been applied to Unified Extensible Firmware

Interface (UEFI)
RUSTED
COMPUTING GROUP*®

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

Trusted

Platform Module (TPM) (1)

* |s a tamper-resistant device

- Has own processor, RAM, ROM, and non-volatile RAM

- It has own state separated from the system

 Provides cryptographic and accumulating measurements functions

- Measurement values are accumulated to Platform Configuration Registers
(PCR #0~#23)

Spring 1398

Ce 874 - Secure Architecture |l [Han’18]

Trusted Platform Module (TPM) (2)

* Is used to determine the trustworthiness of a system by investigating the
values stored in PCRs

A local verification or remote attestation can be used
- |s used to limit access to secret data based on specific PCR values
» “Seal” operation encrypts secret data with the PCRs of the TPM

« “Unseal” operation can decrypt the sealed data only if the PCR values
match the specific values

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

Root of Trust for Measurement (RTM)

- Sends integrity-relevant information (measurements) to the TPM

- TPM accumulates the measurements to a PCR with the previously stored
value in the PCR

- Extend: PCRnew = Hash(PCRold || Measurementnew)
- The CPU controlled by Core RTM (CRTM)

« The CRTM is the first set of instructions when a new chain of trust is
established

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

Static and Dynamic RTM (SRTM and DRTM)

- SRTM is started by static CRTM (S-CRTM) when the host platform starts at
POWER-ON or RESTART

- DRTMis started by dynamic CRTM (D-CRTM) at runtime WITHOUT
platform RESET

- They extend measurements (hashes) of components to PCRs BEFORE
passing control to them

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

Static Root of Trust for Measurement
BIOS/UEFI firmware

S-CRTM _,.(BIOS/UEFIL| Bootloader | Kernel [User

/
————— -
\

----p Extend a hash of next code to TPM
TPM — : Execute next code

Code Applications
Power On/
Restart

Dynamic Root of Trust for Measurement
(Intel Trusted Execution Technology)
tboot Bootloader User

Untrusted | | D-CRTM | > SO
Code (DCE) (DLME) Kernel Applications

~
~

|
1
\\ 1
\\ 1 ’
s |
\\\ 1 0’ _a=="
ta DL Event : Dynamic Launch Event

TPM DCE: DRTM Configuration Environment
DLME: Dynamically Launched Measured Environment

Spring 1398 Ce 874 - Secure Architecture lll [Han’18]

PCR Protection

- PCRs contains measurement results of a system
- They MUST NOT be reset by disallowed operations
- Static PCRs (PCR #0~#15) can be reset only if the host resets

« Dynamic PCRs (PCR #17~#19) can be reset only if the host initializes the
DRTM

- If PCRs are reset by attackers, they can reproduce specific PCR values by
replaying hashes

* They can steal the secret and deceive the local and remote
- verification

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

PCR protection mechanisms work properly

UNTIL YES

| |
J

DAY

Spring 1398 Ce 874 - Secure Architecture lll [Han’18]

Assumptions and Threat Model

- The system measures boot components using the SRTM and DRTM
- The measurement results stored in PCRs are verified by a remote verifier
- The modifications of boot components are detected

- The attackers already gain a root privilege and try to compromise the whole
system

* They try to hide the breach and retain the root privilege

» They cannot access the system circuit physically

» They cannot flash the firmware with arbitrary code

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

Advanced Configuration and Power Interface
(ACPI)

- Defines power states and hardware register sets
- Global states
« GO (Working), G1 (Sleeping), G2 (Soft-off), G3 (Mechanical-off)
« Sleeping states
- SO0 and S1: Working and Power on Suspend
+ S2: Same as S1, CPU is powered off
- S3: Sleep, All devices are powered off except RAM
- S4: Hibernation, All devices are powered off

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

Spring 1398

(1) Request
to save a state

OS

(2) Request to (6) Resume OS
enter sleep

S ACPI

(5) Request (BIOS/UEFI)
to restore a state

(3) Sleep (4) Wake up

Sleep
(S3, S4)

ACPI Sleep Process with TPM

Ce 874 - Secure Architecture Il

[Han’18]

(1) Request
to save a state

OS

(2) Requestto (6) Resume OS
enter sleep

- | AcPI

o (RIOS/UEFI)
(5) Request to
restore a state

(3) Sleep (4) Wake up

Sleep
(S8, S4)

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

The Grey Area \Vulnerability (CVE-2018-6622)

What is the “corrective action”?

If the TPM receives Startup(STATE) that was not preceded by Shutdown(STATE), tken there is no state
to restore and the TPM will return TPM_RC VALUE. The CRTM is expected to take|corrective action|to
prevent malicious software from manipulating the PCR values such that they would misrepresent the
state of the platform.[The CRTM would abort the Startup(State) and restart with Startup(CLEAR).

This means “reset the TPM” }

The startup behavior defined by this specification is different than TPM 1.2 with respect to
Startup(STATE). A TPM 1.2 device will enter Failure Mode if no state is available when the TPM
receives Startup(STATE). This is not the case in this specification. It is up to the CRTM to take
corrective action if it the TPM returns TPM_RC_VALUE in response to Startup(STATE).

Trusted Platform Module Library Part1:
Architecture

Spring 1398 Ce 874 - Secure Architecture lll [Han’18]

Spring 1398

Exploit of the Grey Area Vulnerability

BIOS/UEFI -
l E Leaves normal hashes
' in event logs
Compromised - -
Software Stack CT 7
i . Extract and calculate

i the normal hashes
@omised State !
R —

Hash | Store the normal hashes
Sleep without saving in RAM
the TPM state '
Wake up

Reset the TPM and replay
the normal hashes

Compromised
Software Stack

Y
<Faked State>

Ce 874 - Secure Architecture Il

[Han’18]

—valuation — The Grey Area Vulnerabllity

PC Vendor CPU PC and mainboard BIOS Ver. and TPM TPM vendor and SRTM
No. (Intel) model release date Ver. firmware Ver. attack

Core ' MYBDEWIi5v.86A, Infineon,

| Intel '5.5300U NUCS515SMYHE 2017.11.30 2.0 5.40 Y

) fiitel Core Compute Stick CCSKLm5v.86A.0054, 0 NTC., Y

mS-6Y57 STK2mv64CC 201712 26 ' 1.30.1

Core) 181 NTC,

. Dt i5-6500T GRHp e O 2018.01.09 . 1.3.2.8 Y
Core F23¢. Infineon,

% GiGaBaE i7-6700 QLION:ME 2018.01.11 & 541 X
Core F20e, Infineon,

5 GIGABYTE 7-6700 H170-D3HP 1018.01.10 2.0 561 Y
Core 3601, Infineon,

° ASUS i7-6700 R 2017:12.12 - 551 Y i

- L Core X1 Carbon 4th NIFET59W (1.33), 12 Infineon, N

CHOvo i7-6600U Generation 2017.12.19 ' 6.40

Core) FBKTCPA, STMicroelectronics,

8 Lenovo 15.4570T ThinkCentre m93p 2017.12.29 1.2 13.12 N
Core) 1.8.1, NTC,

2 ehel i5-6500T Uplipiex {0e) 2018.01.09 e 5.812.1 o
Xeon M60 v02.38, Infineon,

2 By E5-2690 v4 ot 2017.11.08 L2 4.43 N
Core F20e, Infineon,

11 GIGABYTE 7-6700 H170-D3HP 2018.01.10 1.2 3.19 N

Spring 1398 Ce 874 - Secure Architecture I [Han’18]

Countermeasures — The Grey Area Vulnerabllity

- Disable S3 sleeping state option in BIOS menu
- Brutal, but simple and effective

- Revise TPM 2.0 specification to enter failure mode if there is no state to
restore

- Revise TPM 2.0 specification to define “corrective action” in detail

A long time to revise and apply to the TPM or BIOS/UEFI firmware, but
fundamental solutions

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

Countermeasures — The Lost Pointer Vulnerability

- Apply our patch to tboot

- https://sourceforge.net/p/tboot/code/ci/521c58e51eb5be
05a29983742850e72c44ed80e/

- Update tboot to the latest version

Spring 1398 Ce 874 - Secure Architecture lll [Han’18]

Conclusion

- Two vulnerabilities that can subvert the TPM using S3 sleeping state were
found

« The Grey Area Vulnerability: CVE-2018-6622
* The Lost Pointer Vulnerability: CVE-2017-16837

« Attackers can deceive the local and remote verification with the
vulnerabilities

* They also can unseal the seal secret and steal it

- We have contacted manufacturers and contributed a patch to tboot project to
solve the vulnerabilities

Spring 1398 Ce 874 - Secure Architecture |l [Han’18]

Acknowledgments/References

 [Parno’10] Bootstrapping Trust in Commodity Computers, Bryan Parno,
Jonathan McCune, Adrian Perrig, Slides IEEE S&P, 2010

- [Han’18] A Bad Dream: Subverting Trusted Platform Module While You Are
Sleeping, Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun
Kim, Slides, Usenix Security 2018

Spring 1398 Ce 874 - Secure Architecture I 50

