
The Honeynet Files
Editor: Bill McCarty, bmccarty@apu.edu

information about the spammer’s
true identity and help unmask it.

In response to the threat that
honeypots pose to spammers, the
first commercial anti-honeypot
technology has surfaced: Send-Safe’s
Honeypot Hunter (www.send-safe.
com) attempts to detect “safe” prox-
ies for use with bulk-mailing tools.
This honeypot-detection system’s
appearance, in association with other
emerging spam tools, suggests three
important trends:

• honeypots are affecting spammers,
• current honeypot technology is

detectable, and
• more honeypot-identification sys-

tems are likely.

The ability to detect a honeypot is
unlikely to remain limited to spam-
mers; other hostile or malicious
groups could benefit from similar
identification systems. In an effort to
create undetectable honeypot systems,
we need a significant improvement in
today’s honeypot technologies.

Basic
honeypot services
Honeypots are designed to resemble
valid systems. As previous columns
and books have discussed, they use
this cloak to collect information
about attackers and their methods.1

To appear as a tempting target, hon-
eypots offer a variety of seemingly
vulnerable services. Although the
complexity of honeypot services
varies dramatically, they generally fall
into one of four types: minimal, re-
stricted, simulated, and full. From
low complexity to high,

• Minimal servers provide an open
service port.

• Restricted servers provide basic
interactions.

• Simulated servers provide com-
plex interactions.

• Full servers provide full functional
support.

Some minimal servers will reply
with a basic connection header, but
they usually don’t perform anything
more detailed. An example of a min-
imal service is the SMTP server that
the BackOfficer Friendly (BOF)
honeypot provides: it simply discon-
nects with the message, “503 Service
Unavailable.”

By adding a minor amount of in-
teraction to a minimal server, a re-
stricted service can appear fully
functional, even though no autho-
rization is available. The BOF telnet
server, for example, prompts for a
username and password, but no valid
log in mechanism exists. Niels
Provos and his colleagues have a Web

page devoted to their honeyd project
(www.citi.umich.edu/u/provos/
honeyd/) that provides a series of re-
stricted service scripts, including
SMTP and a simple Web proxy.

A simulated service appears as a full
working server, but in reality, it logs
actions instead of performing external
operations. Simulated servers accept
log ins and requests, and generate
well-known replies and error mes-
sages. Examples of simulated servers
include scripts that emulate full SMTP
and Microsoft IIS Web servers.

In contrast to these pseudo-
services, full honeypot services are
rare. They not only manage re-
quests, but they also let malicious
entities fully interact and even
compromise the simulated system.
Many full honeypots also permit
limited external connections,
which makes the service appear
fully functional while preventing it
from taking part in denial-of-
service (DoS) attacks.

Although people involved with
illegally trading credit-card informa-
tion (carders) or black-hat hacking
commonly relay through multiple
proxies, most spam tools only sup-
port relaying through a single open
proxy. If the honeypot acts as that
proxy, then the spammer’s actual IP
address is disclosed to the honeypot.
We then can use this information to
identify the spammer.

Spammers
strike back
Spam developers are generally reac-
tive, not proactive: they only change
their tools when those tools become
ineffective. For example, one of the
first technologies to prevent spam
used hash-based filters that summa-

NEAL KRAWETZ

Hacker Factor
Solutions

S pammers continually scan the Internet for open

proxy relays: by using these open relays, they can

obscure their originating IP address and remain

anonymous. However, when a spammer comes

across a service on a honeypot, that honeypot can collect valuable

Anti-Honeypot Technology

76 PUBLISHED BY THE IEEE COMPUTER SOCIETY ! 1540-7993/04/$20.00 © 2004 IEEE ! IEEE SECURITY & PRIVACY

The Honeynet Files

rized each email message’s content
into a hash table. Repeated hash-
table entries denoted identical mes-
sage content—that is, a bulk mailing.
To counter hash systems, spam de-
velopers created “hash busters”—
unique strings that generate different
hash values. Similarly, today’s bulk-
mailing tools use anti-Bayesian en-
coding methods—such as random
words, sentences, or paragraphs—to
pass Bayesian filters.

The Send-Safe tool suite makes
an extensive collection of bulk-
advertising tools commercially avail-
able. Its bulk mailer is popular for
generating spam email, and its proxy
scanner can find multiple open
proxy servers for obscuring a spam-
mer’s identity; its other tools include
an email verifier and a tool for gener-
ating bulk instant messages.

Send-Safe’s latest tool, Honeypot
Hunter, suggests that spammers are
aware they need to identify honey-
pots. Honeypot Hunter’s developers
imply a negative effect on their activ-
ities from honeypots in its product
description (www.send-safe.com/
honeypot-hunter.php):

“Send-Safe Honeypot
Hunter is a tool designed for
checking lists of HTTPS and
SOCKS proxies for so called
“honey pots”. “Honey pots”
are fake proxies run by the
people who are attempting to
frame bulkers by using those
fake proxies for logging traffic
through them and then send
complaints to ones’ ISPs.”

We can safely assume that Send-
Safe’s users are not the only people
negatively affected by honeypots.
The appearance of this honeypot-
detection application implies a reac-
tive technological escalation.

We must remember that spam
tools—particularly, commercial
spam tools—rarely employ unique
technologies. Using carbon copies
and blind-carbon copies to increase
distribution is an old IRC DoS attack

method. We can trace the use of
mail-server “VRFY” queries and re-
turn receipts, used for verifying email
addresses, to common black-hat in-
formation-gathering approaches.

Honeypot Hunter’s detection
methods are likely widely known in
the underground community. In fact,
the community probably has more
sophisticated detection methods that
those Honeypot Hunter uses. The
free honeyd project has a default in-
stallation with fixed-response mes-
sages; administrators who don’t
change the default messages might
unknowingly provide an attacker
with a unique method for identifying
the honeypot. Other detection meth-
ods—such as known application
error handling, operating system fin-
gerprinting, TCP sequence analysis,
and ARP addresses—could also iden-
tify a honeypot.

What Honeypot
Hunter does
Honeypot Hunter is designed to test
open proxy connectivity. Depend-
ing on the type of connection re-
sponse, it classifies the proxy as safe
(good), bad (failed), or a trap (honey-

pot). Honeypot Hunter currently
tests port 1080 for Socks4 and
Socks5 proxy support and all other
ports for HTTP “CONNECT”
proxy support.

Honeypot Hunter essentially
performs a series of simple tests.
First, it opens a false mail server on
the local system (port 25) to test the
proxy connection and then connects
to the server’s proxy port. After con-
necting, Honeypot Hunter attempts
to proxy back to its own false mail
server. The basic approach of con-
necting back to itself is enough to
identify most invalid proxies and
honeypots. In particular, if the re-
mote server claims to have success-
fully connected, but Honeypot
Hunter’s false mail server didn’t re-
ceive a connection, then the proxy is
likely a honeypot.

The effect
on honeypots
Obviously, the appearance of main-
stream honeypot-detection systems
has significant ramifications for hon-
eypots. If malicious users can detect
honeypots, then they can bypass de-
tection. At minimum, this ability

www.computer.org/security/ ! IEEE SECURITY & PRIVACY 77

The Honeynet Files

lowers the value of the information
gathered because bypassed honeypots
would not detect any new attacks.

More importantly, if people can
detect a honeypot, they can attack it.
Three basic approaches exist for at-
tacking a honeypot: compromising,
poisoning, and studying. Re-
searchers generally place honeypots
in isolated LANs adjacent to critical
network junctions. By compromis-
ing this honeypot, a hostile entity
could use it to stage internal attacks.
Alternatively, the entity could use the

honeypot to stage attacks on other
systems throughout the Internet.

Instead of compromising the
honeypot, a malicious user also
could opt to flood the honeypot
with false information. This poison-
ing effectively buries any valuable in-
formation under a mound of noise.
By poisoning the honeypot, other
hostile activities could go unnoticed.

Bypassing prevents the honeypot
from collecting information and
flooding obscures collected infor-
mation, but an attacker could choose
to use the honeypot as it’s intended:
for gathering information. Just as a
honeypot provides valuable insights
about an attacker to the observer, an
attacker that compromises a honey-
pot could learn a lot about the ob-
server. He or she could identify per-
sonal information such as people’s
names, operating hours, or skill lev-
els. A compromised host could iden-
tify the protected network’s organi-
zation, items that the organization
considers “valuable,” and where this
value is kept. A compromised hon-
eyd system that emulates only Win-
dows systems, for example, would
suggest a company that only uses
Windows; a honeypot database
server that emulates Oracle would
suggest a corporate Oracle database.

Detecting
the hunter
At my company, we evaluated Hon-
eypot Hunter version 1.0 (released
on 11 November 2003) and version
1.0.1 (released on 4 December
2003). Unfortunately, version 1.0
appears unstable and crashes when
the false mail server is activated.
Moreover, it doesn’t seem to gener-
ate valid Socks5 requests. Version
1.0.1 corrected the crashing problem
but still has issues around email
header formatting and honeypot de-
tection. But, the updated release in-
dicates that Honeypot Hunter is ac-
tively and rapidly being developed.

Honeypot Hunter provides a sig-
nificant amount of insight into the
honeypot-detection approach. By de-

tecting it, a honeypot could imper-
sonate a full proxy and remain unde-
tected. Honeypot Hunter has many
identifiable aspects, including net-
work connection methods, server
identification, and test email formats.

Honeypot Hunter generates self-
via-proxy connections, from the
Honeypot Hunter system to the
proxy and back to itself. A honeypot
configured to permit self-via-proxy
connections could appear viable to
the tool while remaining undetected.

Honeypot Hunter’s false mail
server identifies itself as “220 %s
(IMail 8.00 153-1) NT-ESMTP

Server X1”, where “%s” is re-
placed with a random hostname (see
Figure 1). Honeypot Hunter appears
to check this string with the ex-
pected reply (“(IMail 8.00 153-
1) NT-ESMTP Server X1”), using
it to detect honeypot mail servers. A
Honeypot Hunter-blocking honey-
pot could initiate the full proxy con-
nection and determine the mail
server type. A server with a different
identification would denote a non-
Honeypot Hunter system and not
need to deliver email sent through
the honeypot.

Different email programs gener-
ate different email headers. Honey-
pot Hunter’s test email has a fixed
number of headers in a specific order
with specific capitalization. A hon-
eypot mail server that only passes
messages with these specific headers
would be undetectable by Honeypot
Hunter:

From: %s

Message-Id: %s%s

Date: %s

Subject: %s

To: %s

Content-Type:

text/plain;

charset=”iso-8859-1”

Content-Transfer-

Encoding: 7bit

Although these anti-detection
approaches might work with Hon-
eypot Hunter’s current version, they

78 IEEE SECURITY & PRIVACY ! JANUARY/FEBRUARY 2004

Figure 1. Sample email transaction. Honeypot
Hunter version 1.0.1 generated this transaction as
it relays through a Socks server.

220 kbssj.org (IMail 8.00 153-1) NT-

ESMTP Server X1

HELO hfuhksspy.net

250 hello kbssj.org

MAIL FROM:<vhjentsqgbf@hfuhksspy.net>

250 ok

RCPT TO:<jfrqk@kbssj.org>

250 ok its for <jfrqk@kbssj.org>

DATA

354 ok, send it; end with <CRLF>.<CRLF>

From: <vhjentsqgbf@hfuhksspy.net>

Message-Id:

<6f5501c3bb4d$7a3b2c00$f898e605@

vhjentsqgbf

Date: Fri, 05 Dec 2003 08:33:13 -0800

Subject: fn mqecrscy

To: <jfrqk@kbssj.org>

Content-Type: text/plain;

charset=”iso-8859-1”

Content-Transfer-Encoding: 7bit

gblh psp p x ft ujtky cjkif nir

ie etqxuce

jnyy dulx lavf pm fkggj yecer fy

tumtlejy joiv jpkf wqg gv ecs ii

.

250 message queued

767968bda10041f999554685039d37d8]

The Honeynet Files

are unlikely to be general enough for
future honeypot-detection systems.
Future honeypot-detection systems
will likely use additional detection
techniques, different test email for-
mats, and even a variety of test server
configurations.

End of the honeypot
honeymoon
Honeypot systems that use anti-
detection techniques will likely lead
to anti-anti-detection systems. The
next logical step for Honeypot
Hunter, for example, would be to
split the false mail server from the
Honeypot Hunter client. This
change would remove the self-via-
proxy connections, thus permitting
connections from the Honeypot
Hunter client to the proxy to a differ-
ent Honeypot Hunter server under
the user’s control. Removing the
self-via-proxy connections would
make detecting the anti-honeypot
system more difficult. Moreover,
Honeypot Hunter’s client compo-
nent could relay tests through known
open proxies and hide the user’s true
IP address from the test system.

In addition to changing its con-

nection approach, Honeypot Hunter
could change its static strings. Its false
mail server could generate a variety of
responses, which would make detect-
ing it more difficult. Furthermore,
elaborate anti-detection attempts to
determine the actual type of system at
the end of the proxy connection
could give the honeypot away. Finally,
the variable header formats that
Send-Safe bulk mailer provides could
be adapted to Honeypot Hunter; fu-
ture versions of the tool thus would
generate nondistinct test emails.

Extending anti-honeypot and de-
tection techniques to better suit non-
spam groups is another logical next
step. It’s only a matter of time before
such groups begin to use honeypot-
detection systems more widely—if
they aren’t doing so already. Cur-
rently, many Web sites list open prox-
ies; soon they’ll start listing the IP ad-
dresses of known honeypots.

H oneypots appear to have an im-
pact on preventing spam. Un-

fortunately, just as spam evolves
around spam filters, spammers are
evolving around honeypots.

With the appearance of commer-
cial honeypot-detection systems,
honeypot operators are about to
learn that their ideal monitoring so-
lutions are not so ideal; the honey-
moon with the honeypot is over, and
the technical battle is about to begin.

The emerging ability to detect a
trap suggests that current honeypot
technology might not be adequate
for much longer; honeypot tech-
nology must evolve and soon. Cur-
rent limitations and simple imple-
mentations make them detectable,
and changing the system might not
be as simple as we would wish—a
simple change to a honeypot implies
a simple change to the tools for de-
tecting it.

Reference
1. The Honeynet Project, Know Your

Enemy, Addison-Wesley, 2002.

Neal Krawetz is the CSO for Hacker Fac-
tor Solutions and a senior researcher for
Secure Science Corporation’s External
Threat Assessment Team. His research
interests include anti-anonymity technol-
ogy and the use of digital forensics to track
individuals online. He has a PhD in com-
puter science from Texas A&M University.
Contact him at nealk@securescience.net.

www.computer.org/security/ ! IEEE SECURITY & PRIVACY 79

Look to the Future
IEEE Internet Computing reports emerging tools,
technologies, and applications implemented through the
Internet to support a worldwide computing environment.

In 2004, we’ll look at
• Business Processes for the Web
• Internationalizing the Web
• Internet-Based Data Dissemination
• the Wireless Grid
• Measuring Performance
• Homeland Security

www.computer.org/internet/

