CE 874 - Secure Software Systems

Secure Architecture Il

Mehdi Kharrazi
Department of Computer Engineering
Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Secure Architecture

- How to come up with a secure
architecture?

« W
fo

- W

- How do you trust the code getting
executed?

Spring

nat design principals is should be
lowed?

nat are the available mechanisms?

IF SOMEONE. STEALS MY LAPTOP WHILE T'M
LOGGED N, THEY CAN READ MY EMAIL, TRKE MY
MONEY AND [MPERSONATE. ME TO MY FRIENDS,

BUT AT LEAST THEY CANT INSTALL
DRNERS WHHOUT W PﬂiﬂlﬁﬁION. xkcd.com

1398 Ce 874 - Secure Architecture

Spring 1398

Example: Virtual Machines

Ce 874 - Secure Architecture

The idea of Virtualization: from 1960’s

- IBM VM/370 — A VMM for IBM mainframe
« Multiple OS environments on expensive hardware
 Desirable when few machine around
* Popular research idea in 1960s and 1970s
» Entire conferences on virtual machine monitors
- Hardware/VMM/OS designed together
 Allowed multiple users to share a batch oriented system
* Interest died out in the 1980s and 1990s
- Hardware got more cheaper
+ Operating systems got more powerful (e.g. multi-user)

Spring 1398 Ce 874 - Secure Architecture |

[Seshan’106]

A Return to Virtual Machines

 Disco: Stanford research project (SOSP ’97)
* Run commodity OSes on scalable multiprocessors
* Focus on high-end: NUMA, MIPS, IRIX
« Commercial virtual machines for x86 architecture
- VMware Workstation (how EMC) (1999-)
« Connectix VirtualPC (now Microsoft)
- Research virtual machines for x86 architecture
« Xen (SOSP '03)
« plex86
« OS-level virtualization
« FreeBSD Jails, User-mode-linux, UMLinux

Spring 1398 Ce 874 - Secure Architecture |

[Seshan’106]

Starting Point: A Physical Machine

* Physical Hardware

* Processors, memory, chipset,
Application /O devices, etc.

* Resources often grossly
underutilized

« Software

 Tightly coupled to physical
hardware

- Single active OS instance
« OS controls hardware

Spring 1398 Ce 874 - Secure Architecture | [Eyal Delara, Seshan’16]

What is a Virtual Machine?

- Software Abstraction
App || Ape || ApP 1) | App || App || App - Behaves like hardware
Operating System - Encapsulates all OS and
application state
- Virtualization Layer

| Extra level of indirection

Virtualization Layer

- Decouples hardware, OS
- Enforces isolation

« Multiplexes physical hardware
across VMs

Spring 1398 Ce 874 - Secure Architecture | [Eyal Delara, Seshan’16]

Virtualization Properties, Features

|Isolation

- Fault isolation and Performance isolation (+ software isolation, ...)

Encapsulation

- Cleanly capture all VM state and Enables VM snapshots, clones
Portability

 Independent of physical hardware

- Enables migration of live, running VMs (freeze, suspend,...)
« Clone VMs easily, make copies

* Interposition
- Transformations on instructions, memory, 1/0

- Enables transparent resource overcommitment,
encryption, compression, replication ...

Spring 1398 Ce 874 - Secure Architecture | [Eyal Delara, Seshan’16]

Types of Virtualization

 Process Virtualization (Figure [a])
- Language-level Java, .NET, Smalltalk
« OS-level processes, Solaris Zones, BSD Jails, Docker Containers
« Cross-ISA emulation Apple 68K-PPC-x86
- System Virtualization (Figure [b])
« VMware Workstation, Microsoft VPC, Parallels
- VMware ESX, Xen, Microsoft Hyper-V

Guest Application process Application process Applications Applications
Runtime
Process
virtual
i VMM System
Host < machine v)i,riual
Hardware machine

Host Hardware

(b)
Spring 1398 Ce 874 - Secure Architecture | [Eyal Delara, Seshan’16]

@ -

Types of VMs — Emulation

Another (older) way for running one OS on a different OS

- Virtualization requires underlying CPU to be same as guest was compiled
for while Emulation allows guest to run on different CPU

Need to translate all guest instructions from guest CPU to native CPU
- Emulation, not virtualization
Useful when host and guest have differnet processor architectures

- Company replacing outdated servers with new servers containing different
CPU architecture, but still want to run old applications

Performance challenge — order of magnitude slower than native code
* New machines faster than older machines so can reduce slowdown
Where do you think it is used still?

Very popular — especially in gaming where old consoles emulated on new

Spring 1398 Ce 874 - Secure Architecture | [Seshan’16]

VMs — Application Containers

- Some goals of virtualization are segregation of apps, performance and resource
management, easy start, stop, move, and management of them

« Can do those things without full-fledged virtualization

- |f applications compiled for the host operating system, don’t need full
virtualization to meet these goals

+ Oracle containers/zones for example create virtual layer between OS and apps
* Only one kernel running — host OS

- OS and devices are virtualized, providing resources within zone with
Impression that they are only processes on system

» Each zone has its own applications; networking stack, addresses, and ports;
user accounts, etc

- CPU and memory resources divided between zones
« Zone can have its own scheduler to use those resources

Spring 1398 Ce 874 - Secure Architecture | [Seshan’16]

Types of System Virtualization

- Native/Bare metal (Type 1) - [.] [pope]

 Higher performance system M M
. ESX, Xen, HyperV r . — 1

Hypervisor

- Hosted (Type 2)
* Easier to install

- Leverage host’s device drivers (o | r’

- VMware Workstation, Parallels M VM

Hypervisor

Host Operating System

> !
Py Memory NIC Disk

Spring 1398 Ce 874 - Secure Architecture | [Eval "DeLara, Seshan’16]

Spring 1398

Example: Virtual Machines
VMM Introspection

Ce 874 - Secure Architecture

Intrusion Detection / Anti-virus

* Runs as part of OS kernel and user space process

« Kernel root kit can shutdown protection system

- Common practice for modern malware
- Standard solution: run IDS system in the network

* Problem: insufficient visibility into user’s machine
 Better: run IDS as part of VMM (protected from malware)

« VMM can monitor virtual hardware for anomalies

« VMI: Virtual Machine Introspection

Allows VMM to check Guest OS internals

Spring 1398 Ce 874 - Secure Architecture |

[Boneh’15]

NEWYEE

e

Hardware

Spring 1398 Ce 874 - Secure Architecture | [Boneh’15]

Sample checks

- Stealth root-kit malware:
- Creates processes that are invisible to “ps”
- Opens sockets that are invisible to “netstat”
1. Lie detector check

- Goal: detect stealth malware that hides processes
and network activity

« Method:
- VMM lists processes running in GuestOS
« VMM requests GuestOS to list processes (e.g. ps)
* If mismatch: kill VM

Spring 1398 Ce 874 - Secure Architecture |

[Boneh’15]

Sample checks

« 2. Application code integrity detector
- VMM computes hash of user app code running in VM
- Compare to whitelist of hashes
Kills VM if unknown program appears
* 3. Ensure GuestOS kernel integrity
- example: detect changes to sys_call_table
* 4. Virus signature detector
 Run virus signature detector on GuestOS memory

Spring 1398 Ce 874 - Secure Architecture |

[Boneh’15]

Spring 1398

Example: Virtual Machines
=xploiting VM Isolation

Ce 874 - Secure Architecture

The MATRIX

Y hE Pt BRSNS, Sy D D8y, vl

Ry HE D¥ BHECNE MMy NENSE XEBR

> © D ® = o - O = O Wb o2
RESREESUN Y B3N OSUBENY SEBONES HESN. AFE WHUBY HE D> BEGNE SEe

HhE O B3I SN S
> 0.0 K 3.9 Jod 0. ALK U OE

b REN RS YVRER E RELIROTTEY CTVE PRI H R VR G My

Lmt“}vﬂm wmm.g*a SEEes TTERI N0t W@

BSOS £ M I AR NGB Y (RE O @8 UXESP T pley B D B3 el *
S HECSNE S TTEH NS wa

R ENUY B OB YT REDY G NEMN L3E WURY #E Ot HHON
) WP OXHEBNYT REVY e XESN LJFE JUSY 8 DR

WKL HE DR BFECSNE MW TTE N @R

ECE EXEN MBS OgdiERY R D EMEINEON AANET AU R DSl
B DEl BHONS HEN TH DN AN

M TIED Nt <M . .
BOE @M PP OrM MY REN) XC HESN LAHE WURY KHE DR BHCNE M

PL2Y HhE PO BHCSNE SWes TTH AN “ER

* BECN W WEE NE YUKW

HAE SN

BDE D SURAY, REQ BE NENN LB WUKY hE D8

WLRA B D BHONE S8K NENSN AHR
- I Y]

LU HE DR BHCS.N08 S s g~ |

o= - U o= - - -l - a - oo L R(nn L L= =
S XM BPY O RMBKYT REON XE XEIN LHNE WUKY HE Dt BHE SN S

LS HE B KB B OPE O rH BT RED) X0 NESN LJE WURY HE Dl

K U E NP DR RN RNEPD M SXERD N WZ WL MEORDRY- EHH SN

WAL HE P EFRCHE e TTEH AN xEiIQ
" - e .- ! -~ ™

7 + - -1 @ -~ ay #) e o C ~ ~

) $ e W\ ! &
e e RS M L AR TR RS REVE BN SNV S wLRORS ..Ju..Tj_P.mO.ycu -1

WP ORHEBEYY REPCD G HEFLSD FE WURY HE DR

URD Bl BESSE WA TW ML MIE L o e

- - -

h %S NEURCE XIMAMMN BN DedBK Y RS0 X HXESD ANE, WRIEY & DR

SImEas TIED N8k W@EIQ

LU MR ORI BIASCHE Sme MW A2 KEkR

MU Dt BH Ol HEW

YURY E DS BE S NE Sl

FOR RARNMY WHE O RIREY REPD EC HENN L¥E WIRVHE D~ HE

W EE P - s ORMBKY RELD XS NEIN LJF HURY K& Dt N

[Boneh’15]

)
—
-
-+
@)
O]
=
-
@)
e
<
)
—
-
©)
O
P
I
4
N
0@
O
@)

Spring 1398

Spring 1398 Ce 874 - Secure Architecture |l [Boneh’15]

SubVirt: Implementing malware with virtual
machines, King, Samuel 1., and Peter M. Chen, |IEEE
Symposium on Security and Privacy (S&P’06), 2006

Spring 1398 Ce 874 - Secure Architecture |

Motivation

- Attackers and defenders strive for control
- Attackers monitor and perturb execution
+ Avoid defenders
- Defenders detect and remove attacker
- Control by lower layers

Attackers Defenders
> | AppT App?2 <

Operating system

Hardware

Spring 1398 Ce 874 - Secure Architecture |l IKing’006]

Virtual-machine based rootkits (VMBRS)

* VMM runs beneath the OS
- Effectively new processor privilege level

« Fundamentally more control

* No visible states or events
- Easy to develop malicious services

Spring 1398 Ce 874 - Secure Architecture |l [King’O6]

Virtual-machine based rootkits (VMBRS)
App1 App2
App App?2 Target OS
Target OS
Hardware Hardware
Before After
Infection Infection

Spring 1398

Ce 874 - Secure Architecture I

[King’O6]

Installation

« Assume attacker has kernel privilege
- Traditional remote exploit
* Bribe employee
- Malicious bootable CD-Rom

* Install during shutdown

* Few processes running

- Efforts to prevent notification of activity

Spring 1398 Ce 874 - Secure Architecture | [King’O6]

Installing a VM

- Modify the boot sequence

Master
boot

Spring 1398

3

Boot
BIOS record sector

—ttt—

:%

Ce 874 - Secure Architecture

IKing’006]

Installing a VMBR

- Modify the boot sequence

VMBR
BIOS loads Master

boot Boot
BIOS record sector OS

Spring 1398 Ce 874 - Secure Architecture | [King’O6]

Maintaining control

« Hardware reset VMBR loses control

* lllusion of reset w/o losing control

* Reboot easy, shutdown harder

VMBR
BIOS loads Master

boot Boot
BIOS record sector OS

Spring 1398 Ce 874 - Secure Architecture | [King’O6]

Maintaining control

- ACPI BIOS used for low power mode
« Spin down disks
 Display low power mode
- Change power LED
- lllusion of power off, emulate shutdown

 Control the power button

- System functionally unchanged

Spring 1398 Ce 874 - Secure Architecture | [King’O6]

Malicious services

- Advantages of high and low layer malware
* Provides low layer implementation
- Still easy to implement services

- Use a separate attack OS to implement

App’] App2
Target OS

Hardware

Spring 1398 Ce 874 - Secure Architecture | [King’O6]

Malicious services

Zero interaction malicious services

* E.g., phishing web server

Passive monitoring
* E.g., keystroke logger, file system scanner

Active execution modifications
- E.g., defeat VM detection technique

All easy to implement

Spring 1398 Ce 874 - Secure Architecture | [King’O6]

Defending against VMBRS

* Detecting VMBRSs
 Perturbations

 Where to run detection software

Spring 1398 Ce 874 - Secure Architecture |l [King’O6]

VMBR perturbations

+ Inherent Hard to
- Timing of key events hide
- Space

- Hardware artifacts

 Device differences

- See paper for more details
- Software artifacts

* VM icon

 Device names

Easy to
hide

Spring 1398 Ce 874 - Secure Architecture |l IKing’006]

Security software above

« Attack state not visible

- Can only detect side effects, e.g., timing

* VMBR can manipulate execution
» Clock controlled by VMBR
* Prevent security service from running
* Turn off network

« Disable notification of intrusion

Spring 1398 Ce 874 - Secure Architecture | [King’O6]

Security software below

« More control, direct access to resources
« Could detect states or events

« Secure VMM and/or secure hardware

 Boot from safe medium

* Unplug machine from wall

Spring 1398 Ce 874 - Secure Architecture | [King’O6]

Proof-of-concept VMBRS

 VMware / Linux host
* Virtual PC / Windows XP host
 Host OS was attack OS

* Malware payload ~100MB compressed

Spring 1398 Ce 874 - Secure Architecture |l [King’O6]

Proof-of-concept VM

3

s

- Implemented four malicious services

* Phishing web server

* File system scanner

- Keystroke logger + password parser

 Countermeasure to detection tool

* Installation scripts and modules

« ACPI shutdown emulation

- Both sleep states and power button control

Spring 1398 Ce 874 - Secure Architecture |

[King’O6]

Subverting VistaTM Kernel For Fun And Profit,

Joanna Rutkowska, Advanced Malware Labs, Black Hat
20006

Spring 1398 Ce 874 - Secure Architecture |

Content

» Part |
- Loading unsigned code into Vista Beta 2 kernel (x64) without reboot

- Part |l
 Blue Pill — creating undetectable malware on x64 using Pacifica technology

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

Spring 1398

Part | — getting into the kernel

Ce 874 - Secure Architecture

[Rutkowska’06,
COSEINC Research]

Signed Drivers in Vista x64

* All kernel mode drivers must be signed
» Vista allows to load only signed code into kernel
- Even administrator can not load unsigned module!
 This is to prevent kernel malware and anti-DRM
* Mechanism can be deactivated by:
- attaching Kernel Debugger (reboot required)
 Using F8 during boot (reboot required)
- using BCDEdIit (reboot required, will not be available in later Vista versions)

 This protection has been for the first time implemented in Vista Beta 2 build
5384.

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

How to bypass?

- Vista allows usermode app to get raw access to disk (provided they run with
admin privileges of course)

e CreateFile (\\.\C:)
e CreateFile (\\.\PHYSICALDRIVEOQ))

 This allows us to read and write disk sectors which are occupied by the
pagefile

- S0, we can modify the contents of the pagefile, which may contain the code
and data of the paged kernel drivers!

« No undocumented functionality required — all documented in SDK :)

.] . [Rutkowska’06,
Spring 1398 Ce 874 - Secure Architecture I COSEING Research]

Challenges

- How to make sure that the specific kernel code is paged out to the pagefile?
- How to find that code inside pagefile?
- How to cause the code (how modified) to be loaded into kernel again?

- How to make sure this new code is executed by kernel?

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

How to force drivers to be paged?

- Allocate *lots of* memory for a process (e.g. using VirtualAlloc ())

. T
p

ne system will try to do its best to back up this memory with the actual
nysical pages

« At some point there will be no more physical pages available, so the system
will try to page out some unused code...

- Guess what is going to paged now... some unused drivers :)

Spring 1398 Ce 874 - Secure Architecture |

[Rutkowska’06,
COSEINC Research]

—ating memory...

E‘-’j Performance

EFH& Action View Favorites Window Help

- = @
O Q%89 ||Line M +X ¢ 2RE|[Qa O

Command Prompt - memeater.exe -10] x|

1600 E:\tmp>memeater. exe
memeater started...
processor arch: AMD64
page size: 4096 bytes
process working set size:

physical memory

1400 (about 1GB) min = 204800 bytes
max = 1413120 bytes
flags = Oxa

memater started

H about to allocate 536870912 bytes of memory...
1200 /_ allocatmg memory... touching memory... 100%
press ENTER to continue or 'q' to quit...

about to allocate 536870912 bytes of memory...
touching memory... 100%

1000 ” press ENTER to continue or 'q’ to quit...
; 2™ allocation i
ca about to allocate 536870912 bytes of memory...
= started... touching memory... 100%
o 800 press ENTER to continue or 'q" to quit...
600 :imger = co%e sttarted Even more driver's
e code paged...
400 3" allocation
/ started/. critical point — no more
physical memory for
memeater! :
dri dont No more drivers codes
rivers resiaen
-y to be paged out!
code (4MB) : i
8:04:05 AM 8:04:30 AM 8:05:00 AM 8:05:30 AM 8:05:44 AM
Show Color Scale Counter Instance Parent Object Computer
[V 10 Available MBytes Me YMVIST
v 0.000 System Driver Resident Bytes Me \\WMVIST

e start € > [Performance # Ntexplorer ’ ICY Hexplorer ¢\ Command Prompt ¢\ Command Promp... <@ 807AM

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEINC Research]

What could be paged?

- Pageable sections of kernel drivers (recognized by the section name starting
with ‘PAGE’ string)

 Driver’s data allocated from a Paged pool (e.g. ExAllocatePool ())

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture || COSEINC Research]

FInding a target

« We need to find some rarely used driver, which has some of its code sections
marked as pageable...

« How about NULL.SYS?

- After quick look at the code we see that its dispatch routine is located inside
a PAGE section — one could not ask for more :)

|t should be noted that there are more drivers which could be used instead of
NULL - finding them all is left as an exercise to the audience ;)

.] . [Rutkowska’06,
Spring 1398 Ce 874 - Secure Architecture I COSEING Research]

L ocating paged code inside pagefile

* This is easy — we just do a pattern search

- if we take a sufficiently long binary string (a few tens of bytes) its very
unlikely that it will appear more then once in a page file

« Once we find a pattern we just replace the first bytes of the dispatch function
with our shellcode

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

How to make sure our shellcode gets
executed?

« We need to ask kernel to be kind enough and execute our driver’s routine
(whose code we have just replaced in pagefile)

* In case of replacing driver’s dispatch routine it’s just enough to call
CreateFile () specifying the target driver’s object to be opened

 This will cause the driver’s paged section to be loaded into memory and then
executed!

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

Putting it all together

- Allocate lots of memory to cause unused drivers code to be paged
* Replace the paged out code (inside pagefile) with some shellcode
« Ask kernel to call the driver code which was just replaced

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

Part Il — Blue PIll

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

Invisibility by Obscurity

Current malware is based on a concept...

e.g. FU unlinks EPROCESS from the list of active processes in the system

e.g. deepdoor modifies some function pointers inside NDIS data structures

e ... etlc...

Once you know the concept you can write a detector!

This is boring!

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

lmagine a malware...

* ...which does not rely on a concept to remain undetected...

- ...which can not be detected, even though its algorithm (concept) is publicly
known!

* ...which can not be detected, even though it’s code is publicly known!

.] . [Rutkowska’06,
Spring 1398 Ce 874 - Secure Architecture I COSEING Research]

Slue PIll |dea

- Exploit AMD64 SVM extensions to move the operating system into the virtual
machine (do it ‘on-the-fly’)

 Provide thin hypervisor to control the OS
« Hypervisor is responsible for controlling “interesting” events inside gust OS

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

AMDG64 & SVM

- Secure Virtual Machine (AMD SVM) Extensions (AKA Pacifica)

« May 23rd, 2006 — AMD releases Athlon 64 processors based on socket AM2
(revision F)

- AM2 based processors are the first to support SVM extensions
- AM2 based hardware is available in shops for end users as of June 2006

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

SVM

- SVM is a set of instructions which can be used to implement Secure Virtual
Machines on AMDG64

- MSR EFER register: bit 12 (SVME) controls weather SVM mode is enabled or
not

- EFER.SVME must be set to 1 before execution of any SVM instruction.
- Reference:

- AMDG64 Architecture Programmer’s Manual Vol. 2: System Programming
Rev 3.11

- http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/24593.pdf

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

The heart of SVM: VMRUN Iinstruction

HOST Virtual
(Hypervisor) Machine

1
instruction flow '
(outside Matrix) 0

t instruction flow

Guest state and T /Y, inside guest

specification of :
what guest events .
are intercepted 1

o ——— ¢| VMRUN

¢
!
b
’
resume at the next instruction 1
after VMRUN (exit code E
written to VMCB on exit) :
1
B

' guest has been

0 intercepted

\

.] . [Rutkowska’06,
Spring 1398 Ce 874 - Secure Architecture |l COSEINC Research]

3lue Pill Idea (simplified)

...................................

'
')
’ : \ 4
' Native Operating PROC bluepill
’ System ; '
; 4
: enable SVM
: '
' \
'
v : prepare VMCB
[T T L e——— ’ v
e ZTTTLELEE . 4
- ‘ ¢====%» VMRUN |
1 ' { '
1 ' 1 '
1 : : 0 Blue Pill
: 0 | : Hypervisor
1 i 1
s 0 ' check
: : . VMCB.exitcode
0
1 ' ' . .
1 o 1 . only during
) o RET from bluepill PROC,
. : never reached in host mode,
1 : only executed once in guest
, ! mode
y ;
Native Operating System continues to execute,
but inside Virtual Machine this time...
. . Rutkowska’06,
Spring 1398 Ce 874 - Secure Architecture | :

COSEINC Research]

SP installs itself ON THE FLY!

- The main idea behind BP is that it installs itself on the fly

- Thus, no modifications to BIOS, boot sector or system files are necessary
- BP, by default, does not survive system reboot
+ But this is not a problem:

* servers are rarely restarted

* In Vista the ‘Power Off’ button does not shut down the system — it only
puts it into stand by mode!

- And also we can intercept (this has not been yet implemented):
- restart events (hypervisor survives the reboot)
- shutdown events (emulated shutdown)

.] . [Rutkowska’06,
Spring 1398 Ce 874 - Secure Architecture I COSEING Research]

SubVirt Rootkit

- SubVirt has been created a few months ago by researches at MS Research
and University of Michigan

« SubVirt uses commercial VMM (Virtual PC or VMWare) to run the original OS
iInside a VM

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

SubVirt vs. Blue PIll

« SV is permanent! SV has to take » Blue Pill can be installed on the fly —
control before the original OS no reboot nor any modifications in
during the boot phase. SV can be BIOS or boot sectors are necessary.
detected off line. BP can not be detected off line.

- SV runs on x86, which does not * BP relies on AMD SVM technology
allow for full virtualization which promises full virtualization

» SV is based on a commercial VMM, < BP uses ultra thin hypervisor and all
which creates and emulates virtual the hardware is natively accessible
hardware. This allows for easy without performance penalty
detection

Spring 1398 Ce 874 - Secure Architecture | [Rutkowska'06,

COSEINC Research]

Matrix inside another Matrix

- What happens when you install Blue Pill inside a system which is already
bluepilled?

* If nested virtualization is not handled correctly this will allow for trivial
detection — all the detector would have to do was to try creating a test VM
using a VMRUN instruction

« Of course we can cheat the guest OS that the processor does not support
SVM (because we control MSR registers from hypervisor), but this wouldn’t
cheat more inquisitive users ;)

« So, we need to handle nested VMs...

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

Nested VMs

VMCB1 Creating new VMCB1
l l handle VM2's
| ‘ of the VM1 |
I \ | events
& H . o y ‘\ v
¢ HYPEerviSor | s VMRUN thMRUN
{\ g E l\ ' (] 3 :
: .. : : .
‘ b - : '
. | ' ’ « :
' \ '] 3 '
i L] ‘ : " " '
g R . Y . : : '
. VM1)/ »/VMRUN : : X >
- ~ : o '
(' P intercepted
L VM 2 -J { event)
time
. . Rutkowska’06,
Spring 1398 Ce 874 - Secure Architecture | :

COSEINC Research]

Detection via timing analysis

+ We can assume that some of the instructions are always intercepted by the
hypervisor

e VMMCALL
« RDMSR — to cheat about the value of EFER . SVME bit

« S0, not surprisingly, the time needed to execute RDMSR to read the value of
EFER would be different (longer) when running from guest

 Detector can execute such instructions a few millions of times and measure
the time.

.] . [Rutkowska’06,
Spring 1398 Ce 874 - Secure Architecture I COSEING Research]

Cheating timing analysis

 The first problem is that detector (usually) does not have a base line to
compare the results with...

- But even if it had (e.g. when testing access to physical pages and while one
of them being backed up by disk) still we can cheat it!

« SVM offers a way to fool the guest’s time stamp counter (obtained using
RDTSC).

- All we have to do is to adjust VMCB.TSC_OFFSET accordingly before
executing VMRUN (which resumes the guest)

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

Time dilatation for guest

Set VMCB.TSC OFFSET = -tx

', . ‘\'.
. Hypervisor } —’ML.’M

»‘VMRUN|

tx = extra time

.
feccccccaa
fecccccccaa

Y

Intercepted Event,

e.g. RDMSR Next instruction in guest after
the one which caused
interception, e.g. RDTSC

time

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture || COSEINC Research]

Getting the real time...

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEINC Research]

Time profiling In practice

Now imagine that you need to check 1000 computers in your company using
the “external” stopwatch...

Now imagine that you need to do this a couple of time every day...

Time dilatation should make it impossible to write a self sufficient detector
based on timing analysis!

The challenge: we need a good ‘calibrating’ mechanism so that we know how
much time to subtract.

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

Pacifica vs. Vanderpool

Pacifica (SVM) and Vanderpool (VT-x) are not binary compatible

However they seem to be very similar

XEN even implements a common abstraction layer for both technologies

It seems possible to port BP to Intel VT-x

[Rutkowska’06,

Spring 1398 Ce 874 - Secure Architecture |l COSEING Research]

Spring 1398

Android Security Architecture

Ce 874 - Secure Architecture

[Rutkowska’06,
COSEINC Research]

INntroduction

* Next generation open operation system will be developed on small mobile
devices.

- Android (Google)
- a widely anticipated open source operating system for mobile devices

* it provide base operation system, application middleware layer, Java
software development kit and a collection of system applications.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Introduction (cont.)

- Feature of Android
- Doesn’t support applications developed for other platforms

* Restricts application interaction to its special APIs by running each
application as its own user identity

« Uses a simple permission label assignment model to restrict access to
resources and other applications

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Android Applications --- Example

AN AN
FriendTracker FriendReceiver FriendTracker

FriendTracker- . _
FriendProvider

- Example of location-sensitive social networking application for mobile phones
In which users can discover their friends locations.

- Activities provide a user interface, Services execute background processing,
Content providers are data storage facilities, and Broadcast receivers act

as mailboxes for messages from other applications.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Android Applications --- Example
Application(cont.)

N\
FriendTracker

AS
FriendTracker

FriendTracker- _ [
Control FriendProvider

- Take FriendTracker application for example,

- FriendTracker (Service) polls an external service to discover friends locations

- FriendProvider (Content provider) maintains the most recent geographic
coordinates for friends

- FriendTrackerControl (Activity) defines a user interface for starting and stopping
the tracking functionality

- BootReceiver (Broadcast receiver) gets a notification from the system once it
boots (app uses this to automatically start the FriendTracker service).

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Android Applications--- Component
Interaction

* Intent - is the primary mechanism for component interaction, which is simply
a message object containing a destination component address and data

 Action - the process of inter-components communication

- The Android API defines methods that accept intents and uses that
iInformation to

- start activities (startActivity(Intent))
- start services (startService (Intent))
- broadcast messages (sendBroadcast(Intent)).

* The invocation of these methods tells the Android framework to begin
executing code in the target application.

* In other words: an intent object defines the “intent” to perform an “action.”

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Android Applications--- Component
Interaction (cont.)

m
ce

Broadcast intent

Broad-

\ cast \
intent
BootReceiver FriendTracker - FriendReceiver FriendMap

Read

FriendTracker-

« Example: Interaction between components in applications and with
components in system applications. Interactions occur primarily at the
component level.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Android Applications--- Component
Interaction (cont.)

m
ce

Broadcast intent

Broad-

k cast L
intent
BootReceiver FriendTracker - FriendReceiver FriendMap

Read

FriendTracker-
Control FriendProvider

- Each component type supports interaction specific to its type. For example,

Service components support start , stop, and bind actions, so the
FriendTrackerControl (Activity) can start and stop the FriendTracker (Service)

that runs in the background.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Enforcement

« Android protect application at system level and at the Inter-component
communication (ICC) level. This article focus on the ICC level enforcement.

- Each application runs as a unigue user identity, which lets Android limit the
potential damage of programming flaws.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Enforcement (cont.) @

Androld applications
FriendTracker application FriendViewer application Contacts application

h'e B
() () -

| A
----------------- 5 e ——— p————— E——

|CC reference monitor

e - R e R R S e R R R e e R e e e e e e e e e e R R e

Androld middleware

user: app_11 i user: app_12 | user: app_4
home: /data/data/friendtracker i home: /data/data/friendviewer i home: /data/data/contacts
Linux system

Example: Protection. Security enforcement in Android occurs in two places: each

application executes as its own user identity, allowing the underlying Linux system
to provide system-level isolation; and the Android middleware contains a reference
monitor that mediates the establishment of inter-component communication (ICC).

Spring 1398 Ce 874 - Secure Architecture |l [Wu’09, Enck’09]

Security Enforcement (cont.)

- Core idea of Android security enforcement - labels assignment to applications
and components

- A reference monitor provides mandatory access control (MAC) enforcement
of how applications access components.

* Access to each component is restricted by assigning it an access permission
label; applications are assigned collections of permission labels.

- When a component initiates ICC, the reference monitor looks at the
permission labels assigned to its containing application and— if the target
component’s access permission label is in that collection— allows ICC
establishment to proceed.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Enforcement (cont.)

Application 1 Application 2

Permission (AL . Permission
labels labels

-]
Inherit permissions

« Example: Access permission logic. The Android middleware implements a
reference monitor providing mandatory access control (MAC) enforcement
about how applications access components. The basic enforcement model is
the same for all component types. Component A’s ability to access
components B and C is determined by comparing the access permission
labels on B and C to the collection of labels assigned to application 1.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Enforcement (cont.)

 Assigning permission labels to an application specifies its protection domain.
Assigning permissions to the components in an application specifies an
access policy to protect its resources.

« Android’s policy enforcement is mandatory, all permission labels are set at
Install time and can’t change until the application is reinstalled.

* Android’s permission label model only restricts access to components and
doesn’t currently provide information flow guarantees.

Spring 1398 Ce 874 - Secure Architecture |l [Wu’'09, Enck’09]

Security Refinements --- Public vs. Private
Components

+ Applications often contain components that another application should never
access.

* For example, component related to password storing. The solution is to
define private component.

» This significantly reduces the attack surface for many applications.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Refinements --- Implicitly Open
Components

- At development time, if the decision of access permission is unclear, The

developer can permit the functionality by not assigning an access permission
to it.

- If a public component doesn’t explicitly have an access permission listed in
its manifest definition, Android permits any application to access it.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Refinements --- Broadcast Intent
Permissions

- Sending the unprotected intent is a privacy risk.
+ Other apps maybe listening in.

- Android API for broadcasting intents optionally allows the developer to
specify a permission label to restrict access to the intent object.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Refinements --- Content Provider
Permissions

- If the developer want his application to be the only one to update the
contents but for other applications to be able to read them.

* Android allows such a security policy assigning read or write permissions.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Refinements --- Protected APIs

 Not all system resources(for example, network) are accessed through
components—instead, Android provides direct API access.

« Android protects these sensitive APIs with additional permission label checks:

 an application must declare a corresponding permission label in its
manifest file to use them.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Refinements --- Permission
Protection Levels

» The permission protection levels provide a means of controlling how
developers assign permission labels:
* Normal
- for legacy support, equivalent to old application permission type

- Dangerous permission granted after user confirmation

- Signature permissions ensure that only the framework developer can use
the specific functionality
 only Google applications can directly interface the telephony API, for
example
- Signature or System
- for legacy support, equivalent to old system permission type

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Security Refinements --- Pending Intents

* Pending intent:
+ A developer defines an intent object to perform an action.

- How ever, instead of performing the action, the developer passes the
intent to a special method that creates a Pendinglntent object
corresponding to the desired action.

* The Pendinglntent object is simply a reference pointer that can pass to
another application.

- when intent is invoked, it causes a RPC with the original application, in
which the ICC executes with all its permissions

« Pending intents allow applications included with the framework to integrate
better with third-party applications.

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Lessons in Defining Policy

- Android security policy begins with a relatively easy-to-understand MAC

enforcement model, but the number and subtlety of refinements make it
difficult to discover an application’s policy.

- For example, how do you control access to permission labels?

« Android’s permission protection levels provide some control, but more
expressive constraints aren’t possible.

* e.g. should an application be able to access both the microphone and the
Internet?

Spring 1398 Ce 874 - Secure Architecture | Wu’09, Enck’09]

Acknowledgments/References

 [Seshan’16] 15-440: Distributed Systems Syllabus, Yuvraj Agarwal, Srini
Seshan, CMU, Fall 2016

- [Boneh’15] CS 155, Computer Security, Dan Boneh, Stanford University, 2015

- [King’06] SubVirt: Implementing malware with virtual machines, King, Samuel
T., and Peter M. Chen, IEEE Symposium on Security and Privacy (S&P’06),
2006

 [Rutkowska’06, COSEINC Research] Subverting Vista Kernel For Fun And
Profit, Joanna Rutkowska, Black Hat Briefing 2006. Copyright COSEINC
Research, Advanced Malware Labs.

« [WuU’09, Enck’09] CS 585: Computer Security, Feng Zhu, University of
Alabama in Huntsville, Spring 2009 AND Understanding Android Security,
William Enck, Machigar Ongtang and Patrick Mcdaniel, IEEE Security and
Privacy magazine 2009

Spring 1398 Ce 874 - Secure Architecture | 91

