
Exploiting P2P Systems for DDoS Attacks
Naoum Naoumov and Keith Ross

Department of Computer and Information Science
Polytechnic University, Brooklyn, NY 11201

Abstract— When a P2P system has millions of concurrently
active peers, there is the risk that it could serve as a DDoS engine
for attacks against a targeted host. In this paper we describe two
approaches to creating a DDoS engine out of a P2P system: the
first involves poisoning the distributed index in the peers;the
second involves poisoning the routing tables in the peers. For both
approaches, the targeted host does not have to be a participant
in the P2P system, and could be a web server, a mail server, or a
user’s desktop. We then examine these two poisoning attacksin
Overnet, a popular DHT-based P2P file-sharing system. By using
limited poisoning attacks of short duration on Overnet’s indexing
and routing tables, we create DDoS attacks against a targeted
host. We find that with modest effort, both DDoS attacks can
direct significant traffic from diverse peers to the target.

I. I NTRODUCTION

In a flooding Distributed Denial of Service (DDoS) attack,
the attacker exploits a large number of hosts, often referred to
as “zombies,” to concurrently send seemingly legitimate pack-
ets to an intended victim host. The goal of such an attack is
to exhaust key resources at the target, diminishing the target’s
capacity to either provide or receive service. Resources that
can be exhausted include the target’s downstream bandwidth,
upstream bandwidth, CPU processing, or TCP connection
resources. From the attacker’s perspective, a successful DDoS
attack will not only exhaust key resources at the target host
but will also involve a large number of zombies from different
ISPs. This last characteristic makes it difficult for upstream
devices to detect and filter the attack packets based on their
source IP addresses.

We are concerned with two major classes of flooding DDoS
attacks in this paper. The first type, which we callTCP-
connection DDoS attack, is to overwhelm the victim’s con-
nection resources withfully-open TCP connections, thereby
hampering legitimate users from making connections to the
victim host. The second type, which we call thebandwidth
DDoS attack is to generate enough traffic to tie up the
bandwidth of the victim’s access link (either downstream or
upstream). UDP, TCP SYN or ICMP packets can be used as
the raw material in a bandwidth DDoS attack.

In this paper, we explore how the indexing and routing
substrates in P2P systems can potentially be manipulated to
create bandwidth and TCP-connection DDoS attacks. More
specifically, in this paper we explore two types of poisoning,
which we callindex poisoningand therouting table poison-
ing. With index poisoning, the attacker inserts bogus records
into the P2P index system. These bogus records indicate that
one or more popular files are located at the targeted IP address
and port number. Importantly, the target host does not have to
be a participant in the P2P system, and could be a mail server,
a web server, or a user’s desktop. When peers later search for

the popular files, the index will inform them that the popular
files are available at the targeted port of the targeted host.The
peers then connect with the target and attempt to download
the files, potentially overwhelming it with fully-open TCP
connections or filling up the number of allowed connections
and preventing legit users from obtaining services.

With routing poisoning, the attacker attempts to poison the
routing tables in the P2P nodes. Specifically, the attacker
attempts to make the targeted host an overlay neighbor of
many of the peers in the P2P system. When a poisoned peer
forwards a query, publish or overlay maintenance message, it
may select the targeted host from its neighbor set, and send the
message directly to the target. Given that there are millions of
concurrently active peers in many P2P systems, if a significant
fraction of the peers have their routing tables poisoned, the
target host can potentially receive a flood of query, publishand
maintenance traffic, and hence be the victim of a bandwidth
DDoS attack.

The position of this paper is that, unless carefully designed,
a P2P system may be vulnerable to index poisoning or to
routing poisoning, and can thus be exploited as a massive
DDoS flooding engine. Our principle vehicle for arguing this
position is a protocol analysis and measurement study of
Overnet, a DHT-based file-sharing system. With more than
one million concurrently active peers, Overnet is probablythe
largest DHT deployed to date. It is also a core component
of eDonkey, which generates today more traffic than any
other content-distribution system, including BitTorrent[17].
Our experiments show that Overnet is indeed vulnerable to
both index poisoning and routing poisoning. Using software
developed in house, we carry out (limited and short-lived)
attacks on Overnet, and measure the amount of traffic and
TCP connections that are directed to our victim host (running
on the Polytechnic University campus). Our measurements
show that Overnet can indeed be exploited as a DDoS engine
with a massive number of zombies. We conjecture that other
P2P systems, besides Overnet, can also be leveraged as DDoS
engines against arbitrary targets.

This paper is organized as follows. In Section II we describe
in more detail index and routing table poisoning. In SectionIII
we describe the Overnet file-sharing system.In Section IV we
describe our experiment for creating a DDoS attack against a
target host and present measurement results. In Section V we
discuss how the index and routing substrates can be designed
to make P2P systems less vulnerable.

A. Related Work

There have been numerous books and papers written on
DoS and DDoS attacks; for some recent research see [1], [2],

[10], [11], [12], [13]. None of this research has addressed how
P2P systems can be exploited for DDoS attacks.

Daswani and Garcia-Molina study the query-flood DDoS
attack in Gnutella, and different policies that nodes mighttake
to mitigate the attack [7]. However, it only examines the case
when the target of the attack is itself a Gnutella peer. In this
paper our focus is using to P2P systems for DDoS attacks
against arbitrary hosts.

We use Overnet as a vehicle in exploring P2P-driven DDoS
attacks. In doing so, we develop a crawler and measure-
ment apparatus for Overnet. Bhagwan [3] et al and Kutzner
and Fuhrmann [4] have also developed Overnet crawlers for
measuring Overnet characteristics, such as peer availability.
Overnet is a proprietary protocol. However, the creation of
Overnet crawlers is facilitated by the open-source projectkadc
[16], which implements the majority of the Overnet messages.
Gosling describes a buffer overflow attack on the eDonkey
client [5].

II. I NDEX AND ROUTING POISONING

A. Index Poisoning

Many P2P systems include an index. The index contains
records which map keys to values. For example, for P2P file
sharing systems, the index maps file identifiers (e.g., hashes
of files) to locations (that is, IP address and port number). An
index may also provide other types of mappings; for example,
in Skype, the index maps user names to locations.

An index may be centralized (as it was in Napster) or
distributed over a large subset of peers (as it is in FastTrack,
Overnet, Skype and many other “commercial” P2P systems).
We refer to the peers that participate in the distributed index as
the indexing peers. Each indexing peer includes a portion of
the index, and these portions may overlap across the indexing
peers.

With index poisoning, the attacker’s goal is to trick indexing
peers into adding bogus records into their local indexes,
where the location in the bogus records is the IP address
and port number of victim host and service. For exam-
ple, if the attacker wants to DDoS attack the mail service
at host 222.222.222.222, the bogus record would contain
222.222.222.222 for IP address and 25 for port number.
Depending on the P2P system and its implementation, it may
be possible to trick an indexing peer by simply sending it a
message which includes a bogus record; upon receiving the
bogus record, the indexing peer may include it in its local
index.

After an indexing peer has been poisoned, when another
peer searches for the location of a particular file, it may receive
a bogus record from the poisoned peer, and then attempt to
download the file from the victim host. During this download
attempt, it will first establish a TCP connection with the
victim host at the port number specified in the bogus record.
After establishing the connection, the downloading peer will
send an application protocol-specific message, indicatingthe
file it wishes to download. Not understanding this message,
the victim host may ignore the message and let the TCP
connection hang, may close the TCP connection, or may even

crash. If many peers attempt to download from the victim host,
the victim host becomes subject to TCP-connection DDoS
attack. The implications may even be worse if the client
automatically retries every few minutes.

In the classic TCP SYN flood DDoS attack, zombies flood
the intended victim with TCP SYN packets but do not com-
plete the TCP handshake with TCP ACK packets (typically
because the zombies are using spoofed source IP addresses).
This creates a multitude of half-open connections and can
exhaust the victim’s connection resources. However, operating
systems can (and often do) eliminate this vulnerability by
using TCP SYN cookies [18], [1]. The TCP-connection DDoS
attack described here is nastier than the TCP SYN flood attack.
It creates multitudes of fully-open TCP connections, which
cannot be countered with TCP SYN cookies.

B. Routing Table Poisoning

Recall that in a DHT-based P2P system, the peers have IDs
in some ID space. These IDs are used to organize the peers
into an overlay, with each peer having a set of neighbors. In
many DHT systems, peers have a relatively small number of
neighbors, typically,O(log N), whereN is the total number
of peers. A peer’s list of neighbors constitutes its routingtable.
Each entry in the list contains the neighbor’s ID, IP address,
and port number.

Recall that a query message in a DHT contains a key. When
a peer receives (or generates) a message, it uses to the key to
select a neighbor from the routing table to forward the message
to. (The forwarding can be iterative with the node originating
the query being the root, as is the case in Overnet.) The
neighbor selection process is DHT-dependent. For example,
in the Kademlia DHT, the peer uses the XOR metric to select
the closest neighbor to the key [6].

When a peer joins the system, it builds its routing table,
and this table is continuously updated as other peers join and
leave the system. When a peer detects that a neighbor has left
the system, it removes that neighbor from the routing table.
When a peer discovers a new peer in the system (for example,
upon receiving a query message), it may add that peer to its
routing table. The details of how a routing table is updated is
highly DHT and protocol implementation specific.

With routing table poisoning, the attacker’s goal is to “trick”
peers into adding bogus neighbors into their routing tables,
where the IP address of these bogus neighbors is the IP address
of the victim. Depending on the DHT and its implementation,
it may be possible to poison a peer by simply sending it a
message which “announces” the existence of a bogus peer.
Upon receiving the announcement, the peer may choose to
include the bogus peer in its routing table. Later, when the
poisoned peer needs to forward one or messages through the
DHT, it may select the bogus neighbor in its routing table
and forward the messages to that neighbor. If many peers are
poisoned, so that they add one or more bogus entries to their
routing table, with each bogus entry having the IP address
of the victim host, then the victim host could receive a flood
of messages from the DHT, with the messages coming from
millions of different sources. Furthermore, because the victim
node is not a participant in the P2P system, it will typically

reply with an error message for each message received,
additionally clogging up the victim’s upstream pipe.

Many P2P systems are designed so that when a peer
learns that one of its neighbors has left the system (because
the neighbor didn’t respond with a valid message), the peer
removes the neighbor from its routing table. In this case,
each successful poisoning announcement generates a burst of
messages directed at the target, after which the bogus neighbor
is removed from the peer’s routing table. Thus, routing table
poisoning is similar to reflection attacks [2], with a poisoned
peer serving as a reflector. Each successful announcement
causes the poisoned peer to generate a single burst of one or
more packets directed at the victim. A measure of efficiency
of a reflector attack is itsamplification, which can be defined
as the average number of packets in a burst. We shall see in
Section IV that the amplification can potentially be huge with
routing table poisoning. We remark in passing that reflector
attacks that send DNS requests with spoofed IP addresses to
DNS servers have successfully crippled targets [1].

III. OVERNET AND DDOS

To gain greater insight into the index and routing table
attacks, we examine in detail Overnet, which is a part of the
eDonkey client. Kad, deployed in eMule, is an open-source
“cousin” of Overnet. Both Overnet and Kad are based on the
Kademlia DHT [6]. Kademlia is similar in many respects to
Pastry [19] and Tapestry [20].

To understand how Overnet can be exploited as a DDoS
engine, we review some of its relevant features. When a client
joins Overnet, it joins with a 128-bit ID. Presented with any
128-bit key, the Kademlia DHT finds the peers that have
the closest IDs, where closeness is defined in terms of the
XOR metric. To locate the closest peers, Overnet uses UDP
messages and iterative searches. In particular, the querying
client sends a series of UDP messages to a sequence of peers,
with each peer in the sequence having an ID that is closer to
the key.

A. Constructing and Maintaining the Routing Table

When a peer joins Overnet, it attempts to make contact with
at least one peer from a locally cached list of peers (created
during previous sessions). After finding a peer that is alive,
the joining peer finds overlay neighbors by sending search
messages for its own ID. The joining peer receives routing
table entries from the peers in the path between itself and the
closest peer to the ID. It constructs its own routing table by
aggregating the received entries [6]. Once the joining peerhas
constructed a local routing table, it announces its presence to
all the nodes in its routing table. When a peer receives such an
announcement, it can update its own routing table by including
the joining peer in the table.

B. Advertising Files

After a peer constructs its routing table and announces its
presence, it starts publishing information about the files it is
sharing. The publishing process consists of two phases:

• During the first phase, after hashing the file to obtain the
file identifier, the peer sends into the DHT alocation

publish messagewhich contains the file identifier and
the file location (IP and port). This message is iteratively
routed through the DHT to peers that are close to the
identifier in the ID space. When these peers receive the
message, they update their local indexes.

• During the second phase, the joining peer extracts key-
words from the file’s name and hashes each keyword
into a 128-bit key. For each such keyword, the peer
sends into the DHT ametadata publish messagewhich
contains the hash of the keyword, the hash of the shared
file, and metadata information for the file, such as artist,
title, album, file size, file type, etc. This message is also
iteratively routed through the overlay to peers that are
close to the hash of the keyword in the node ID space.
When these peers receive the message, they update their
local indexes.

C. Searching for Files

Searching works similarly to advertising, but the steps
followed are in reverse order. The user first enters, say,
n keywords into the client GUI. The client hashes each
keyword and obtainshash(keyword1), hash(keyword2),...,
hash(keywordn). The client then iteratively searches the
DHT for each of the hashes. When a query reaches a peer
that has records for the keyword, this peer returns the matching
records to the querying peer. Each matching record consistsof
the file identifier (hash of file) and all the metadata available,
such as file name, artist, file type and size. The requesting
peer thus receives several sets of identifiers, one set for each
keyword. The client filters the responses, keeping only those
title names that match all the keywords. The GUI displays
all of the filtered responses. The user then selects an entry
for downloading, say, a file with identifierH . The client then
performs a location search, iteratively querying the DHT for
H . When a query reaches a peer that has records for the
identifier H , the peer sends to the client a list of locations
(IP address and port number pairs) for copies of that file. The
client then tries to download the file from some of the locations
with TCP connections.

D. Overnet as a DDoS Engine

We now describe how an attacker can exploit Overnet for
launching DDoS attacks1. Let Z denote the victim host, which
is not necessarily in Overnet. The attacker crawls Overnet,
learning about new locations (IP address and port number)
from the currently visited locations. During the crawling,the
attacker either poisons the distributed index (for the index
attack) or poisons the routing table (for the routing table
attack).

We first describe how index poisoning can be done in
Overnet. The attacker, say at Overnet node X, sends an
Overnet location publish message to each of the crawled nodes
while crawling. Figure 1 shows the location publish message,
which gets encapsulated in a UDP packet. In these publish
messages, the attacker includes the victim’s IP address and

1We have informed the Overnet team about the vulnerabilities; however, at
the time of this writing, the problems still exist.

port number. The attacker also puts any file hash it wants into
the message. When node Y receives the publish message, Y
adds the file hash to its index along with the location of the
victim Z. Importantly, before adding this record, in Overnet, Y
does not verify that Z has the file or even that Z is an Overnet
peer. Later, when some node W wants the file corresponding
to the file hash, W may be told by one of the poisoned indexes
that victim Z has the file. Node W then establishes a fully-
open TCP connection to the target service running on Z. As
we shall see, this TCP connection may hang for a minute or
more.

1 1 16 416

tag[0]

1 2 3 2 location_size

Fig. 1. Location publish message: 1 byte eDonkey, 1 byte message type,
16 bytes file hash, 16 bytes publisher’s peer ID, 4 bytes number of tags,
loc=”bcp://ip:port”

We now describe routing table poisoning. The attacker, say
at Overnet node X, sends an Overnet announcement message
to each visited node during the crawling. Figure 2 shows the
announcement message, which gets encapsulated in a UDP
packet. In these announcement messages, the attacker inserts
the victim’s IP address in the peer IP field. The attacker also
inserts a peer ID into the message (more about this choice
later). Let Y denote the peer currently visited by the crawler.
When Y receives the announcement, Y may add the victim Z
to its routing table. Importantly, in Overnet, before adding Z,
Y does not verify that Z actually belongs to Overnet. If many
of the crawled nodes enter the victim Z into its routing table,
and if the associated peer ID is such that Z is often selected as
a neighbor from the routing table, then these tricked nodes will
direct Overnet messages to the victim Z. We have described
how routing table poisoning can be done with announcement
messages. In principle, it can be done with other message types
as well, including publish and query messages.

1 1 16 4 2 1

Fig. 2. Announcement message: 1 byte eDonkey, 1 byte messagetype, 16
bytes peer ID, 4 bytes peer IP, 2 bytes peer port, 1 byte peer type

IV. OVERNET MEASUREMENTSTUDY

In this section we show that it is indeed possible to exploit
Overnet to launch a DDoS attack against an arbitrary victim
host. In our experiments, the victim host resides at Polytechnic
University. We show that by poisoning peers’ indexes, we
can create a TCP-connection DDoS attack; and by poisoning
peers’ routing tables, we can create a bandwidth DDoS attack.
The attacks are not only DDoS attacks against our victim; they
are also attacks against the users of Overnet, who are often
directed to incorrect hosts during searching and downloading.
For this reason, we keep the attacks brief and do not attempt
to maximize the amount of traffic directed to the victim host.
Instead, our goal is to merely show that with relatively little
effort, Overnet can be exploited for DDoS attacks.

Our crawler works by sending connect messages to all
peers that it learns about and search messages to peers that
it already knows are alive. Considering the vast number of
peers in Overnet, we ran our crawler from 16 machines. For
simplicity, the crawlers running on the different machines
do not communicate with each other and simply begin with
different seed peers. The combined work of the crawlers
covered the vast majority of the participating Overnet nodes.
At the victim host, we ran a measurement program to record
statistics about incoming data. The victim host did not run an
Overnet client.

As a preparation for the attacks, we selected several popular
titles from the music charts. We then searched for versions of
those songs, obtaining a list of hashes of existing versionsthat
the DHT already knows about. From the popular songs, we
also selected 10 popular keywords and obtained the hash of
each keyword.

A. Experimental Results

For index poisoning, we sent location publish messages to
the crawled peers, with the file hash in the publish messages
being the file hash of a popular version, as described above.
In this manner, when a users wanted to download one of
the popular files, with high probability the user attempted to
download it from the victim host (as well as from other nodes,
as Overnet employs parallel downloading). To keep the impact
on Overnet low, we limited our advertisements for a 45 minute
period. We continued recording the incoming traffic after the
advertising processes stopped. We used a list of 7,564 file
hashes, but we didn’t send a publish messages for each file
hash to each Overnet peer. Instead, for a particular file hash,
we sent a publish message to a peer if the first 6 bytes of the
peer ID and the file hash were the same. This allowed us to
cover the majority of the Overnet nodes in less than an hour.
We ran an Apache web server at the target host and measured
the number of connections present every second.

Figure 3 shows the total number of connections and the
number of ESTABLISHED connections as produced by netstat
every second. It is important to note that for index poisoning,
the poisoning persisted for hours after the publishing stopped,
which occurred at 45 minutes. This is because the bogus
records persisted in the indexes for hours, even after peers
failed to download from the target host. The TCP connections
originated from thousands of different peers (see discussion
below on routing table attack).

Figure 4 shows that not only does the attack generate TCP
connections at the target node, but that the connections also
have significant durations. For our 9-hour trace, the average
connection duration was about one minute.

For routing table poisoning, we sent announcement mes-
sages to crawled peers, with the peer IDs in the announcement
messages being the hashes of the popular keywords. In this
manner, a fraction of the search and publish messages for each
of the popular keywords are directed to the victim host.

Figure 5 shows the amount of UDP traffic received at the
target node. The traffic starts at 0 kbps and rapidly increases
to 1 Mbps in less than a minute once the attack is launched.
The traffic then remains in the 1.2 to 1.6 Mbps range until

 0

 50

 100

 150

 200

 250

 300

 350

 0 1 2 3 4 5 6

N
um

be
r

of
 T

C
P

 C
on

ne
ct

io
ns

Time [h]

Total
ESTABLISHED

Fig. 3. Number of TCP connections present in one-second intervals

 1

 10

 100

 1000

 10000

 100000

 0 60 120 180 240 300

N
um

be
r

of
 c

on
ne

ct
io

ns

Duration [s]

Fig. 4. Histogram of TCP connection durations

the crawler is stopped; the traffic then quickly tails off.
On average, there is about 1.3 Mbps of downstream traffic
(not including Ethernet headers) at the victim node during
the attack period, not counting any traffic blocked by our
university firewall. There is also, on average, about 1.5 Mbps
upstream traffic out of the victim node, consisting of ICMP
error messages generating by the victim’s operating system.
The reason for the rapid decrease of traffic at the victim after
the attack is terminated is that in Overnet nodes frequently
reannounce themselves, whereas we didn’t frequently rean-
nounce the victim. The victim host also doesn’t properly reply
to any of the UDP messages that it receives; so that after
sending traffic to the victim, the peer removes the victim from
its routing table.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 0 0.2 0.4 0.6 0.8 1

B
an

dw
id

th
 [M

bp
s]

Time [h]

Fig. 5. Routing Table Attack: UDP Traffic at Victim Host

Figure 6 shows the number of unique IP addresses that send
traffic to the target host in each one-second interval. We see
that in each one-second interval the target host receives packets

from about 1,600 Overnet peers. For the entire duration of the
attack, the target host received traffic from 340,274 peers from
22,484 Autonomous Systems (ASes). This illustrates that the
attack is highly distributed, making ingress filtering by source
IP addresses difficult if not impossible [1].

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 0.2 0.4 0.6 0.8 1

N
um

be
r

of
 IP

s

Time [h]

Fig. 6. Number of distinct Overnet hosts sending traffic to target in one-
second intervals.

In addition to source peer diversity, amplification is an
important measure (see Section II-B). Figure 7 shows the
CDF of packet bursts sent per announcement message. We
see that 44% of the bursts contained only 1 packet. Typically,
one-packet bursts are queries and multiple-packet bursts are
bursts of publish messages. Remarkably, many bursts contain
hundreds or even thousands of bursts. This indicates that it
may be possible to optimize the announcements and the peers
to which they are sent, generating significant amplificationin
the DDoS attack. We note in passing that the bursts with
thousands of messages most likely emanate from attackers
which have been hired by music and film companies [9]

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000

P
er

ce
nt

 o
f t

ra
ffi

c

Number of messages in sequence

Fig. 7. CDF of Bursts

We can conclude from these experiments that with little
effort in optimizing the attack, a significant amount of traffic
and connections can be directed at an arbitrary victim host.
For example, our routing table poisoning generated on average
about 1.5 Mbps of upstream traffic at the victim, which
is enough to exhaust the bandwidth of most victims with
broadband residential access or institutions with T1 access;
moreover, the traffic emanated from hundreds of thousands
of different Overnet nodes. Our index poisoning caused over
300 TCP connections to hang at the victim, which persisted for
hours after the attack. By increasing the number of attacked
titles, and optimizing the attack procedure, more traffic and

connections can be generated, perhaps by a factor of 10 or
more.

V. I SSUES WITHCOUNTER MEASURES

In this section we briefly discuss issues surrounding counter
measures to the attacks. Recall that in routing poisoning, a
peer Y receives a message which announces the existence of
a node Z, where Z is the victim and not a participant in the
P2P system. A counter measure is to have peer Y check to
see if Z is a peer in the P2P system. There are a few ways to
do this:

• Y can send Z a message, eliciting a valid response.
Traffic would still be reflected to Z, but now only with
an amplification factor of 1.

• Encryption and closed-source software, so that nodes can
only be announced by themselves. But those techniques
can often be reverse engineered and circumvented [9]

Recall that in the index attack, an indexing peer Y receives
a publish message which advertises the existence of a file at
a location Z. One way to a counter a DDoS attack (on a
non-participating host) is to have peer Y verify that Z is a
participant in the P2P network. This can again be done by
having Y handshake with Z. However, handshaking with each
peer Z that advertises content to Y may introduce significant
additional overhead traffic, both for Y and Z.

A. NATs

Complicating counter measures further is the need to ac-
commodate NATed hosts that share content. In order to un-
derstand why it is not applicable we need to look at how
Overnet handles NATed hosts.

Measurement studies have shown that 30%-40% of the
peers in a P2P system may be behind NATs [8]. Many
NATs do not allow external hosts to establish connections
to hosts behind the NAT. In file sharing systems, this
might prevent users from downloading files from a NATed
host, and in VoIP applications the NATed host may not
be able to accept incoming calls. Many P2P applications
have implemented workarounds for the NAT problem. For
example, in FastTrack, in order to request a file from a NATed
peer, the user contacts that peer’s supernode and that node
tells the NATed peer about the request. Subsequently, the
NATed peer will initiate the TCP connection, thus creating
a “reverse” TCP connection. In Overnet the NATed peer
sends location and metadata publish messages itself, but
instead of providing its own IP address as the source for
the shared file, it uses a delegate peer’s IP. Later, if a peer
wants to download the file shared by the NATed host, it will
contact the provided delegate peer and have the delegate
peer tell the NATed host to establish a reverse connection.
This is possible due to the two different formats of location
entries in the DHT. Typically, file locations are published
with the following format: |version hash|peer id|ip:port |
where the version hash is a hash over the content of the file,
peer id is the ID of the peer that has the content, ip:port is
the actual location of an Overnet client that has the file. If,
however, a NATed peer is sharing files and sending publish
messages, the file locations have the following format:

|version hash|peer id|peer id:delegate ip:delegateport |
the difference here is that the location tag includes the ID of
the NATed peer, and the IP and port of a delegate peer.

Because of this protocol specific NAT-accommodation tech-
nique, in Overnet the IP header source is not necessarily the
same as the published source. This complicates anti-DDoS
measures. A way to solve that problem would be to have
the delegate nodes send the publish messages instead of the
NATed host, and then verify with a 3-way handshake. Since a
delegate node may be a delegate for many NATed hosts, this
could substantially increase the traffic at the delegate nodes.

VI. CONCLUSION

We have argued that P2P index and routing substrates can
potentially be exploited for DDoS attacks. As a case study,
we showed how Overnet can be exploited. This issue needs to
be brought to the forefront, as future P2P systems need to be
designed without this DDoS vulnerability.

ACKNOWLEDGMENT

We would like to thank Jian Liang for his comments and
help. This work was partially supported by NSF grant CNS-
0412029.

REFERENCES

[1] J. Mirkovic, S. Dietrich, D. Dittrich, and P. Reiher. Internet Denial of
Service: Attack and Defense Mechanisms.Prentice Hall 2004.

[2] V. Paxton. An Analysis for Using Reflectors in Distributed Denial-of-
Service Attacks.ACM SIGCOMM Computer Communication Review, July
2001, pp.38-47.

[3] R. Bhagwan, S. Savage, and G. M. Voelker. Understanding Availability.
Proc. of IPTPS 2003.

[4] K. Kutzner and T. Fuhrmann. Measuring Large Overlay Networks - The
Overnet Example.KiVS 2005.

[5] I. Gosling. eDonkey/ed2k: Study of A Young File Sharing ProtocolGIAC
practical repository.

[6] P. Maymounkov and D. Mazieres. Kademlia: A Peer-to-peerInformation
System Based on the XOR Metric.IPTPS 2002.

[7] N. Daswani and H. Garcia-Molina. Query-Flood DoS Attacks in Gnutella.
CCS 2002.

[8] J. Liang, R. Kumar, and K.W. Ross. The FastTrack Overlay:A Measure-
ment Study.Computer Networks (Special Issue on Overlays) 2005.

[9] J. Liang, R. Kumar, Yongjian Xi, and K.W. Ross. Pollutionin P2P File
Sharing Systems.INFOCOM 2005.

[10] D. Moore, G. Voelker, and S. Savage. Inferring InternetDenial-of-
Service Activity. USENIX Security, 2001.

[11] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet Denial-
of-Service with Capabilities.HotNets, 2003.

[12] C. Jin, H. Wang, and K.G. Shin. Hop-count filtering: An effective
defense against spoofed DDoS traffic.CCS 2003.

[13] M. Sung and J. Xu. IP Traceback-Based Intelligent Packet Filtering:
A Novel Technique for Defending against Internet DDoS Attacks ICNP
2002.

[14] M. Ripeanu, I. Foster, and A. Iamnitchi. Mapping the Gnutella network:
Properties of large-scale peer-to-peer systems and implications for system
design.IEEE Internet Computing Journal, vol. 6, no. 1, 2002.

[15] D. Stutzbach and R. Rejaie. Characterizating Today’s Gnutella Topology.
IMC 2005.

[16] The kadc library.http://kadc.sourceforge.net/
[17] Cache Logic. Peer-to-Peer in 2005.http://www.cachelogic.com
[18] E. Skoudis. Counter Attack.Prentice Hall 2002.
[19] A. Rowstron and P. Druschel. Pastry: Scalable, distributed object

location and routing for large-scale peer-to-peer systems. IFIP/ACM
International Conference on Distributed Systems Platforms (Middleware)
2001.

[20] B. Y. Zhao, J. D. Kubiatowicz, and A. D. Joseph. Tapestry: An
infrastructure for fault-tolerant wide-area location androuting.Tech. Rep.
UCB//CSD-01-1141, 2000.

