
1

Low-Rate TCP-Targeted Denial of Service Attacks
and Counter Strategies

Aleksandar Kuzmanovic and Edward W. Knightly

Abstract—Denial of Service attacks are presenting an increasing threat
to the global inter-networking infrastructure. While TCP’ s congestion con-
trol algorithm is highly robust to diverse network conditio ns, its implicit
assumption of end-system cooperation results in a well-known vulnerabil-
ity to attack by high-rate non-responsive flows. In this paper, we investigate
a class oflow-ratedenial of service attacks which, unlike high-rate attacks,
are difficult for routers and counter-DoS mechanisms to detect. Using a
combination of analytical modeling, simulations, and Internet experiments,
we show that maliciously chosen low-rate DoS traffic patterns that exploit
TCP’s retransmission timeout mechanism can throttle TCP flows to a small
fraction of their ideal rate while eluding detection. Moreover, as such at-
tacks exploit protocol homogeneity, we study fundamental limits of the abil-
ity of a class of randomized timeout mechanisms to thwart such low-rate
DoS attacks.

Keywords—Denial of Service, TCP, retransmission timeout

I. I NTRODUCTION

Denial of Service (DoS) attacks consume resources in net-
works, server clusters, or end hosts, with the malicious objec-
tive of preventing or severely degrading service to legitimate
users. Resources that are typically consumed in such attacks
include network bandwidth, server or router CPU cycles, server
interrupt processing capacity, and specific protocol data struc-
tures. Example DoS attacks include TCP SYN attacks that con-
sume protocol data structures on the server operating system;
ICMP directed broadcasts that direct a broadcast address tosend
a flood of ICMP replies to a target host thereby overwhelming it;
and DNS flood attacks that use specific weaknesses in DNS pro-
tocols to generate high volumes of traffic directed at a targeted
victim.

Common to the above attacks is a large number of compro-
mised machines or agents involved in the attack and a “sledge-
hammer” approach of high-rate transmission of packets toward
the attacked node. While potentially quite harmful, the high-rate
nature of such attacks presents a statistical anomaly to network
monitors such that the attack can potentially be detected, the at-
tacker identified, and the effects of the attack mitigated (see for
example, [8], [26], [34]).

In this paper, we study low-rate DoS attacks, which we term
“shrew attacks,”1 that attempt to deny bandwidth to TCP flows
while sending at sufficiently low average rate to elude detection
by counter-DoS mechanisms.

TCP congestion control operates on two time-scales. On
smaller time-scales of round trip times (RTT), typically 10’s to
100’s of msec, TCP performs additive-increase multiplicative-

A. Kuzmanovic is with the EECS Department at Northwestern University. E.
Knightly is with the ECE/CS Departments at Rice University.

This research is supported by the National Science Foundation.
A subset of this work appears in the Proceedings of ACM Sigcomm ’03 [22].
1A shrew is a small but aggressive mammal that ferociously attacks and kills

much larger animals with a venomous bite.

decrease (AIMD) control with the objective of having each flow
transmit at the fair rate of its bottleneck link. At times of se-
vere congestion in which multiple losses occur, TCP operates
on longer time-scales of Retransmission Time Out (RTO).2 In
an attempt to avoid congestion collapse, flows reduce their con-
gestion window to one packet and wait for a period of RTO after
which the packet is resent. Upon further loss, RTO doubles with
each subsequent timeout. If a packet is successfully received,
TCP re-enters AIMD via slow start.

To explore low-rate DoS, we take a frequency-domain per-
spective and consider periodic on-off “square-wave” shrewat-
tacks that consist of short, maliciously-chosen-durationbursts
that repeat with a fixed, maliciously chosen, slow-time-scale fre-
quency. Considering first a single TCP flow, if the total traffic
(DoS and TCP traffic) during an RTT-time-scale burst is suf-
ficient to induce enough packet losses, the TCP flow will en-
ter a timeout and attempt to send a new packet RTO seconds
later. If the period of the DoS flow approximates the RTO of the
TCP flow, the TCP flow will continually incur loss as it tries to
exit the timeout state, fail to exit timeout, and obtain nearzero
throughput. Moreover, if the DoS period is near but outside
the RTO range, significant, but not complete throughput degra-
dation will occur. Hence the foundation of the shrew attack is a
null frequency at the relatively slow time-scale of approximately
RTO enabling a low average rate attack that is difficult to detect.

In a simplified model with heterogeneous-RTT aggregated
flows sharing a bottleneck link, we derive an expression for the
throughput of the attacked flows as a function of the time-scale
of the DoS flow, and hence of the DoS flow’s average rate. Fur-
thermore, we derive the “optimal” DoS traffic pattern (a two-
level periodic square wave) that minimizes its average ratefor
a given level of TCP throughput for the victim, including zero
throughput.

Next, we usenssimulations to explore the impact of aggrega-
tion and heterogeneity on the effectiveness of the shrew attack.
We show that even under aggregate flows with heterogeneous
RTT’s, heterogeneous file sizes, different TCP variants (New
Reno, Sack, etc.), and different buffer management schemes
(drop tail, RED, etc.), similar behavior occurs albeit withdif-
ferent severity for different flows and scenarios. The reason for
this is that once the first brief outage occurs, all flows will si-
multaneously timeout. If their RTOs are nearly identical, they
synchronize to the attacker’s period and will enter a cycle iden-
tical to the single-flow case, even with heterogeneous RTTs and
aggregation. However, with highly variable RTTs, the success
of the shrew attack is weighted such that small RTT flows will
degrade far worse than large RTT flows, so that the attack has the
effect of a high-RTT-pass filter. We show that in all such cases,

2recommended minimum value 1 sec [2]

2

detection mechanisms for throttling non-responsive flows such
as RED-PD or CHOKe are not able to throttle the DoS attacker.

We then perform a set of Internet experiments in both a lo-
cal and wide area environment. While necessarily small scale
experiments (given that the expected outcome is to reduce TCP
throughput to near zero), the experiments validate the basic find-
ings and show that even a remote attacker (across a WAN) can
dramatically reduce TCP throughput. For example, in the WAN
experiments, a remote 909 kb/sec average-rate attack consist-
ing of 100 ms bursts at the victim’s RTO time-scale reduced the
victim’s throughput from 9.8 Mb/sec to 1.2 Mb/sec.

Finally, we explore potential solutions to shrew attacks. First,
we explore an approach where we increase the initial TCP win-
dow size in an attempt to help TCP flows to survive attacker-
induced outages. Second, while it may appear attractive to re-
move the RTO mechanism all together or choose very small
RTO values, we do not pursue this avenue as timeout mecha-
nisms are fundamentally required to achieve high performance
during periods of heavy congestion [2]. Instead, we consider
a class of randomization techniques in which flows randomly
select a value of minRTO such that they have random null fre-
quencies. We use a combination of analytical modeling and sim-
ulation to show that such strategies can only distort and slightly
mitigate TCP’s frequency response to the shrew attack. More-
over, we devise an optimal DoS attack given that flows are ran-
domizing their RTOs and show that such an attack is still quite
severe.

In summary, vulnerability to low-rate DoS attacks is not a
consequence of poor or easily fixed TCP design, as TCP nec-
essarily requires congestion control mechanisms at both fast
(RTT) and slow (RTO) time-scales to achieve high performance
and robustness to diverse network conditions. Consequently,
it appears that such attacks can only be mitigated and not
prevented through randomization. Development of prevention
mechanisms that detect malicious low-rate flows remains an im-
portant area for future research.

The reminder of this paper is organized as follows. In Sec-
tion II we present background on TCP’s timeout mechanism,
while in Section III we explain and model the origins of the vul-
nerability of the timeout mechanism to low-rate attacks. Next,
in Section IV, we explore the traffic patterns to perform the at-
tacks, while in Section V we explore the impact of TCP flow
aggregation and heterogeneity on the effectiveness of the shrew
attack. Section VI describes the experiments performed in the
Internet, and Section VII proposes and evaluates a set of core-
and end-point-based counter-DoS mechanisms intended to mit-
igate the effects of shrew attacks. Finally, in Section VIIIwe
conclude.

II. TCP’S TIMEOUT MECHANISM

Here, we present background on TCP’s retransmission time-
out (RTO) mechanism [32]. TCP detects loss via either timeout
from non-receipt of ACKs, or by receipt of a triple-duplicate
ACK. If loss occurs and less than three duplicate ACKs are re-
ceived, TCP waits for a period of retransmission timeout to ex-
pire, reduces its congestion window to one packet and resends

the packet.3

Selection of the timeout value requires a balance among two
extremes: if set too low, spurious retransmissions will occur
when packets are incorrectly assumed lost when in fact the data
or ACKs are merely delayed. Similarly, if set too high, flows
will wait unnecessarily long to infer and recover from conges-
tion.

To address the former factor, Allman and Paxson experi-
mentally showed that TCP achieves near-maximal throughput
if there exists a lower bound for RTO of one second [2]. While
potentially conservative for small-RTT flows, the study found
thatall flowsshould have a timeout value of at least 1 second in
order to ensure that congestion is cleared, thereby achieving the
best performance.

To address the latter factor, a TCP sender maintains two
state variables, SRTT (smoothed round-trip time) and RTTVAR
(round-trip time variation). According to [32], the rules govern-
ing the computation of SRTT, RTTVAR, and RTO are as fol-
lows. Until a RTT measurement has been made for a packet
sent between the sender and receiver, the sender sets RTO to
three seconds. When the first RTT measurement R’ is made,
the host sets SRTT= R’, RTTVAR = R’/2 and RTO =
SRTT+ max(G, 4RTTVAR), where G denotes the clock gran-
ularity (typically≤ 100 ms). When a subsequent RTT measure-
ment R’ is made, a host sets

RTTV AR = (1 − β)RTTV AR + β |SRTT − R′|

and
SRTT = (1 − α)SRTT + α R′

whereα = 1/8 andβ = 1/4, as recommended in [17].
Thus, combining the two parts, a TCP sender sets its value of

RTO according to

RTO = max(minRTO, SRTT + max(G, 4 RTTV AR)).
(1)

Re-

transmission

Timer

1 sec

2 sec

1 sec

1 sec -
 RTT

2 sec -
 RTT

time

0
 1sec
+2
 RTT

Fig. 1. Behavior of the TCP retransmission timer

Finally, we illustrate RTO management via aretransmission-
timer timeline in Figure 1. Assume that a packet with sequence

3Conditions under which TCP enters retransmission timeout vary slightly ac-
cording to TCP version. We discuss this issue in Section V.

3

numbern is sent by a TCP sender at reference timet = 0, and
that a retransmission timer of 1 second is initiated upon itstrans-
mission. If packetn is lost and fewer than three duplicate ACKs
are received by the sender, the flow “times out” when the timer
expires att = 1 sec. At this moment, the sender enters the ex-
ponential backoff phase: it reduces the congestion window to
one, doubles the RTO value to 2 seconds according to Karn’s
algorithm [21], retransmits the unacknowledged packet with se-
quence numbern, and resets the retransmission timer with this
new RTO value. If the packet is lost again (not shown in Fig-
ure 1), exponential backoff continues as the sender waits for the
2 sec-long retransmission timer to expire. Att = 3 sec, the
sender again applies Karn’s algorithm, doubles the RTO value
to 4 seconds and repeats the process.

Alternately, if packetn is successfully retransmitted at time
t = 1 sec as illustrated in Figure 1, its ACK will arrive to the
sender at timet = 1 + RTT. At this time, the TCP sender ex-
its the exponential backoff phase and enters slow start, doubling
the window size to two, transmitting two new packetsn + 1 and
n + 2, and resetting the retransmission timer with the current
RTO value of 2 sec. If the two packets are not lost, they are
acknowledged at timet = 1 + 2 RTT, and SRTT, RTTVAR
and RTO are recomputed as described above. Provided that
minRTO > SRTT+ max(G, 4 RTTVAR), RTO is again set to
1 sec. Thus, in this scenario in which timeouts occur but expo-
nential backoff does not, the value of RTO deviates by no more
than RTT from minRTO fort > minRTO+ 2 RTT.

III. D OS ORIGINS AND MODELING

In this section, we describe how an attacker can exploit TCP’s
timeout mechanism to perform a DoS attack. Next, we provide
a scenario and a system model of such an attack. Finally, we de-
velop a simple model for aggregate TCP throughput as a func-
tion of the DoS traffic parameters.

A. Origins

The above timeout mechanism, while essential for robust con-
gestion control, provides an opportunity for low-rate DoS at-
tacks that exploit the slow-time-scale dynamics of retransmis-
sion timers. In particular, an attacker can provoke a TCP flowto
repeatedly enter a retransmission timeout state by sendinghigh-
rate, but short-duration bursts having RTT-scale burst length,
and repeating periodically at slower RTO time-scales. The vic-
tim will be throttled to near-zero throughput while the attacker
will have low average rate making it difficult for counter-DoS
mechanisms to detect.

We refer to the short durations of the attacker’s loss-inducing
bursts asoutages, and present a simple but illustrative model
relating the outage time-scale (and hence attacker’s average rate)
to the victim’s throughput as follows.

First, consider a single TCP flow and a single DoS stream.
Assume that an attacker creates an initial outage at time 0 via a
short-duration high-rate burst. As shown in Figure 1, the TCP
sender will wait for a retransmission timer of 1 sec to expire
and will then double its RTO. If the attacker creates a second
outage between time 1 and1 + 2 RTT, it will force TCP to wait
another 2 sec. By creating similar outages at times 3, 7, 15,· · ·,

an attacker could exploit Karn’s algorithm and deny serviceto
the TCP flow while transmitting at extremely low average rate.

While potentially effective for a single flow, a DoS attack on
TCP aggregates in which flows continually arrive and depart re-
quires periodic (vs. exponentially spaced) outages at the min-
RTO time-scale. Moreover, if all flows have an identical min-
RTO parameter as recommended in RFC 2988 [32], the TCP
flows can be forced into continual timeouts if an attacker creates
periodic outages.

DoS

rate

magnitude of

the peak R

period of the attack
 T

length of the peak
 l

Fig. 2. Square-wave DoS stream

Thus, we consider “square wave” shrew attacks as shown in
Figure 2 in which the attacker transmits bursts of durationl and
rateR in a deterministic on-off pattern that has periodT . As
explored below, a successful shrew attack will have rateR large
enough to induce loss (i.e.,R aggregated with existing traffic
must exceed the link capacity), durationl of scale RTT (long
enough to induce timeout but short enough to avoid detection),
and periodT of scale RTO (chosen such that when flows attempt
to exit timeout, they are faced with another loss).

B. Model

Consider a scenario of an attack shown in Figure 3(a). It con-
sists of a single bottleneck queue driven byn long-lived TCP
flows with heterogeneous RTTs and a single DoS flow. Denote
RTTi as the roundtrip time of thei-th TCP flow,i = 1, · · · , n.
The DoS flow is a periodic square-wave DoS stream shown in
Figure 2. The following result relates the throughput of theTCP
flows to the period of the attack.

DoS TCP Throughput Result. Consider a periodic DoS at-
tack with periodT . If the outage duration satisfies

(C1) l′ ≥ RTTi

and the minimum RTO satisfies
(C2) minRTO> SRTTi + 4 RTTVARi

for all i = 1, · · · , n, then the normalized throughput of the ag-
gregate TCP flows is approximately

ρ(T) =
dminRTO

T eT − minRTO

dminRTO
T eT

. (2)

This result is obtained as follows. As shown in Figure 3(b),
the periodicl-length bursts create shortl′-length outages hav-
ing high packet loss.4 If l′ reaches the TCP flows’ RTT time-
scales, i.e.,l′ ≥ RTTi, for all i = 1, · · · , n, then the con-
gestion caused by the DoS burst lasts sufficiently long to force
all TCP flows to simultaneously enter timeout. Moreover, if
minRTO > SRTTi + 4 RTTVARi, for i = 1, · · · , n, all TCP

4The relationship betweenl andl′ is explored in Section IV.

4

C

TCP
 1

C

~

"outage"
DoS

TCP
 n

...

 TCP
 1

TCP
 n

...

C

~

Fig. 3. DoS scenario and system model

flows will have identical values of RTO and will thus timeout af-
ter minRTO seconds, which is the ideal moment for an attacker
to create a new outage. Thus, in this case, despite their hetero-
geneous round-trip times, all TCP flows are forced to “synchro-
nize” to the attacker and enter timeout at (nearly) the same time,
and attempt to recover at (nearly) the same time. Thus, when
exposed to outages with periodT , Equation (2) follows.

Equation (2) expresses thenormalizedthroughput of a TCP
flow under aT-periodic attack: a ratio of the bandwidth achiev-
able by the TCP flow under theT-periodic attack, and the TCP
bandwidth without any attack. For example, whenT = 1.5 sec,
and minRTO= 1 sec, the TCP flow utilizes the available band-
width in the [minRTO, T] period after each outage, such that
the normalized TCP throughput becomes(T − minRTO)/T =
0.33. On the other hand, whenT = 0.8 sec, only every sec-
ond outage is effective, and the TCP flow utilizes bandwidth
in the [minRTO, 2T] period after each effective outage in this
scenario. Consequently, the normalized throughput becomes
(2T − minRTO)/2T = 0.375 according to Equation (2).

Note that Equation (2) does not model throughput losses due
to the slow-start phase, but simply assumes that TCP flows
utilize all available bandwidth after exiting the timeout phase.
In other words, we assume that the TCP flows utilize the full
link bandwidth after the end of each retransmission timeoutand
the beginning of the following outage. Observe that if the pe-
riod T is chosen such thatT ≥ 1 + 2 RTTi, all TCP flows
will continually enter a retransmission timeout of 1 sec dura-
tion. Thus, because Equation (2) assumes that RTO= minRTO
for T > minRTO, while this is not the case in the period
(minRTO, minRTO+ 2 RTT), Equation (2) behaves as anup-
per boundin practice. In other words, periodic DoS streams are
not utilizing TCP’s exponential backoff mechanism but rather
exploit repeated timeouts.

Next, we consider flows that do not satisfy conditions (C1) or
(C2).

DoS TCP Flow-Filtering Result. Consider a periodic DoS
attack with periodT. If the outage durationl′ ≥ RTTi and
minRTO> SRTTi + 4 RTTVARi for i = 1, · · · , k whereasl′ <
RTTj or minRTO≤ SRTTj + 4 RTTVARj for j = k + 1, · · · , n,
then Equation (2) holds for flows1, · · · , k.

This result, shown similarly to that above, states that Equation
(2) holds foranyTCP sub-aggregate for which conditions (C1)
and (C2) hold. In other words, if a shrew attack is launched on
a group of flows such that only a subset satisfies the two condi-
tions, that subset will obtain degraded throughput according to

Equation (2), whereas the remaining flows will not. We refer to
this as “flow filtering” in that such an attack will deny service
to a subset of flows while leaving the remainder unaffected, or
even obtaining higher throughput. We explore this issue in detail
in Section V.

C. Example

Here, we present a baseline set of experiments to explore
TCP’s “frequency response” to shrew attacks. We first consider
the analytical model and the scenario depicted in Figure 3 in
which conditions (C1) and (C2) are satisfied and minRTO=
1 sec. The curve labeled “model” in Figure 4 depictsρ vs. T
as given by Equation (2). Throughput is normalized to the link
capacity, which under high aggregation, is also the throughput
that the TCP flows would obtain if no DoS attack were present.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

model (1flow and aggregates)
simulation (1 flow)

Fig. 4. DoS TCP throughput: model and simulation

Note that the average rate of the DoS attacker is decreasing
with increasingT as its average rate is given byRl/T . How-
ever, as indicated by Equation (2) and Figure 4, the effectiveness
of the attack is clearlynot increasing with the attacker’s average
rate. Most critically, observe that there are two “nulls” inthe
frequency response in which TCP throughput becomeszero. In
particular,ρ(T) = 0 whenT = minRTO andT = minRTO/2.
The physical interpretation is as follows: if the attacker cre-
ates the minRTO-periodic outages, it will completely deny ser-
vice to the TCP traffic. Once the brief outage occurs, all flows
will simultaneously timeout. When their timeout expires af-
ter minRTO seconds and they again transmit packets, the at-
tacker creates another outage such that the flows backoff again.
Clearly, the most attractive period for a DoS attacker is minRTO
(vs. minRTO/2), since it is the null frequency that minimizes
the DoS flow’s average rate. WhenT > minRTO, as the pe-
riod of the attack increases, the TCP flows obtain increasingly
higher throughput in periods between expiration of retransmis-

5

sion timers and the subsequent DoS outage.
Next, we perform a set ofnssimulations to compare against

the model. In these experiments, we again consider the scenario
of Figure 3 but with a single TCP flow.5 The TCP Sack flow
has minRTO= 1 second and satisfies conditions (C1) and (C2).
More precisely, the propagation delay is 6 ms while the buffer
size is set such that the round-trip time may vary from 12 ms to
132 ms. The link capacity is 1.5 Mb/s, while the DoS traffic is a
square-wave stream with the peak rate 1.5 Mb/s and burst length
150 ms.

The curve labeled “simulation” in Figure 4 depicts the mea-
sured normalized throughput of the TCP flow. Figure 4 reveals
that Equation (2) captures the basic frequency response of TCP
to the shrew DoS attack, characterizing the general trends and
approximating the location of the two null frequencies.

IV. CREATING DOS OUTAGES

In this section, we explore the traffic patterns that attackers
can use in order to create temporary outages that induce recur-
ring TCP timeouts. First, we study the instantaneous bottleneck-
queue behavior in periods when an attacker bursts packets into
the network. Next, we develop the DoS stream which minimizes
the attacker’s average rate while ensuring outages of a particular
length. Finally, we study square-wave DoS streams and identify
the conditions in which they accurately approximate the two-
rate DoS streams.

A. Instantaneous Queue Behavior

Consider a bottleneck buffer shared by a TCP flow and a DoS
flow which everyT seconds bursts at a constant rateRDoS for
durationl. DenoteRTCP as the instantaneous rate of the TCP
flow, B as the buffer size, andB0 as the buffer size at the onset
of an attack, assumed to occur att = 0.

Denotel1 as the time that the buffer becomes full such that

l1 =
(B − B0)

RDoS + RTCP − C
. (3)

After l1 seconds, the buffer remains full forl2 = l − l1 seconds
if RDoS + RTCP ≥ C. Moreover, ifRDoS ≥ C during the
same period, this will create an outage to the TCP flow whose
loss probability will instantaneously increase significantly and
force the TCP flow to enter a retransmission timeout with high
probability (see also Figure 3).

B. Minimum Packet DoS Streams

Suppose the attacker is limited to a peak rate ofRmax due to a
secondary bottleneck or the attacker’s access link rate. Toavoid
router-based mechanisms that detect high rate flows, e.g., [26],
DoS attackers are interested in ways to minimally expose their
streams to detection mechanisms. To minimize the number of
bytes transmitted while ensuring outages of a particular length,
an attacker should transmit a two-rate DoS stream as depicted in
Figure 5. To fill the buffer without help from background traf-
fic or the attacked flow requiresl1 = B/(Rmax − C) seconds.

5Recall that Equation (2) holds for any number of flows. We simulate TCP
aggregates in Section V.

Observe that sending at the maximum possible rateRmax min-
imizesl1 and consequently the number of required bytes. Once
the buffer fills, the attacker should reduce its rate to the bottle-
neck rateC to ensure continued loss using the lowest possible
rate.

DoS

rate

Bottleneck

capacity
 C

period of the attack
 T

l1

l2
 Rmax

Fig. 5. Two-rate DoS stream

Thus, two-rate streamsminimizethe number of packets that
need to be transmitted (for a given bottleneck buffer sizeB, bot-
tleneck capacityC, and range of sending rates from 0 toRmax)
among all possible sending streams that are able to ensure peri-
odic outages with periodT and lengthl2.

To generate two-rate DoS streams in real networks, an at-
tacker can use a number of existing techniques to estimate the
bottleneck link capacity [4], [6], [18], [23], [31], bottleneck-
bandwidth buffer size [25] and secondary bottleneck rate [30].

Regardless the properties of the above two-rate DoS streams,
we consider the simpler square-wave DoS attack shown in Fig-
ure 2 as an approximation. First, these streams do not require
prior knowledge about the network except the bottleneck rate.
Second, they isolate the effect of a single time-scale periodic
attack.

To study the effectiveness of the square-wave, we perform
simulation experiments to compare the two attacks’ frequency
responses. As an example, we consider a square-wave DoS
stream with peak rate 3.75 Mb/s and burst lengthl = 50 ms and
a two-rate stream withRmax = 10 Mb/s. For the two-rate stream,
l1 is computed asB/(Rmax − C), while l2 is determined such
that the number of packets sent into the network is the same for
both streams. The simulation parameters are the same as previ-
ously.

The resulting frequency responses in this example and others
(not shown) are nearly identical. Consequently, since square-
wave DoS streams accurately approximate the two-rate DoS
stream and do not require knowledge of network parameters,
we use square-wave DoS streams henceforth in both simulations
and Internet experiments.

V. AGGREGATION AND HETEROGENEITY

In this section, we explore the impact of TCP flow aggrega-
tion and heterogeneity on the effectiveness of the shrew attack.
First, we experiment with long-lived homogeneous-RTT TCP
traffic and explore the DoS stream’s ability to synchronize flows.
Second, we perform experiments in a heterogeneous RTT envi-
ronment and explore the effect of RTT-based filtering. Third,
we study the impact of DoS streams on links dominated by web
traffic. Finally, we evaluate several TCP variants’ vulnerability
to shrews.

6

As a baseline topology (and unless otherwise indicated) we
consider many TCP Sack flows sharing a single congested link
with capacity 1.5 Mb/s as in Figure 3. The one-waypropa-
gation delay is 6 ms and the buffer size is set such that the
round-trip time varies from 12 ms to 132 ms. The DoS traffic
is a square-wave stream with peak rate 1.5 Mb/s, burst dura-
tion 100 ms, and packet size 50 bytes. In all experiments, we
generate a FTP/TCP flow in the reverse direction, whose ACK
packets multiplex with TCP and DoS packets in the forward di-
rection. For each data point in the figures below, we perform
five simulation runs and report averages. Each simulation run
lasts 1000sec. Thenscode and simulation scripts are available
at http://www.ece.rice.edu/networks/shrew.

A. Aggregation and Flow Synchronization

The experiments of Section III illustrate that a DoS square
wave can severely degrade the throughput of asingle TCP
flow. Here, we investigate the effectiveness of low bit-rateDoS
streams on TCP aggregates with homogeneous RTTs for five
long-lived TCP flows sharing the bottleneck.

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

TCP Aggregate

Fig. 6. DoS and aggregated TCP flows

Figure 6 depicts the normalizedaggregateTCP throughput
under the shrew attack for different values of the periodT . Ob-
serve that similar to the one-flow case, the attack is highly suc-
cessful so that Equation (2) can also model attacks on aggre-
gates. However, we note that compared to the single-flow case,
the throughput at the null 1/minRTO frequency is slightly larger
in this case because the maximum RTT of 132 ms is greater than
the DoS burst length of 100 ms such that a micro-flow may sur-
vive an outage. Also observe that an attack at frequency 2/min-
RTO nearly completely eliminates the TCP traffic.

The key reasons for this behavior are twofold. First,RTO
homogeneity(via minRTO) introduces a single vulnerable time-
scale, even if flows have different RTTs (as explored below).
Second,DoS-induced synchronizationoccurs when the DoS
outage event causes all flows to enter timeout nearly simultane-
ously. Together with RTO homogeneity, flows will also attempt
to exit timeout nearly simultaneously when they are re-attacked.

Synchronization of TCP flows was extensively explored in
[12], [35] and was one of the main motivations for RED [13],
whose goal is the avoidance of synchronization of many TCP
flows decreasing their window at the same time. In contrast, the
approach and scenario here are quite different, as an external
malicious source (and not TCP itself) is the source of synchro-
nization. Consequently, mechanisms like RED are unable to
prevent DoS-initiated synchronization (see also Section VII).

B. RTT Heterogeneity

B.1 RTT-based Filtering

The above experiment shows that a DoS stream can signif-
icantly degrade throughput of a TCP aggregate, provided that
the outage length is long enough to force all TCP flows to en-
ter a retransmission timeout simultaneously. Here, we explore a
heterogeneous-RTT environment with the objective of showing
that a flow’s vulnerability to low-rate DoS attacks fundamentally
depends on its RTT, with shorter-RTT flows having increased
vulnerability.

We perform experiments with 20 long-lived TCP flows on a
10 Mb/s link. The range of round-trip times is 20 to 460 ms [14],
obtained from representative Internet measurements [20].We
use these measurements to guide our setting of link propagation
delays for different TCP flows.6

0

0.05

0.1

0.15

0.2

0.25

0.3

50 100 150 200 250 300 350 400 450T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

RTT (ms)

no DoS
DoS

Fig. 7. RTT-based filtering

Figure 7 depicts the normalized TCP throughput for each of
the 20 TCP flows. The curve labeled “no DoS” shows each
flow’s throughput in the absence of an attack. Observe that the
flows re-distribute the bandwidth proportionally to 1/RTT such
that shorter-RTT flows utilize more bandwidth than the longer
ones. The curve labeled “DoS” shows each TCP flow’s through-
put when they are multiplexed with a DoS square-wave stream
with peak rate 10 Mb/s, burst length 100 ms and period 1.1 sec.
Observe that this DoS stream filters shorter-RTT flows up to a
time-scale of approximately 180 ms, beyond which higher RTT
flows are less adversely affected. Also, observe that despite the
excess capacity available due to the shrew DoS attack, longer-
RTT flows do not manage to improve their throughput.

0

0.2

0.4

0.6

0.8

1

20 30 40 50 60 70 80T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Number of TCP flows

Fig. 8. High aggregation with heterogeneous RTT

However, in a regime with many TCP flows with heteroge-
neous RTTs, thenumberof non-filtered flows with high RTT

6We do not fit the actual CDF of this data, but uniformly distribute round-trip
times in the above range.

7

will increase, and they will eventually be of sufficient num-
ber to utilize all available bandwidth left unused by the filtered
smaller-RTT flows. Thus, the total TCP throughput will increase
with the aggregation level for highly heterogeneous-RTT flows
as illustrated in Figure 8. Unfortunately, the high throughput
and high link utilization with many flows (e.g., greater than90%
in the 80-flow scenario) is quite misleading, as the shorter-RTT
flows have been dramatically rate-limited by the attack as inFig-
ure 7. Hence, one can simultaneously have high utilization and
an effective DoS attack against small- to moderate-RTT flows.

B.2 DoS Burst Length

The above experiments showed that DoS streams behave as a
high-RTT-pass filter, in which the burst length is related tothe
filter cut-off time-scale. Here, we directly investigate the impact
of burst length.

0

0.2

0.4

0.6

0.8

1

0 50 100 150 200T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Burst Length (ms)

TCP Aggregate (20 flows)
DoS

Fig. 9. Impact of DoS burst length

For the same parameters as above, Figure 9 depicts aggregate
TCP throughput as a function of the DoS burst length. The fig-
ure shows that as the burst length increases, the DoS mean rate
increases, yet the aggregate TCP throughput decreases much
more significantly. Indeed, as the burst length increases, the
RTT-cut-off time-scale increases. In this way, flows with longer
and longer RTTs are filtered. Consequently, the number of
non-filtered flows decreases such that aggregate TCP through-
put decreases. In other words, as the burst length increases, the
sub-aggregate for which condition (C1) holds enlarges. With a
fixed number of flows, the longer-RTT flows are unable to uti-
lize the available bandwidth, and the aggregate TCP throughput
decreases.

B.3 Peak Rate

Recall that the minimal-rate DoS streams studied in Section
IV induce outages without any help from background traffic and
under the assumption that the initial buffer sizeB0 is zero. How-
ever, in practice, the buffer will also be occupied by packets
from reverse ACK traffic, UDP flows, etc. Consequently, in the
presence of such background traffic, the DoS source can poten-
tially lower its peak rate and yet maintain an effective attack.

Consider a scenario with five flows, a DoS flow and four long-
lived TCP flows. We set the link propagation delays in the simu-
lator such that one TCP flow experiences shorter RTT (fluctuates
from 12 ms to 134 ms) while the other three have longer RTTs
(from 108 ms to 230 ms). Figure 10 depicts the throughput of
the short-RTT flow as a function of the normalized DoS peak
rate varied from 0 to 1. Observe that relatively low peak rates
are sufficient to filter the short-RTT flow. For example, a peak

0

0.1

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Peak Rate / Link Capacity

Fig. 10. Impact of DoS peak rate

rate of one third of the link capacity and hence an average rate of
3.3% of the link capacity significantly degrades the short-RTT
flows’ throughput at the null time-scale. As hypothesized above,
longer-RTT flows here play the role of background traffic and
increase bothB0 and the burst rate in periods of outages which
enables lower-than-bottleneck peak DoS rates to cause outages.
This further implies that very low rate periodic flows that oper-
ate at one of the null TCP time-scales (minRTO

j , j = 1, · · ·) are
highly problematic for TCP traffic. For example, some probing
schemes periodically burst for short time intervals at highrates
in an attempt to estimate the available bandwidth on an end-to-
end path [19].

C. HTTP Traffic

Thus far, we have considered long-lived TCP flows. Here, we
study a scenario with flow arrival and departure dynamics and
highly variable file sizes as incurred with HTTP traffic.

We adopt the model of [10] in which clients initiate sessions
from randomly chosen web sites with several web pages down-
loaded from each site. Each page contains several objects, each
of which requires a TCP connection for delivery (i.e., HTTP
1.0). The inter-page and inter-object time distributions are ex-
ponential with respective means of 9 sec and 1 msec. Each page
consists of ten objects and the object size is distributed accord-
ing to a Pareto distribution with shape parameter 1.2. For the
web transactions, we measure and average the response times
for different sized objects.

Figure 11 depicts web-file response times normalized by the
response times obtained when the DoS flow is not present in the
system. Because of this normalization, the curve labeled “no
DoS” in Figure 11 is a straight line with a value of one. The
flows’ mean HTTP request arrival rate is selected such that the
offered HTTP load is 50% and near 100% for Figures 11(a) and
11(b), respectively.

On average, the file response times increased by a factor of
3.5 under 50% load and a factor of 5 under 100% load. Fig-
ures 11(a) and 11(b) both indicate that larger files (greaterthan
100 packets in this scenario) become increasingly and highly
vulnerable to the shrew attacks with the response times of files
increasing by orders of magnitude. Nevertheless, observe that
some flows benefit from the shrew attack and significantly de-
crease their response times. This occurs when a flow arrives
into the system between two outages and manages to transmit
its entire file before the next outage occurs.

However, note that this effect is apparent in Figures 11(a) and
11(b) for the longer file sizes, whereas the effect is not observ-

8

0.001

0.01

0.1

1

10

100

1000

10000

1 10 100 1000 10000

R
es

p.
 T

im
e

File Size (pkts)

DoS
no DoS

(a) 50% Offered Load

0.001

0.01

0.1

1

10

100

1000

10000

1 10 100 1000 10000

R
es

p.
 T

im
e

File Size (pkts)

DoS
no DoS

(b) 100% Offered Load

Fig. 11. Impact on HTTP flows

able for the shorter file sizes. This is due to the HTTP file-size
distribution depicted in Figure 12, which shows that the num-
ber of short files is much larger than the number of longer files
in a typical web-browsing scenario. Consequently, while many
of the short HTTP files actually manage to escape the attack
and improve their response times, the response-timesaverage
is dominantly biased by the flows that are caught by the attack
and whose response times are extremely degraded. Thus, while
some flows actually benefit from the attack, the overall impact
of the shrew attack on HTTP traffic remains quite effective.

0.1

1

10

100

1000

10000

1 10 100 1000 10000N
um

be
r

of
 O

cc
ur

re
nc

es

File Size (pkts)

Fig. 12. HTTP file-size distribution

Next, observe that the deviation from the reference (no DoS)
scenario is larger in Figure 11(a) than 11(b). This is because the
response times are approximately 100 times lower for the no-
DoS scenario when the offered load is 50% as compared to the
no-DoS scenario when the system is fully utilized.

Finally, we performed experiments where DoS stream attack
mixtures of long- (FTP) and short-lived (HTTP) TCP flows. The
results (not shown) indicate that the conclusions obtainedsepa-
rately for FTP and HTTP traffic hold for FTP/HTTP aggregates.

D. TCP Variants

The effectiveness of low-rate DoS attacks depends critically
on the attacker’s ability to create correlated packet losses in the
system and force TCP flows to enter retransmission timeout.
While we have studied the most robust TCP variant (TCP Sack)
so far, many of the existing operating systems today still use
some less advanced TCP versions. Here, we first provide a brief
background on the work that has been done to build more robust
TCP versions and help TCP flows to survive multiple packet
losses within a single round-trip time without incurring a re-
transmission timeout. Then, we evaluate the performance of
different TCP versions under the shrew attack.

It is well-known that TCP Reno is the most fragile TCP

variant which enters the retransmission timeout whenever a
loss happens and less than three duplicate ACKs are received.
To overcome this problem, TCP New Reno [16] changes the
sender’s behavior during Fast Recovery upon receipt of apar-
tial ACK that acknowledges some but not all packets that were
outstanding at the start of the Fast Recovery period. Further im-
provements are obtained by TCP Sack [15] when a large number
of packets are dropped from a window of data [9] because when
a Sack receiver holds non-contiguous data, it sends duplicate
ACKs bearing the Sack option to inform the sender of the seg-
ments that have been correctly received. A thorough analysis
of the packet drops required to force flows of a particular TCP
version to enter timeout is given in [9].

Here, we evaluate the performance of TCP Reno, New Reno,
Tahoe and Sack under the shrew attack. Figures 13 (a)-(d) show
TCP throughput for burst lengths of 30, 50, 70 and 90 ms, re-
spectively. Figure 13(a) confirms that TCP Reno is indeed the
most fragile TCP variant, while the other three versions have
better robustness to DoS. However, when the peak length in-
creases to 50 ms,all TCP variants obtain near zero throughput
at the null frequency as shown in Figure 13(b). The Figure also
indicates that all TCP variants, including Sack, are the most vul-
nerable to DoS in the 1 - 1.2 sec time-scale region. During this
period, TCP flows are in slow-start and have small window sizes
such that a smaller number of packet losses are needed to force
them to enter the retransmission timeout. Finally, Figures(c)-
(d) indicate that all TCP variations obtain a throughput profile
similar to Equation (2) when the outage duration increases,such
that more packets are lost from the window of data. Indeed, if
all packets from the window are lost, TCP has no alternative but
to wait for a retransmission timer to expire.

VI. I NTERNET EXPERIMENTS

In this section, we describe several DoS experiments per-
formed on the Internet. The scenario is depicted in Figure
14 and consists of a large file downloaded from a TCP Sack
sender (TCP-S) to a TCP Sack receiver (TCP-R). While the
RFC 2988 [32] recommendation for the minRTO parameter is
already in the so-calledshouldphase,7 to the best of our knowl-
edge, it is not yet being widely deployed in the most popu-
lar operating systems, which typically set the minRTO param-
eter to 200 ms. Hence, we configure the TCP-S host to have
minRTO = 1 sec (by modifying the Linux-2.4.18 kernel) ac-

7The IETF recommendations usually specify the parameter values that (1)
may, (2) should, or (3)mustbe applied.

9

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

Reno
New Reno

Tahoe
[pulse length = 30,ms] Sack

(a) l = 30 ms

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

Reno
New Reno

Tahoe
[pulse length = 50,ms] Sack

(b) l = 50 ms

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

Reno
New Reno

Tahoe
[pulse length = 70,ms] Sack

(c) l = 70 ms

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

Reno
New Reno

Tahoe
[pulse length = 90,ms] Sack

(d) l = 90 ms

Fig. 13. TCP Reno, New Reno, Tahoe and Sack under shrew attacks

cording to [32], and measure TCP throughput usingiperf. We
launch the shrew attack from three different hosts using a modi-
fied version of the UDP-based active probing software from [29]
in order to send high-precision DoS streams. We perform three
independent measurements for each experiment and report the
average results. Both the Linux TCP-kernel source code used
in the experiments at the TCP-S side, and the modified UDP-
based software used to generate the shrew attacks are available
at http://www.ece.rice.edu/networks/shrew.

WAN
 LAN1

LAN2

LAN3

TCP
-S

DoS
-A

DoS
-B

DoS
-C

TCP
-R

Fig. 14. DoS attack scenario

Intra-LAN Scenario. In this scenario, both the TCP sender
(TCP-S) and DoS (DoS-A) hosts are on the same 10 Mb/s Eth-
ernet LAN on Rice University, while the attacked host (TCP-R)
is on a different 10 Mb/s Ethernet LAN, two hops away from
both TCP-S and DoS-A. The peak rate of the square-wave DoS
stream is 10 Mb/s while the burst length is 200 ms. The curve
labeled “Intra-LAN” in Figure 15 depicts the results of these ex-
periments. The figure indicates that a null frequency existsat a
time-scale of approximately 1.2 sec. When the attacker trans-
mits at this period, it has an average rate of 1.67 Mb/s. With-
out the DoS stream, the TCP flow obtains 6.6 Mb/s throughput.
With it, it obtains 780 kb/s throughput. Thus, the DoS attacker
can severely throttle the victim’s throughput by nearly an order

of magnitude.

0

2

4

6

8

10

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

T
hr

ou
gh

pu
t (

M
b/

s)

DoS Inter-burst Period (sec)

Intra-LAN
Inter-LAN

WAN

Fig. 15. Internet experiments

Inter-LAN Scenario. In this experiment, the TCP sender
(TCP-S), DoS source (DoS-B) and attacked host (TCP-R) are on
three different LANs of the ETH (Zurich, Switzerland) campus
network. The route between the two traverses two routers and
two Ethernet switches, with simple TCP measurements reveal-
ing that the TCP and DoS LANs are 100 Mb/s Ethernet LANs,
while the attacked host is on a 10 Mb/s Ethernet LAN. The peak
rate of the square-wave DoS stream is again 10 Mb/s while its
duration is reduced as compared to the Intra-LAN Scenario to
100 ms. The curve labeled “Inter-LAN” in Figure 15 depicts the
frequency response of this attack. In this case, a DoS time-scale
of T = 1.1 sec is the most damaging to TCP, since here the TCP
flow achieves 800 kb/s throughput, only 8.1% of the throughput
it achieves without DoS flow (9.8 Mb/s). At this time-scale, the
attacker has an average rate of 909 kb/s.

WAN Scenario.Finally, for the same TCP source/destination
pair as in the Inter-LAN Scenario, source DoS-C initiates a
shrew DoS attack from a LAN at EPFL (Lausanne, Switzer-
land), located eight hops away from the destination. The DoS
stream has a peak rate of 10 Mb/s and a burst duration of 100 ms.
The curve labeled “WAN” shows the frequency response of
these experiments and indicates a nearly identical null located

10

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

TCP (RED)
TCP (RED-PD)

(a) 1 TCP Sack flow

0

0.2

0.4

0.6

0.8

1

1.2

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

TCP (RED)
TCP (RED-PD)

DoS (RED)
DoS (RED-PD)

(b) 9 TCP Sack flows

Fig. 16. Impact of RED and RED-PD routers

at T = 1.1 sec. For this attack, the TCP flow’s throughput is
degraded to 1.2 Mb/s from 9.8 Mb/s whereas the attacker has
average rate of 909 kb/s. This experiment illustrates the feasi-
bility of remoteattacks. Namely, in the WAN scenario, the DoS
attacker has traversed the local provider’s network and multiple
routers and Ethernet switches before reaching its victim’sLAN.
Thus, despite potential traffic distortion that deviates the at-
tacker’s traffic pattern from the square wave, the attack is highly
effective.

Thus, while necessarily small scale due to their (intended)
adverse effects, the experiments support the findings of thean-
alytical model and simulation experiments. The results indicate
that effective shrew attacks can come from remote sites as well
as nearby LANs.

VII. C OUNTER-DOS TECHNIQUES

Here, we explore two classes of candidate counter-DoS mech-
anisms intended to mitigate the effects of shrew attacks: (a)
router-assisted, and (b) end-point mechanisms. Out of many
router-assisted schemes designed to detect and throttle mali-
cious flows in the network, we focus on the mechanisms that
are based on preferential dropping of packets from malicious
flows, and evaluate two representatives: RED-PD and CHOKe.
From the end-point counter-DoS mechanisms, we first evaluate
the effect of the initial TCP congestion window size on the effec-
tiveness of the attack, and then propose and evaluate a counter-
DoS mechanism in which end-points randomize their minRTO
parameter.

A. Router-Assisted Mechanisms

As described above, DoS flows have low average rate, yet
do send relatively high-rate bursts for short time intervals. The
key problem lies in the fact that relatively longer time-scales are
needed to detect malicious flows with high confidence, while the
shrew attack operates on relatively short time-scales. If these
shorter time-scales are used to detect malicious flows in theIn-
ternet, many legitimate bursty flows would be incorrectly de-
tected as malicious. Here, we investigate if the shrew traffic
patterns can be identified as a DoS attack by router-based algo-
rithms.

Mechanisms for per-flow treatment at the router can be clas-
sified as scheduling or preferential dropping. Scheduling algo-
rithms place flows in different logical partitions and determine
the service rate received by each partition. For example, per-
flow Fair Queuing (FQ) scheduling (e.g., [5]) treat each flow as

a single partition. While such an approach would completely
protect the system against the shrew attack (unless the attacker
performs a distributed shrew attack or spoofs packets), per-flow
FQ has serious scalability limitations which prevent its deploy-
ment. Due to implementation simplicity and other advantages
of preferential dropping over scheduling, we focus on dropping
algorithms for detection of DoS flows and/or achieving fairness
among adaptive and non-adaptive flows. Candidate algorithms
include Flow Random Early Detection (FRED) [24], CHOKe
[28], Stochastic Fair Blue (SFB) [11], the scheme of reference
[3], ERUF [33], Stabilized RED (SRED) [27], dynamic buffer-
limiting scheme from [7] and RED with Preferential Dropping
(RED-PD) [26]. Of these, we study the most popular represen-
tatives: RED-PD and CHOKe.

A.1 RED-PD

RED-PD uses the packet drop history at the router to detect
high-bandwidth flows with high confidence. Flows above a con-
figured target bandwidth are identified and monitored by RED-
PD. Packets from the monitored flows are dropped with a prob-
ability dependent on the excess sending rate of the flow. RED-
PD suspends preferential dropping when there is insufficient de-
mand from other traffic in the output queue, for example, when
RED’s average queue size is less than the minimum threshold.

We perform simulation experiments with one and nine TCP
Sack flows, RED-PD routers, and the topology of Figure 3. For
one TCP flow, Figure 16(a) indicates that RED-PD isnot able
to detect nor throttle the DoS stream. For aggregated flows de-
picted in Figure 16(b), RED-PD only affects the system if the
attack occurs at a time-scale of less than 0.5 sec, i.e., onlyun-
necessarily high-rate attacks can be addressed. Most critically,
at the null time-scale of 1.2 sec, RED-PD has no noticeable ef-
fect on throughput as compared to RED. Thus, while RED and
RED-PD’s randomization has lessened the severity of the null,
the shrew attack remains effective overall.

Next, in the above scenario with nine TCP Sack flows, we
vary the DoS peak rate and burst length to study the conditions
under which the DoS flows will become detectable by RED-PD.
We first set the burst duration to 200 ms and then change the
peak rate from 0.5 Mb/s to 5 Mb/s. Figure 17(a) indicates that
RED-PD starts detecting and throttling the square-wave stream
at a peak rate of 4 Mb/s, which is more than twice than the bot-
tleneck rate of 1.5 Mb/s. Recall that in Section V-B.3 we showed
that a peak rate of one third the bottleneck capacity and a burst
length of 100 ms can be quite dangerous for short-RTT TCP

11

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Peak Rate (Mb/s)

peak length = 200ms RED-PD
RED

0

0.2

0.4

0.6

0.8

1

50 100 150 200 250 300 350 400 450T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

Peak Length (ms)

peak rate = 2Mb/s RED-PD
RED

Fig. 17. Detecting DoS streams

0

0.2

0.4

0.6

0.8

1

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)
(a) 1 TCP Sack flow

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)
(b) Flow filtering

Fig. 18. Impact of CHOKe routers

flows.
Further, we fix the DoS peak rate to 2 Mb/s and vary the burst

length from 50 ms to 450 ms. Figure 17(b) shows that RED-
PD begins detecting the DoS flow at 300 ms time-scales in this
scenario. Recall again that much shorter burst time-scalesare
sufficient to throttle not only short-RTT flows, but the entire ag-
gregates of heterogeneous-RTT TCP traffic.

Thus, Figure 17(b) captures the fundamental issue of time-
scales: RED-PD detects high rate flows on longer time-scales,
while DoS streams operate at very short time-scales. If these
shorter time-scales are used to detect malicious flows in theIn-
ternet, many legitimate bursty TCP flows would be incorrectly
detected as malicious. This issue is studied in depth in reference
[26], which concludes that long time-scale detection mecha-
nisms are needed to avoid excessively high false positives.How-
ever, there are schemes (e.g., [28], [24], [11], [7]) that use very
short time-scales to detect high rate flows. While the penalty for
their use may be quite h igh, we nevertheless evaluate below the
ability of a representative of such schemes (CHOKe) to detect
and throttle the shrew attack.

A.2 CHOKe

CHOKe is a dropping scheme designed to throttle unrespon-
sive or misbehaving flows in a congested router. An incoming
packet is matched against a random packet in the queue. If they
belong to the same flow, both packets are dropped, otherwise
the incoming packet is admitted with a certain probability.The
scheme tries to leverage the fact that high-bandwidth flows are
likely to have more packets in the queue, and tries to approxi-
mate fair queuing in a scalable way. While CHOKe is not likely
to perform well in high aggregation regimes [26], and despite
the indication that the penalty for the use of the scheme may
be quite high (especially in low-aggregation regimes and HTTP
scenarios), our main goal here is to evaluate its ability to detect

the shrew attacks.

We initially perform a simulation experiment with one TCP
Sack flow under the shrew attack, CHOKe router, and the topol-
ogy of Figure 3. Figure 18(a) indicates that CHOKe outperforms
RED-PD (compare Figures 16(a) and 18(a)) in thwarting the
shrew attacks. This is exactly due to fact that CHOKe operates
on much shorter time-scales: it observes instantaneous queue
behavior (and not the drop history), and is thus able to mitigate
the effectiveness of the attack more successfully. However, ob-
serve that CHOKe in this scenario does not completely eliminate
the effectiveness of the attack, but only smooths the throughput
“dip” on the minRTO time-scale. Finally, as the number of flows
increases, CHOKe (like RED-PD) becomes more and more suc-
cessful in smoothing the TCP aggregate null frequencies (not
shown).

However, recall that in Section V-B.3, we showed that in
heterogeneous-RTT environments, the shrews are able to deny
service to a subset of short-RTT TCP flows, yetwithoutbursting
at high instantaneous rates. Consequently, the attacker packets
do not monopolize the buffer resources, and are thus hard to
detect. We evaluate this hypothesis below.

Here, we repeat the experiment from Section V-B.3 with a
CHOKe router, to evaluate its ability to thwart the shrew attack
in the flow-filtering scenario. The experiment consists of anag-
gregate of long-RTT TCP flows multiplexed with a short-RTT
TCP flow. Figure 18(b) depicts the throughput of the short-
RTT flow as a function of the shrew inter-burst period, where
the peak of the shrew burst is kept to only 1/3 of the bottle-
neck link capacity. Observe that CHOKe fails to throttle the
shrew flow, because this malicious flow is hidden in the aggre-
gate of legitimate long-RTT TCP flows that are not significantly
affected by the attack. Thus, while the shrew flow creates peri-
odic outages and denies service to short-RTT flows, it actually
never monopolizes the buffer resources, and remains undetected

12

by the CHOKe router.

B. End-point Mechanisms

Here, we evaluate end-point-based counter-DoS mechanisms.
The key idea is to make TCP more robust to shrew attacks by
applying a more careful (DoS-resilient) protocol design. We ex-
plore two modifications of the existing TCP parameters. The
first is the increase of the initial window size parameter; and the
second is the randomization of the minRTO parameter.

B.1 Increasing the Initial Window Size

The above experiments indicate that TCP flows are the most
vulnerable to shrew attacks when they have small window sizes,
simply due to fact that a smaller number of packet losses are
needed to force them to enter the retransmission timeout. Here,
we explore if increasing the window size after exiting the re-
transmission timeout (popularly known as “jump-starting”a
TCP flow) may help in mitigating the effectiveness of the attack.

The parameter of interest here is the initial window sizeW.
The default is two segments, whereas RFC 2414 [1] recom-
mends increasing this parameter to a value between two and four
segments (roughly 4 kbytes) to achieve a performance improve-
ment. We perform a number of experiments with TCP flows
(with W = 4) under the shrew attack, but do not observe any
noticeable improvement in such scenarios. While increasing the
initial window size parameter beyond four segments may leadto
a congestion collapse [1], we nevertheless perform experiments
with W = 8 andW = 16 (not shown), for the sake of research
curiosity. The only noticeable difference is that the TCP null
time scale slightly moves closer to 1 sec. This happens because a
“jump-started” TCP flow utilizes the available bandwidth much
faster, but unfortunately the vulnerability to low-rate attacks re-
mains. In summary, as long as the outage length is on the time
scale of the flow’s RTT, the increased number of packets in flight
doesn’t help in preventing the attack.

B.2 End-point minRTO Randomization

Since low-rate attacks exploit minRTO homogeneity, we ex-
plore a counter-DoS mechanism in which end-points randomize
their minRTO parameter in order to randomize their null fre-
quencies. Here, we develop a simple, yet illustrative modelof
TCP throughput under such a scenario. In particular, we con-
sider a counter-DoS strategy in which TCP senders randomize
their minRTO parameters according to a uniform distribution in
the range[a, b]. Our objective is to compute the TCP frequency
response for a single flow with a uniformly distributed minRTO.
Moreover, some operating systems use a simple periodic timer
interrupt of 500 ms to check for timed-out connections. Thisim-
plies that while the TCP flows enter timeout at the same time,
they recover uniformly over the[1, 1.5]sec range. Thus, the fol-
lowing analysis applies equally to such scenarios.

We have three cases according to the value ofT as compared
to a andb. First, if T ≥ b. Thenρ(T) = T−E(RTO)

T , where
E(RTO) = (a + b)/2 so that

ρ(T) =
T − a+b

2

T
, for T ≥ b. (4)

Second, forT ∈ [a, b), denotek asb b
T c. Then,

ρ(T) =
T − a

b − a

T − T+a
2

T
+

k−1∑
i=1

T

b − a

T
2

(i + 1)T

+
b − kT

b − a

(k + 1)T − kT+b
2

(k + 1)T
. (5)

Equation (5) is derived as follows. Since only one outage at a
time can cause a TCP flow to enter retransmission timeout, we
first determine the probability for each outage to cause a retrans-
mission timeout and then multiply it by the corresponding con-
ditional expectation for the TCP throughput. In Equation (5), the
first term denotes TCP throughput in the scenario when the re-
transmission timeout is caused by the next outage after the initial
one. The termT−a

b−a denotes the probability that the initial RTO
period has expired, which further means that the first outageaf-
ter timea will cause another RTO. The conditional expectation

for TCP throughput in this scenario isT−T+a

2

T , whereT+a
2 de-

notes the expected value of the end of the initial RTO, given that
it happened betweena andT . The second term of Equation (5)
denotes TCP throughput for outagesi = 2, · · · , k−1. The prob-
ability for them to occur is T

b−a , and the conditional expectation

of TCP throughput is T/2
(i+1)T . Finally, the third term in Equation

(5) denotes TCP throughput for the(k + 1)th outage.
Finally, whenT < a, it can be similarly shown that

ρ(T) =
d a

T eT − a+b
2

d a
T eT

, for k = 1, (6)

and

ρ(T) =
d a

T eT − a

b − a

d a
T eT −

a+d a

T
eT

2

d a
T eT

+

k−1∑
i=d a

T
e

T

b − a

T
2

(i + 1)T

+
b − kT

b − a

(k + 1)T − kT+b
2

(k + 1)T
, for k ≥ 2. (7)

Figure 19 shows that the above model matches well with sim-
ulations for minRTO= uniform(1, 1.2). Observe that random-
izing the minRTO parameter shifts both null time scales and am-
plitudes of TCP throughput on these time-scales as a function of
a andb. The longest most vulnerable time-scale now becomes
T = b. Thus, in order to minimize the TCP throughput, an at-
tacker should wait for the retransmission timer to expire, and
then create an outage. Otherwise, if the outage is performed
prior to b, there is a probability that some flows’ retransmission
timers have not yet expired. In this scenario, those flows sur-
vive the outage and utilize the available bandwidth until they
are throttled by the next outage.

Because an attacker’s ideal period isT = b under minRTO
randomization, we present the following relationship between
aggregate TCP throughput and the DoS time-scale.

13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1 2 3 4 5T
hr

ou
gh

pu
t (

no
rm

al
iz

ed
)

DoS Inter-burst Period (sec)

simulation
model

Fig. 19. DoS under randomized RTO

Counter-DoS Randomization Result. Considern long-
lived TCP flows that experienceb-periodic outages. The nor-
malizedaggregatethroughput of then flows is approximately

ρ(T = b) =
b − (a + b−a

n+1)

b
(8)

The derivation is given in the Appendix.
Equation (8) indicates that as the number of flowsn increases,

the normalized aggregate TCP throughput in the presence of
T = b time-scale DoS attacks converges towardb−a

b . Indeed,
consider the case that all flows experience an outage at the same
reference time zero. When the number of flows in the system is
high, a fraction of flows’ retransmission timers will expiresuf-
ficiently near timea such that those flows can partially recover
and utilize the available bandwidth in the period from timea to
time b, when all flows will again experience an outage. For the
scenario of operating systems that use a 500 ms periodic time-
out interrupt, such that a flow “times out” uniformly in a [1,1.5]
range, Equation (8) indicates that the TCP throughput degrades
from 0.17 (a single TCP flow) to 0.34 (TCP aggregate with many
flows) under the 1.5 sec periodic attack.

There are two apparent strategies for increasing throughput
on T = b time-scales. First, it appears attractive to decrease
a which would significantly increase TCP throughput. Alter-
natively, decreasing botha and b would force the attacker to
send very close bursts, making it no longer a stealthy attack.
However, recall that conservative timeout mechanisms are fun-
damentally required to achieve high performance during peri-
ods of heavy congestion [2]. Second, while increasingb also
increases TCP throughput, it does so only in higher aggrega-
tion regimes (whenn is sufficiently large) and in scenarios with
long-lived TCP flows. On the other hand, increasingb is not
a good option for low aggregation regimes (whenn is small)
since the TCP throughput can become too low since we have
ρ(T = b) = n

n+1
b−a

b . Moreover, excessively largeb could
significantly degrade the throughput of short-lived HTTP flows
which form the majority traffic in today’s Internet. In summary,
minRTO randomization indeed shifts and smooths TCP’s null
frequencies. However, as a consequence of RTT heterogeneity,
the fundamental tradeoff between TCP performance and vulner-
ability to low-rate DoS attacks remains.

VIII. C ONCLUSIONS

This paper presents denial of service attacks that are able to
throttle TCP flows to a small fraction of their ideal rate while
transmitting at sufficiently low average rate to elude detection.

We showed that by exploiting TCP’s retransmission timeout
mechanism, TCP exhibits null frequencies when multiplexed
with a maliciously chosen periodic DoS stream. We developed
several DoS traffic patterns (including the minimum rate one)
and through a combination of analytical modeling, an exten-
sive set of simulations, and Internet experiments we showedthat
(1) low-rate DoS attacks are successful against both short-and
long-lived TCP aggregates and thus represent a realistic threat
to today’s Internet; (2) in a heterogeneous-RTT environment,
the success of the attack is weighted towards shorter-RTT flows;
(3) low-rate periodic open-loop streams, even if not maliciously
generated, can be very harmful to short-RTT TCP traffic if their
period matches one of the null TCP frequencies; and (4) both
network-router and end-point-based mechanisms can only miti-
gate, but not eliminate the effectiveness of the attack.

The underlying vulnerability is not due to poor design of DoS
detection or TCP timeout mechanisms, but rather to an inher-
ent tradeoff induced by a mismatch of defense and attack time-
scales. Consequently, to completely defend the system in the
presence of such attacks, one would necessarily have to signifi-
cantly sacrifice system performance in their absence.

ACKNOWLEDGMENTS

We thank Roger Karrer (Rice University) for help in obtain-
ing accounts at ETH and EPFL, Luca Previtali and Matteo Corti
(ETH’s Lab of Software Technology) for providing the hard-
ware and software for the Internet experiments, Peter Bircher
and Armin Brunner (responsible for network security at ETH),
for allowing the experiments, and Martin Vitterli (EPFL) for
providing a computer account. Next, we thank Attila Pasztor
and Darryl Veitch (University of Melbourne) for sharing their
active probing software to perform the Internet experiments. Fi-
nally, we thank the anonymous reviewers of [22], whose ideas,
suggestions, and critics are built in this paper.

REFERENCES

[1] M. Allman, S. Floyd, and C. Partridge. Increasing TCP’s initial window,
1998. Internet RFC 2414.

[2] M. Allman and V. Paxson. On estimating end-to-end network path
properties. InProceedings of ACM SIGCOMM ’99, Vancouver, British
Columbia, September 1999.

[3] F. Anjum and L. Tassiulas. Fair bandwidth sharing among adaptive and
non-adaptive flows in the Internet. InProceedings of IEEE INFOCOM
’99, New York, NY, March 1999.

[4] R. L. Carter and M. E. Crovella. Measuring bottleneck link speed in
packet-switched networks. Performence Evaluation, 27(28):297–318,
1996.

[5] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analysis and simula-
tion of a fair queueing algorithm. InJournal of Internetworking Research
and Experience, volume 1, pages 3–26, September 1990.

[6] C. Dovrolis, P. Ramanathan, and D. Moore. What do packet dispersion
techniques measure? InProceedings of IEEE INFOCOM ’01, Anchorage,
Alaska, April 2001.

[7] F. Ertemalp, D. Chiriton, and A. Bechtolsheim. Using dynamic buffer
limiting to protect against belligerent flows in high-speednetworks. In
Proceedings of IEEE ICNP ’01, Riverside, CA, November 2001.

[8] C. Estan and G. Varghese. New directions in traffic measurement and
accounting. InProceedings of ACM SIGCOMM ’02, Pittsburgh, PA, Aug.
2002.

[9] K. Fall and S. Floyd. Simulation-based comparison of Tahoe, Reno and
SACK TCP.ACM Computer Comm. Review, 5(3):5–21, July 1996.

[10] A. Feldmann, A. Gilbert, P. Huang, and W. Willinger. Dynamics of IP
traffic: A study of the role of variability and the impact of control. In Pro-
ceedings of ACM SIGCOMM ’99, Vancouver, British Columbia, Septem-
ber 1999.

14

[11] W. Feng, D. Kandlur, D. Saha, and K. Shin. Stochastic fair BLUE: A
queue management algorithm for enforcing fairness. InProceedings of
IEEE INFOCOM ’01, Anchorage, Alaska, June 2001.

[12] S. Floyd and V. Jacobson. On traffic phase effects in packet-switched gate-
ways.Internetworking: Research and Experience, 3(3):115–156, Septem-
ber 1992.

[13] S. Floyd and V. Jacobson. Random early detection gateways for congestion
avoidance.IEEE/ACM Transactions on Networking, 1(4):397–413, 1993.

[14] S. Floyd and E. Kohler. Internet research needs better models. InProceed-
ings of HOTNETS ’02, Princeton, New Jersey, October 2002.

[15] S. Floyd, J. Madhavi, M. Mathis, and M. Podolsky. An extension to the
selective acknowledgement (SACK) option for TCP, July 2000. Internet
RFC 2883.

[16] J. Hoe. Improving the start-up behavior of a congestioncontrol scheme for
TCP. InProceedings of ACM SIGCOMM ’96, Stanford University, CA,
August 1996.

[17] V. Jacobson. Congestion avoidance and control.ACM Computer Comm.
Review, 18(4):314–329, Aug. 1988.

[18] V. Jacobson. Pathchar: A tool to infer characteristicsof Internet paths.
ftp://ftp.ee.lbl.gov/pathchar/, Apr. 1997.

[19] M. Jain and C. Dovrolis. End-to-end available bandwidth: Measurement
methodology, dynamics, and relation with TCP throughput. In Proceed-
ings of ACM SIGCOMM ’02, Pittsburgh, PA, Aug. 2002.

[20] H. Jiang and C. Dovrolis. Passive estimation of TCP round-trip times.
ACM Computer Comm. Review, 32(3):5–21, July 2002.

[21] P. Karn and C. Partridge. Improving round-trip time estimates in reliable
transport protocol.ACM Transactions on Computer Systems, 9(4):364–
373, November 1991.

[22] A. Kuzmanovic and E. Knightly. Low-rate TCP-targeted denial of service
attacks (the shrew vs. the mice and elephants). InProceedings of ACM
SIGCOMM ’03, Karlsruhe, Germany, August 2003.

[23] K. Lai and M. Baker. Measuring link bandwidths using a deterministic
model of packet delay. InProceedings of ACM SIGCOMM ’00, Stock-
holm, Sweden, August 2000.

[24] D. Lin and R. Morris. Dynamics of Random Early Detection. In Proceed-
ings of ACM SIGCOMM ’97, Cannes, France, September 1997.

[25] J. Liu and M. Crovella. Using loss pairs to discover network properties. In
Proceedings of IEEE/ACM SIGCOMM Internet Measurement Workshop,
San Francisco, CA, Nov. 2001.

[26] R. Mahajan, S. Floyd, and D. Wetherall. Controlling high-bandwidth flows
at the congested router. InProceedings of IEEE ICNP ’01, Riverside, CA,
November 2001.

[27] T. J. Ott, T. V. Lakshman, and L. Wong. SRED: Stabilized RED. In
Proceedings of IEEE INFOCOM ’99, New York, NY, March 1999.

[28] R. Pain, B. Prabhakar, and K. Psounis. CHOKe, a stateless active queue
management scheme for approximating fair bandwidth allocation. In Pro-
ceedings of IEEE INFOCOM ’00, Tel Aviv, Israel, March 2000.

[29] A. Pasztor and D. Veitch. High precision active probingfor Internet mea-
surement. InProceedings of INET ’01, Stockholm, Sweden, 2001.

[30] A. Pasztor and D. Veitch. The packet size dependence of packet pair like
methods. InProceedings of IWQoS ’02, Miami, FL, May 2002.

[31] V. Paxson. End-to-end Internet packet dynamics.IEEE/ACM Transactions
on Networking, 7(3):277–292, June 1999.

[32] V. Paxson and M. Allman. Computing TCP’s retransmission timer,
November 2000. Internet RFC 2988.

[33] A. Rangarajan and A. Acharya. ERUF: Early regulation ofunresponsive
best-effort traffic. InProceedings of IEEE ICNP ’99, Toronto, CA, Octo-
ber 1999.

[34] A. C. Snoeren, C. Partridge, L. A. Sanchez, C. E. Jones, F. Tchakountio,
S. T. Kent, and W. T. Strayer. Hash-based IP traceback. InProceedings of
ACM SIGCOMM ’01, San Diego, CA, August 2001.

[35] L. Zhang, S. Shenker, and D. Clark. Observation on the dynamics of a con-
gestion control algorithm: The effects of two-way traffic. In Proceedings
of ACM SIGCOMM’91, Zurich, Switzerland, September 1991.

Aleksandar Kuzmanovic is an assistant professor in
the Department of Electrical Engineering and Com-
puter Science at Northwestern University. He received
his B.S. and M.S. degrees from the University of Bel-
grade, Serbia, in 1996 and 1999 respectively. He re-
ceived the Ph.D. degree from the Rice University in
2004. His research interests are in the area of com-
puter networking with emphasis on design, security,
analysis, theory, and prototype implementation of pro-
tocols and algorithms for the wired and wireless Inter-
net.

Edward W. Knightly (SM ’04) is an associate pro-
fessor of Electrical and Computer Engineering at Rice
University. He received the B.S. degree from Auburn
University in 1991 and the M.S. and Ph.D. degrees
from the University of California at Berkeley in 1992
and 1996 respectively. He is an associate editor of
IEEE/ACM Transactions on Networking. He served
as technical co-chair of IEEE IWQoS 1998 and IEEE
INFOCOM 2005 and served on the program commit-
tee for numerous networking conferences including
ICNP, INFOCOM, IWQoS, MobiCom, and SIGMET-

RICS. He received the National Science Foundation CAREER Award in 1997
and the Sloan Fellowship in 2001. His research interests arein the areas of mo-
bile and wireless networks and high-performance and denial-of-service resilient
protocol design.

APPENDIX

Computing the throughput of a TCP aggregate on theT = b
time-scale.

Assume that an initial outage causes all TCP flows to enter
the retransmission timeout and assume thatT = b. Then, the
throughput of the TCP aggregate can be computed as

ρ(T = b) =
b − E(x)

b
, (9)

whereE(X) denotes expected value of a random variableX
which corresponds to an event that at least one TCP flow’s time-
out expired at timex, x ∈ [a, b]. Assuming that each TCP flow’s
minRTO is uniformly distributed betweena andb, the CDF of
X becomes

P (X ≤ x) = 1 − (
b − x

b − a
)n. (10)

Denoting the corresponding pdf of random variable X asp(x),
we have

p(x) =
∂P (X ≤ x)

∂x
= n

(b − x)n−1

(b − a)n
. (11)

The expected value ofX , E(X) can be computed as

E(X) =

∫ b

a

xn
(b − x)n−1

(b − a)n
dx. (12)

The integral from Equation (12) can be solved by using inte-

gration by parts with the substitutesn (b−x)n−1

(b−a)n = dv andx = u.

The solution isE(X) = a + b−a
n+1 . Thus, based on Equation (9),

we have that Equation (8) holds.

