
CE 874 - Secure Software Systems

Taint Analysis

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources.
Reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Fall 1400 Ce 815 - Taint Analysis

Run-Time protection/enforcement

• In many instances we only have
access to the binary

• How do we analyze the binary for
vulnerabilities?

• How do we protect the binary from
exploitation?

• This would be our topic for the next
few lectures

Fall 1400 Ce 815 - Taint Analysis

Why Binary Code?

• Access to the source code often is not possible:

• Proprietary software packages

• Stripped executables

• Proprietary libraries: communication (MPI, PVM), linear algebra (NGA),

database query (SQL libraries)

• Binary code is the only authoritative version of the program

• Changes occurring in the compile, optimize and link steps can create non-
trivial semantic differences from the source and binary

• Worms and viruses are rarely provided with source code

[B. P. Miller’06]

Fall 1400 Ce 815 - Taint Analysis

Binary Analysis and Editing

• Analysis: processing of the binary code to extract syntactic and symbolic
information

• Symbol tables (if present)

• Decode (disassemble) instructions

• Control-flow information: basic blocks, loops, functions

• Data-flow information: from basic register information to highly

sophisticated (and expensive) analyses

[B. P. Miller’06]

Fall 1400 Ce 815 - Taint Analysis

Binary Analysis and Editing

• Binary rewriting: static (before execution) modification of a binary program

• Analyze the program and then insert, remove, or change the binary code,

producing a new binary

• Dynamic instrumentation: dynamic (during execution) modification of a
binary program

• Analyze the code of the running program and then insert, remove, or

change the binary code, changing the execution of the program

• Can operate on running programs and servers

[B. P. Miller’06]

Fall 1400 Ce 815 - Taint Analysis

Uses of Binary Analysis and Editing

• Cyber-forensics

• Analysis: understand the nature of malicious code

• Binary-rewriting: produce a new version of the code that might be

instrumented, sandboxed, or modified for study

• Dynamic instrumentation: same features, but can do it interactively on an

executing program

• Hybrid static/dynamic: control execution and produce intermediate

versions of the binary that can be re-executed (and further instrumented)

• Program tracing: instructions, memory accesses, function calls, system

calls, . . .

• Debugging

• Testing, Performance profiling Performance modeling

• Reverse engineering

[B. P. Miller’06]

Fall 1400 Ce 815 - Taint Analysis

Binary patch Application
Program

Function foo

Trampoline

Pre-Instrumentation
Relocated

Instruction(s)

Post-Instrumentation

[B. P. Miller’06]

pop ecx; puts the return address to ecx

cmp ecx , 0x08048456 ; check that we return to the right place

jne 0x41414141 ; crash

jmp ecx; effectively return

pop ecx; puts the return address to ecx

jmp ecx; jumps to the return address

After Patch:

Fall 1400 Ce 815 - Taint Analysis

Dynamic Binary Instrumentation

• A DBI is a way to execute an external code before
or/and after each instruction/routine

• With a DBI you can:

• Analyze the binary execution step-by-step

• Context memory

• Context registers

• Only analyze the executed code

[Salwan’15]

Fall 1400 Ce 815 - Taint Analysis

Available Tools

• Binary re-writing:

• e.g.: Alto, Vulcan, Diablo, etc.

• Binary Instrumnetation:

• e.g. PIN, Valgrind, DynInst, etc

Fall 1400 Ce 815 - Taint Analysis

Dynamic Taint Analysis for Automatic Detection, Analysis, and
Signature Generation of Exploits on Commodity Software, J.

Newsome and D. Song, NDSS 2005.

Fall 1400 Ce 815 - Taint Analysis

Motivation

• Worms exploit several software vulnerabilities

• buffer overflow

• “format string” vulnerability

• Attack detectors ideally should:

• Detect new attacks and detect them early

• Be easy to deploy

• Few false positives and false negatives

• Be able to automatically generate filters and sharable fingerprints

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

Motivation (contd.)

• Attack detectors are:

• Coarse grained detectors

• Detect anomalous behavior but do not provide detailed information
about the vulnerability

• Scan detectors, anomaly detectors

• Fine grained detectors are highly desirable

• Detect attacks on programs vulnerabilities and hence provide detailed
information about the attack

• But some require source code (typically not available for commercial
software), recompilation, bounds checking, library recompilation,
source code modification, etc.

• Other options: content-based filtering (e.g., IDS’ such as snort and Bro),
but automatic signature generation is hard

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

TaintCheck: Basic Ideas

• Program execution normally derived from trusted sources, not attacker input

• Mark all input data to the computer as “tainted” (e.g., network, stdin, etc.)

• Monitor program execution and track how tainted data propagates (follow

bytes, arithmetic operations, jump addresses, etc.)

• Detect when tainted data is used in dangerous ways

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

Step 1: Add Taint Checking code

• TaintCheck first runs the code through an emulation environment (Valgrind)
and adds instructions to monitor tainted memory.

Binary re-writer
Taint Check

X86 instructions UCode

UCode

X86 instructions

Dynamic taint analysis

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

TaintCheck Detection Modules

• TaintSeed: Mark untrusted data as tainted

• TaintTracker: Track each instruction, determine if result is tainted

• TaintAssert: Check is tainted data is used dangerously

• Jump addresses: function pointers or offsets

• Format strings: is tainted data used as a format string arg?

• System call arguments

• Application or library customized checks

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

TaintSeed

• Marks any data from untrusted sources as “tainted”

• Each byte of memory has a four-byte shadow memory that stores a

pointer to a Taint data structure if that location is tainted

• records the system call number, a snapshot of the current stack and a

copy of the data that was written.

• Else store a NULL pointer

Memory is mapped to TDS

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

TaintTracker

• Tracks each instruction that manipulates data in order to determine whether
the result is tainted.

• When the result of an instruction is tainted by one of the operands,

TaintTracker sets the shadow memory of the result to point to the same
Taint data structure as the tainted operand.

Memory is mapped to TDS Result is mapped to TDS

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

TaintAssert

• Checks whether tainted data is used in ways that its policy defines as
illegitimate

Memory is mapped to TDS Operand is mapped to TDS vulnerability

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

TaintCheck Operation

X

Memory byte

Shadow Memory

Taint Data structure*

untainted

Use as
Fn pointer

Attack detected

TaintTrackerTaint seed TaintAssert

Exploit Analyzer

TaintCheck

Shadow Memory

*TDS holds the system call number, a snapshot of the current stack, and a copy of the data that was written

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

Exploit Analyzer

• Provides useful information about how the exploit happened, and what the
exploit attempts to do

• Useful to generate exploit fingerprints

• Usage:

• Identifying vulnerabilities.

• Generating exploit signature.

Memory is mapped to TDS Operand is mapped to TDS vulnerability

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

Dynamic Taint Analysis

• Jump addresses:

• Checks whether tainted data is used as a jump target

• Instrument before each Ucode jump instruction

• Format strings:

• Checks whether tainted data is used as format string argument

• Intercept calls to the printf family of functions

• System call arguments:

• Checks whether the arguments specified in system calls are tainted

• Optional policy for execv system call

• Application or library-specific checks:

• To detect application or library specific attacks

[CS-6V81]

Fall 1400 Ce 815 - Taint Analysis

When does TaintCheck Fail?

• A false negative occurs if an attacker can cause sensitive data to take on a
value without that data becoming tainted

• E.g. if (x == 0)y = 0; else if (x == 1) y = 1; ...

• If values are copied from hard-coded literals, rather than arithmetically

derived from the input

• IIS translates ASCII input into Unicode via a table

• If TaintCheck is configured to trust inputs that should not be trusted

• data from the network could be first written to a file on disk, and then

read back into memory

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

When does TaintCheck give a False Positive?

• TaintCheck detects that tainted data is being used in an illegitimate way even
when there is no attack taking place. Possibilities:

• There are vulnerabilities in the program and need to be fixed, or

• The program performs sanity checks before using the data

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

Δ
Var Val

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

Δ
Var Val

Tainted?Var
τ

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

Input is
tainted

untaintedtainted Δ
Var Val

Tainted?Var
τ

TaintSeed

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

untaintedtainted Δ
Var Val

x 7

Tainted?

T

Var

x

τ

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

Data derived from
user input is

tainted

untaintedtainted

y 49

Δ
Var Val

x 7

Ty

Tainted?

T

Var

x

τ
TaintTracker

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

untaintedtainted Δ
Var Val

x 7
y 49

Tainted?

T
T

Var

x
y

τ

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

Policy Violation

Detected

untaintedtainted Δ
Var Val

x 7
y 49

Tainted?

T
T

Var

x
y

τ

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = x + 42

…

goto y

Policy Violation

Detected

untaintedtainted Δ
Var Val

x 7
y 49

Tainted?

T
T

Var

x
y

τ
TaintAssert

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

…

strcpy(buffer,argv[1])
;

…

return ;

Jumping to
overwritten

return address

[Brumley’10]

x = get_input()

y = …

…

goto y

Fall 1400 Ce 815 - Taint Analysis

Memory Load

Variables Memory

Δ
Var Val

x 7

Tainted?

T

Var

x

τ

µ
Addr Val

7 42

Tainted?

F

Addr

7

τµ

[Brumley’10]

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Problem: Memory Addresses

[Brumley’10]

7 42
µ Addr Val

Tainted?

F

Addr

7
τµ

Δ
Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Problem: Memory Addresses

[Brumley’10]

7 42
µ Addr Val

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Problem: Memory Addresses

[Brumley’10]

7 42
µ Addr Val

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Problem: Memory Addresses

[Brumley’10]

All values derived
from user input
are tainted??

7 42
µ Addr Val

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Policy 1: Taint depends only on the memory
cell

[Brumley’10]

µ Addr Val

7 42

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Policy 1: Taint depends only on the memory
cell

[Brumley’10]

µ Addr Val

Taint Propagation

7 42

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Policy 1: Taint depends only on the memory
cell

[Brumley’10]

µ Addr Val

Taint Propagation

7 42

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Policy 1: Taint depends only on the memory
cell

[Brumley’10]

µ Addr Val

Taint Propagation

7 42

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Policy 1: Taint depends only on the memory
cell

[Brumley’10]

µ Addr Val

Jump target
could be any

untainted
memory cell

value

Taint Propagation

7 42

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(x)

…

goto y

Policy 1: Taint depends only on the memory
cell

[Brumley’10]

µ Addr Val

Jump target
could be any

untainted
memory cell

value

Taint Propagation

7 42

Tainted?

F

Addr

7
τµ

x 7
Δ

Var Val

Undertainting

 Failing to identify tainted values

 - e.g., missing exploits

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Memory

printa

printb

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Memory

printa

printb

Taint Propagation

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Memory

printa

printb

Taint Propagation

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Memory

printa

printb

Address
expression
is tainted

Taint Propagation

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Memory

printa

printb

Address
expression
is tainted

Taint Propagation

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Memory

printa

printb

Taint Propagation

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Policy Violation?

Memory

printa

printb

Taint Propagation

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Policy Violation?

Memory

printa

printb

Taint Propagation

Fall 1400 Ce 815 - Taint Analysis

x = get_input()

y = load(jmp_table + x % 2)

…

goto y

Policy 2: If either the address or the memory
cell is tainted, then the value is tainted

• `

[Brumley’10]

jmp_table

Policy Violation?

Memory

printa

printb

Taint Propagation

Overtainting

 Unaffected values are tainted

 - e.g., exploits on safe inputs

Fall 1400 Ce 815 - Taint Analysis

General Challenge

• State-of-the-Art is not perfect for all programs

[Brumley’10]

Undertainting: 
Policy may miss

taint

Overtainting: 
Policy may wrongly

detect taint

Fall 1400 Ce 815 - Taint Analysis

Compatibility with Existing Code

• Does TaintCheck raise false alerts?

• Networked programs: 158K+ DNS queries

• No false +ves

• All (!!) client and non-network programs (tainted data is stdin):

• Only vim and firebird caused false +ves (data from config files used as
offset to jump address)

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

Attack Detection: Synthetic + Actual Exploits

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

Evaluation - Evaluation of attack detection

• Synthetic exploits

• They wrote small programs for:

Return Address Function Pointer Format String

“gets” for long input Same Line input from user

Overwrote the stack –
overwrote return address

Overwrote the stack –
overwrote function

pointer
Overwrote format string

Attack detected as
return addr was tainted

from user input

Attack detected as func
pointer was tainted from

user input

TaintCheck determined
correctly when the

format string was tainted

[CS-6V81]

Fall 1400 Ce 815 - Taint Analysis

Evaluation - Evaluation of attack detection

• Actual exploits: TaintCheck evaluated on exploits to three vulnerable
servers: a web server, a finger daemon, and an FTP server.

ATPhttpd exploit cfingerd exploit wu-ftpd exploit

Web server program Finger daemon ftp

Ver 0.4b and lower are
vulnerable to buffer overflow

Ver 1.4.2 and lower are
vulnerable to format string

Version 2.6.0 of wu-ftpd has
a format string vulnerability

in a call to vsnprintf.
malicious GET request with a very long file
name (shellcode and a return address) was
sent to server. Return address overwritten
so when func retruns it jumps to shell code

inside the file name -> remote shell for
attacker

When prompts for a user name, exploit responds with
a string beginning with “version” + malicious code

- cfingerd copies the whole string into memory, but

only reads to the end of the string “version”. Malicious
code in memory starts working

Format string to overwrite
the return address was

detected

TaintCheck detected return
addr was tainted and identified

the new value
Detected also

TaintCheck successfully

detects both that the format string

supplied to

vsnprintf is tainted, and that the

overwritten return address is tainted.

[CS-6V81]

Fall 1400 Ce 815 - Taint Analysis

Performance Evaluation – CPU Bound
Process

• Hardware: 2.00 GHz Pentium 4, 512 MB RAM, RedHat 8.0

• Application: bzip2(15mb)

• Normal runtime 8.2s

• Valgrind nullgrind skin runtime: 25.6s (3.1x)

• Memcheck runtime: 109s (13.3x)

• TaintCheck runtime: 305s (37.2x)

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

Automatic Signature Generation

• Automatic semantic analysis based signature generation

• Find value used to override return address – typically fixed value in the

exploit code

• Sometimes as little as 3 bytes! See paper for details

[Papadopoulos’11]

Fall 1400 Ce 815 - Taint Analysis

More recent work

• Improving performance:

• TaintPipe: Pipelined Symbolic Taint Analysis, Jiang Ming, Dinghao Wu,

Gaoyao Xiao, Jun Wang, and Peng Liu, Usenix Security 2015.

• DECAF++: Elastic Whole-System Dynamic Taint Analysis, Ali Davanian,

Zhenxiao Qi, Yu Qu, and Heng Yin, Raid 2019.

• SelectiveTaint: Efficient Data Flow Tracking With Static Binary Rewriting,

Sanchuan Chen, Zhiqiang Lin, and Yinqian Zhang, Usenix Security, 2021

• Extending to GPU

• GPU Taint Tracking, Ari B. Hayes, Lingda Li, Mohammad Hedayati,
Jiahuan He, Eddy Z. Zhang, Kai Shen, Usenix ATC, 2017.

Fall 1400 Ce 815 - Taint Analysis

Inlined dynamic taint analysis vs. TaintPipe.

[TaintPipe’15]

Fall 1400 Ce 815 - Taint Analysis

Symbolic taint analysis on a code segment

[TaintPipe’15]

Fall 1400 Ce 815 - Taint Analysis

Other Applications

• ?

Fall 1400 Ce 815 - Taint Analysis

Acknowledgments/References (1/2)

• [B. P. Miller'06] A Framework for Binary Code Analysis, and Static and
Dynamic Patching, Barton P. Miller, Jeffrey Hollingsworth, February 2006.

• [Papadopoulos’11] CS451, Christos Papadopoulos, CSU, Spring 2011.
Original slides by Devendra Salvi (2007). Based on “Dynamic Taint Analysis
for Automatic Detection, Analysis, and Signature Generation of Exploits on
Commodity Software”, J. Newsome and D. Song, NDSS 2005.

• [EECS 583’12] – Class 21 Research Topic 3: Dynamic Taint Analysis,
University of Michigan December 5, 2012. Based on “All You Ever Wanted to
Know about Dynamic Taint Analysis and Forward Symbolic Execution (but
Might Have Been Afraid to Ask)”, E. J. Schwartz, T. Avgerinos, D. Brumley,
IEEE S&P, 2010.

• [Brumley’10] All You Ever Wanted to Know about Dynamic Taint Analysis and
Forward Symbolic Execution (but Might Have Been Afraid to Ask), E. J.
Schwartz, T. Avgerinos, D. Brumley, IEEE S&P, 2010.

43

Fall 1400 Ce 815 - Taint Analysis

Acknowledgments/References (2/2)

• [CS-6V81] System Security and Malicious Code Analysis, S. Qumruzzaman,
K. Al-Naami, Spring 2012. Based on “Dynamic Taint Analysis for Automatic
Detection, Analysis, and Signature Generation of Exploits on Commodity
Software”, J. Newsome and D. Song, NDSS 2005.

• [Salwan’15] Dynamic Binary Analysis and Instrumentation Covering a function
using a DSE approach, J. Salwan, Security Day, January 2015.

• [TaintPipe’15] TaintPipe: Pipelined Symbolic Taint Analysis, Jiang Ming,
Dinghao Wu, Gaoyao Xiao, Jun Wang, and Peng Liu, Usenix Security 2015.

44

