
CE 874 - Secure Software Systems

Secure Architecture III

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Spring 1398 Ce 874 - Secure Architecture III

Secure Architecture

• How to come up with a secure
architecture?

• What design principals is should be
followed?

• What are the available mechanisms?

• How do you trust the code getting

executed?

xkcd.com

Spring 1398 Ce 874 - Secure Architecture III

Bootstrapping Trust in Commodity Computers,
Bryan Parno, Jonathan McCune, Adrian Perrig, IEEE S&P,
2010

Spring 1398 Ce 874 - Secure Architecture III

A Travel Story

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Trust is Critical

Will I regret
having done this?

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Bootstrapping Trust
What F will this machine compute?

F

XAlice YAlice

YOtherXOther

What F will this machine compute?

Is F what the programmer intended?
Does program P compute F?

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

H()Ĥ()

Bootstrapping Trust is Hard!

OS

App
1

App
2
App
3

App
4

App
N

Module 1Module 3

Module 2Module 4

App
5

• Challenges:

• Hardware assurance

• Ephemeral software

• User Interaction

Safe?

Yes!

S1()S2()S3()S4()S5()S6()S7()S8()S9()S10()S11()S12()S13()S14()S15()

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Evil
App

Evil
OS

Bootstrapping Trust is Hard!

• Challenges:

• Hardware assurance

• Ephemeral software

• User Interaction

Safe?

Yes!

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

In the paper…

• Bootstrapping foundations

• Transmitting bootstrap data

• Interpretation

• Validation

• Applications

• Human factors

• Limitations

• Future directions

• … and much more!

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

1) Establish Trust in Hardware

• Hardware is durable

• Establish trust via:

• Trust in the manufacturer

• Physical securityOpen Question: Can we do better?

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

2) Establish Trust in Software

OS

App
1

App
N …

• Software is ephemeral

• We care about the software currently in control

• Many properties matter:

• Proper control flow

• Type safety

• Correct information flow 

…

Which property matters most?

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

A Simple Thought Experiment

• Imagine a perfect algorithm for analyzing control flow

• Guarantees a program always follows intended control flow

• Does this suffice to bootstrap trust? No!
P

Respects
control flowType SafeWe want code identity

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

What is Code Identity?

• An attempt to capture the behavior of a program

• Current state of the art is the collection of:

• Program binary

• Program libraries

• Program configuration files

• Initial inputs

• Often condensed into a hash of the above

Function f

Inputs to f

• Attempt to capture the f computed by a program

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Code Identity as Trust Foundation

• From code identity, you may be able to infer:

• Proper control flow

• Type safety

• Correct information flow 

…

• Reverse is not true!

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

What Can Code Identity Do For You?

• Research applications

• Commercial applications

• Thwart insider attacks

• Protect passwords

• Create a Trusted Third Party

• Secure the boot process

• Count-limit objects

• Improve security of network

protocols

• Secure disk encryption (e.g., Bitlocker)

• Improve network access control

• Secure boot on mobile phones

• Validate cloud computing platforms

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Establishing Code Identity

F

XAlice

XOther

YAlice

YOther

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Establishing Code Identity

XAlice

XOther

f1 f2 fN

YAlice

YOther

…

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Establishing Code Identity

Software
N

Software
N-1

Software
1 . . . ?

Root of
Trust

Chain of Trust

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Software
N

Software
N-1

Software
1

Trusted Boot: Recording Code Identity

. . . Root of
Trust

SW
1

SW
N

SW
N-1

SW
2

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Attestation:  
Conveying Records to an External Entity

Software
N

Software
N-1

Software
1 . . .

SW
1

SW
N

SW
N-1

SW
2

random #

Sign ()
Kpriv random #

SW
1

SW
2

SW
N-1

SW
N

Controls Kpriv
[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Interpreting Code Identity

BIOS

Bootloader

Drivers 1…N

App 1…N

OS

Option ROMs

[Gasser et al. ‘89], [Sailer et al. ‘04]
Traditional

[Marchesini et al. ‘04], [Jaeger et al. ’06]
Policy Enforcement

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Interpreting Code Identity

BIOS

Bootloader

Virtual Machine Monitor

Option ROMs

Virtual
Machine

Traditional

[Marchesini et al. ‘04], [Jaeger et al. ’06]
Policy Enforcement

[England et al. ‘03], [Garfinkel et al. ‘03]
Virtualization

[Gasser et al. ‘89], [Sailer et al. ‘04]

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Interpreting Code Identity

BIOS

Bootloader

Virtual Machine Monitor

Option ROMs

OS

Late
Launch

VMM

Virtual
Machine

Traditional

[Marchesini et al. ‘04], [Jaeger et al. ’06]
Policy Enforcement

[England et al. ‘03], [Garfinkel et al. ‘03]
Virtualization

Late Launch
[Kauer et al. ‘07], [Grawrock ‘08]

[Gasser et al. ‘89], [Sailer et al. ‘04]

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Interpreting Code Identity
Traditional

[Marchesini et al. ‘04], [Jaeger et al. ’06]
Policy Enforcement

[England et al. ‘03], [Garfinkel et al. ‘03]
Virtualization

Late Launch
[Kauer et al. ‘07], [Grawrock ‘08]

Targeted Late Launch
[McCune et al. ‘07]

OS

Late
Launch

Flicker

Flicker

S

Attested

[Gasser et al. ‘89], [Sailer et al. ‘04]

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Interpreting Code Identity

BIOS

Bootloader

Drivers 1…N

App 1…N

OS

Option ROMs

Flicker

S

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Load-Time vs. Run-Time Properties

• Code identity provides load-time guarantees

• What about run time?

• Approach #1: Static transformation

Code Compiler

Run-Time Policy

Code’

Attested

[Erlingsson et al. ‘06]

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Load-Time vs Run-Time Properties

• Code identity provides load-time guarantees

• What about run time?

• Approach #1: Static transformation

• Approach #2: Run-Time Enforcement layer

Code

Enforcer

Attested Run Time

Load Time

[Erlingsson et al. ‘06]

[Haldar et al. ‘04], [Kil et al. ‘09]

Open Question:
How can we get complete run-time properties?

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

• General
purpose

• Tamper
responding

Roots of Trust

0 0 4 2

• General
purpose
• No physical

defenses

• Special
purpose

• Timing-based
attestation

• Require
detailed HW
knowledge

[Chun et al. ‘07]
[Levin et al. ‘09]

[Spinellis et al. ‘00]
[Seshadri et al. ‘05]

…

[ARM TrustZone ‘04]
[TCG ‘04]
[Zhuang et al. ‘04]

…

[Weingart ‘87]
[White et al. ‘91]
[Yee ‘94]
[Smith et al. ‘99]

…

Cheaper

Open Question:
What functionality do we need in hardware?

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Human Factors

SW
1

SW
2

SW
N-1

SW
N

Open Questions:
How should be communicated to
Alice?

What does Alice do with a failed attestation?

How can Alice trust her device?

SW
1

SW
2

SW
N-1

SW
N

[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

Conclusions

• Code identity is critical to bootstrapping trust

• Assorted hardware roots of trust available

• Many open questions remain!

Thank you!
[Parno’10]

Spring 1398 Ce 874 - Secure Architecture III

A Bad Dream: Subverting Trusted Platform Module
While You Are Sleeping, Seunghun Han, Wook Shin, Jun-
Hyeok Park, and HyoungChun Kim, Usenix Security 2018

Spring 1398 Ce 874 - Secure Architecture III

Trusted Computing Group (TCG)

• Defines global industry specifications and standards

• Is supportive of a hardware root of trust

• Trusted Platform Module (TPM) is the core technology

• TCG technology has been applied to Unified Extensible Firmware

Interface (UEFI)

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Trusted Platform Module (TPM) (1)

• Is a tamper-resistant device

• Has own processor, RAM, ROM, and non-volatile RAM

• It has own state separated from the system

• Provides cryptographic and accumulating measurements functions

• Measurement values are accumulated to Platform Configuration Registers
(PCR #0~#23)

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Trusted Platform Module (TPM) (2)

• Is used to determine the trustworthiness of a system by investigating the
values stored in PCRs

• A local verification or remote attestation can be used

• Is used to limit access to secret data based on specific PCR values

• “Seal” operation encrypts secret data with the PCRs of the TPM

• “Unseal” operation can decrypt the sealed data only if the PCR values

match the specific values

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Root of Trust for Measurement (RTM)

• Sends integrity-relevant information (measurements) to the TPM

• TPM accumulates the measurements to a PCR with the previously stored

value in the PCR

• Extend: PCRnew = Hash(PCRold || Measurementnew)

• The CPU controlled by Core RTM (CRTM)

• The CRTM is the first set of instructions when a new chain of trust is

established

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Static and Dynamic RTM (SRTM and DRTM)

• SRTM is started by static CRTM (S-CRTM) when the host platform starts at
POWER-ON or RESTART

• DRTM is started by dynamic CRTM (D-CRTM) at runtime WITHOUT
platform RESET

• They extend measurements (hashes) of components to PCRs BEFORE
passing control to them

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III [Han’18]

Spring 1398 Ce 874 - Secure Architecture III

PCR Protection

• PCRs contains measurement results of a system

• They MUST NOT be reset by disallowed operations

• Static PCRs (PCR #0~#15) can be reset only if the host resets

• Dynamic PCRs (PCR #17~#19) can be reset only if the host initializes the

DRTM

• If PCRs are reset by attackers, they can reproduce specific PCR values by

replaying hashes

• They can steal the secret and deceive the local and remote

• verification

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

PCR protection mechanisms work properly

UNTIL YESTERDAY

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Assumptions and Threat Model

• The system measures boot components using the SRTM and DRTM

• The measurement results stored in PCRs are verified by a remote verifier

• The modifications of boot components are detected

• The attackers already gain a root privilege and try to compromise the whole
system

• They try to hide the breach and retain the root privilege

• They cannot access the system circuit physically

• They cannot flash the firmware with arbitrary code

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Advanced Configuration and Power Interface
(ACPI)

• Defines power states and hardware register sets

• Global states

• G0 (Working), G1 (Sleeping), G2 (Soft-off), G3 (Mechanical-off)

• Sleeping states

• S0 and S1: Working and Power on Suspend

• S2: Same as S1, CPU is powered off

• S3: Sleep, All devices are powered off except RAM
• S4: Hibernation, All devices are powered off

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III [Han’18]

Spring 1398 Ce 874 - Secure Architecture III

(1) Request
to save a state

(5) Request to
restore a state

The Grey Area vulnerability (CVE-2018-6622)

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

The Grey Area Vulnerability (CVE-2018-6622)

Trusted Platform Module Library Part1:
Architecture

What is the “corrective action”?

This means “reset the TPM”

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III [Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Evaluation – The Grey Area Vulnerability

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Countermeasures – The Grey Area Vulnerability

• Disable S3 sleeping state option in BIOS menu

• Brutal, but simple and effective

• Revise TPM 2.0 specification to enter failure mode if there is no state to
restore

• Revise TPM 2.0 specification to define “corrective action” in detail
• A long time to revise and apply to the TPM or BIOS/UEFI firmware, but

fundamental solutions

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Countermeasures – The Lost Pointer Vulnerability

• Apply our patch to tboot
• https://sourceforge.net/p/tboot/code/ci/521c58e51eb5be1

05a29983742850e72c44ed80e/

• Update tboot to the latest version

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Conclusion

• Two vulnerabilities that can subvert the TPM using S3 sleeping state were
found

• The Grey Area Vulnerability: CVE-2018-6622

• The Lost Pointer Vulnerability: CVE-2017-16837

• Attackers can deceive the local and remote verification with the
vulnerabilities

• They also can unseal the seal secret and steal it

• We have contacted manufacturers and contributed a patch to tboot project to
solve the vulnerabilities

[Han’18]

Spring 1398 Ce 874 - Secure Architecture III

Acknowledgments/References

• [Parno’10] Bootstrapping Trust in Commodity Computers, Bryan Parno,
Jonathan McCune, Adrian Perrig, Slides IEEE S&P, 2010

• [Han’18] A Bad Dream: Subverting Trusted Platform Module While You Are
Sleeping, Seunghun Han, Wook Shin, Jun-Hyeok Park, and HyoungChun
Kim, Slides, Usenix Security 2018

�50

