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Secure Architecture

• How to come up with a secure 
architecture?


• What design principals is should be 
followed?


• What are the available mechanisms?

• How do you trust the code getting 

executed?

xkcd.com
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Example: Virtual Machines
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The idea of Virtualization: from 1960’s

• IBM VM/370 – A VMM for IBM mainframe

• Multiple OS environments on expensive hardware

• Desirable when few machine around


• Popular research idea in 1960s and 1970s

• Entire conferences on virtual machine monitors

• Hardware/VMM/OS designed together

• Allowed multiple users to share a batch oriented system 


• Interest died out in the 1980s and 1990s

• Hardware got more cheaper

• Operating systems got more powerful (e.g. multi-user) 

[Seshan’16]



Spring 1398 Ce 874 - Secure Architecture II

A Return to Virtual Machines

• Disco: Stanford research project (SOSP ’97) 

• Run commodity OSes on scalable multiprocessors

• Focus on high-end: NUMA, MIPS, IRIX


•  Commercial virtual machines for x86 architecture

•  VMware Workstation (now EMC) (1999-)

•  Connectix VirtualPC (now Microsoft)


•  Research virtual machines for x86 architecture

•  Xen (SOSP ’03)

•  plex86


•  OS-level virtualization

•  FreeBSD Jails, User-mode-linux, UMLinux

[Seshan’16]
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Starting Point: A Physical Machine

• Physical Hardware

• Processors, memory, chipset, 

I/O devices, etc.

• Resources often grossly 

underutilized

• Software


• Tightly coupled to physical 
hardware


• Single active OS instance

• OS controls hardware

[Eyal DeLara, Seshan’16]
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What is a Virtual Machine?

• Software Abstraction

• Behaves like hardware

• Encapsulates all OS and 

application state

• Virtualization Layer


• Extra level of indirection

• Decouples hardware, OS

• Enforces isolation

• Multiplexes physical hardware 

across VMs

[Eyal DeLara, Seshan’16]
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Virtualization Properties, Features

• Isolation

• Fault isolation and Performance isolation (+ software isolation, …) 


• Encapsulation

• Cleanly capture all VM state and Enables VM snapshots, clones


• Portability

• Independent of physical hardware

• Enables migration of live, running VMs (freeze, suspend,…)

• Clone VMs easily, make copies


• Interposition

• Transformations on instructions, memory, I/O

• Enables transparent resource overcommitment, 

encryption, compression, replication …

[Eyal DeLara, Seshan’16]
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Types of Virtualization

• Process Virtualization (Figure [a])

• Language-level   Java, .NET, Smalltalk

• OS-level  processes, Solaris Zones, BSD Jails, Docker Containers

• Cross-ISA emulation  Apple 68K-PPC-x86


• System Virtualization (Figure [b])

• VMware Workstation, Microsoft VPC, Parallels

• VMware ESX, Xen, Microsoft Hyper-V

[Eyal DeLara, Seshan’16]
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Types of VMs – Emulation

• Another (older) way for running one OS on a different OS

• Virtualization requires underlying CPU to be same as guest was compiled 

for while Emulation allows guest to run on different CPU

• Need to translate all guest instructions from guest CPU to native CPU


• Emulation, not virtualization

• Useful when host and guest have differnet processor architectures


• Company replacing outdated servers with new servers containing different 
CPU architecture, but still want to run old applications


• Performance challenge – order of magnitude slower than native code

• New machines faster than older machines so can reduce slowdown


• Where do you think it is used still? 

• Very popular – especially in gaming where old consoles emulated on new

[Seshan’16]
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VMs – Application Containers

• Some goals of virtualization are segregation of apps, performance and resource 
management, easy start, stop, move, and management of them


• Can do those things without full-fledged virtualization

• If applications compiled for the host operating system, don’t need full 

virtualization to meet these goals

• Oracle containers/zones for example create virtual layer between OS and apps


• Only one kernel running – host OS

• OS and devices are virtualized, providing resources within zone with 

impression that they are only processes on system

• Each zone has its own applications; networking stack, addresses, and ports; 

user accounts, etc

• CPU and memory resources divided between zones


• Zone can have its own scheduler to use those resources

[Seshan’16]
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Types of System Virtualization

• Native/Bare metal (Type 1)

• Higher performance

• ESX, Xen, HyperV


• Hosted (Type  2)

• Easier to install

• Leverage host’s device drivers

• VMware Workstation, Parallels

[Eyal DeLara, Seshan’16]
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Example: Virtual Machines 
VMM Introspection
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Intrusion Detection / Anti-virus

• Runs as part of OS kernel and user space process

• Kernel root kit can shutdown protection system

• Common practice for modern malware


• Standard solution:     run  IDS  system in the network

• Problem:   insufficient visibility into user’s machine


• Better:   run IDS as part of VMM  (protected from malware)

• VMM can monitor virtual hardware for anomalies

• VMI:   Virtual Machine Introspection


•   Allows VMM to check Guest OS internals

[Boneh’15]
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Infected VM

malware

VMM

Guest OS

Hardware

IDS

[Boneh’15]
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Sample checks

• Stealth root-kit malware:

• Creates processes that are invisible to  “ps”

• Opens sockets that are invisible to  “netstat”


• 1. Lie detector check

• Goal:   detect stealth malware that hides processes  

and network activity

• Method:


•   VMM lists processes running in GuestOS

•   VMM requests GuestOS to list processes (e.g.  ps)

•   If mismatch:     kill VM

[Boneh’15]
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Sample checks

• 2. Application code integrity detector

• VMM computes hash of user app code running in VM

• Compare to whitelist of hashes


•   Kills VM if unknown program appears

• 3. Ensure GuestOS kernel integrity


• example:   detect changes to  sys_call_table

• 4. Virus signature detector


• Run virus signature detector on GuestOS memory

[Boneh’15]
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Example: Virtual Machines 
Exploiting VM Isolation
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The MATRIX

[Boneh’15]
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SubVirt: Implementing malware with virtual 
machines, King, Samuel T., and Peter M. Chen, IEEE 
Symposium on Security and Privacy (S&P’06), 2006 
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Motivation

• Attackers and defenders strive for control

• Attackers monitor and perturb execution


• Avoid defenders

• Defenders detect and remove attacker

• Control by lower layers

Hardware

Operating system

App1 App2
Attackers Defenders

[King’06]
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Virtual-machine based rootkits (VMBRs)

• VMM runs beneath the OS

• Effectively new processor privilege level


• Fundamentally more control

• No visible states or events

• Easy to develop malicious services

[King’06]
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Virtual-machine based rootkits (VMBRs)

Hardware

Target OS

App1 App2

Before 
infection

Hardware

Target OS

App1 App2

VMM

Attack 
system

After 
infection

[King’06]
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Installation

• Assume attacker has kernel privilege

• Traditional remote exploit

• Bribe employee

• Malicious bootable CD-Rom


• Install during shutdown

• Few processes running

• Efforts to prevent notification of activity

[King’06]
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Installing a VMBR

• Modify the boot sequence

BIOS

Master 
boot 

record
Boot 

sector OS

[King’06]
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Installing a VMBR

• Modify the boot sequence

BIOS

BIOS

Master 
boot 

record
Boot 

sector OS

VMBR 
loads

[King’06]
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Maintaining control

• Hardware reset VMBR loses control

• Illusion of reset w/o losing control

• Reboot easy, shutdown harder

BIOS

BIOS

Master 
boot 

record
Boot 

sector OS

VMBR 
loads

[King’06]
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Maintaining control

• ACPI BIOS used for low power mode

• Spin down disks

• Display low power mode

• Change power LED


• Illusion of power off, emulate shutdown

• Control the power button


• System functionally unchanged

[King’06]
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Malicious services

• Advantages of high and low layer malware

• Provides low layer implementation

• Still easy to implement services


• Use a separate attack OS to implement

Hardware

Target OS

App1 App2

VMM

Attack OS

App

[King’06]
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Malicious services

• Zero interaction malicious services

• E.g., phishing web server


• Passive monitoring

• E.g., keystroke logger, file system scanner


• Active execution modifications

• E.g., defeat VM detection technique


• All easy to implement

[King’06]
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Defending against VMBRs

• Detecting VMBRs

• Perturbations


• Where to run detection software

[King’06]
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VMBR perturbations

• Inherent

• Timing	 of key events

• Space


• Hardware artifacts

• Device differences

• See paper for more details


• Software artifacts

• VM icon

• Device names

Easy to 
hide

Hard to 
hide

[King’06]
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Security software above

• Attack state not visible

• Can only detect side effects, e.g., timing


• VMBR can manipulate execution

• Clock controlled by VMBR

• Prevent security service from running

• Turn off network

• Disable notification of intrusion

[King’06]
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Security software below

• More control, direct access to resources

• Could detect states or events


• Secure VMM and/or secure hardware

• Boot from safe medium


• Unplug machine from wall

[King’06]
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Proof-of-concept VMBRs

• VMware / Linux host 

• Virtual PC / Windows XP host

• Host OS was attack OS

• Malware payload ~100MB compressed

[King’06]
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Proof-of-concept VMBRs

• Implemented four malicious services

• Phishing web server

• Keystroke logger + password parser

• File system scanner

• Countermeasure to detection tool


• Installation scripts and modules

• ACPI shutdown emulation


• Both sleep states and power button control

[King’06]
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Subverting VistaTM Kernel For Fun And Profit, 
Joanna Rutkowska, Advanced Malware Labs, Black Hat 
2006 
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Content

• Part I

• Loading unsigned code into Vista Beta 2 kernel (x64) without reboot


• Part II

• Blue Pill – creating undetectable malware on x64 using Pacifica technology

[Rutkowska’06,  
COSEINC Research]
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Part I – getting into the kernel

[Rutkowska’06,  
COSEINC Research]
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Signed Drivers in Vista x64

• All kernel mode drivers must be signed

• Vista allows to load only signed code into kernel

• Even administrator can not load unsigned module!

• This is to prevent kernel malware and anti-DRM

• Mechanism can be deactivated by:


• attaching Kernel Debugger (reboot required)

• Using F8 during boot (reboot required)

• using BCDEdit (reboot required, will not be available in later Vista versions)


• This protection has been for the first time implemented in Vista Beta 2 build 
5384.

[Rutkowska’06,  
COSEINC Research]
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How to bypass?

• Vista allows usermode app to get raw access to disk  (provided they run with 
admin privileges of course)

• CreateFile(\\.\C:) 

• CreateFile(\\.\PHYSICALDRIVE0)) 

• This allows us to read and write disk sectors which are occupied by the 
pagefile 


• So, we can modify the contents of the pagefile, which may contain the code 
and data of the paged kernel drivers!


• No undocumented functionality required – all documented in SDK :)

[Rutkowska’06,  
COSEINC Research]
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Challenges

• How to make sure that the specific kernel code is paged out to the pagefile?

• How to find that code inside pagefile?

• How to cause the code (now modified) to be loaded into kernel again?

• How to make sure this new code is executed by kernel?

[Rutkowska’06,  
COSEINC Research]
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How to force drivers to be paged?

• Allocate *lots of* memory for a process (e.g. using VirtualAlloc())

• The system will try to do its best to back up this memory with the actual 

physical pages

• At some point there will be no more physical pages available, so the system 

will try to page out some unused code…

• Guess what is going to paged now… some unused drivers :)

[Rutkowska’06,  
COSEINC Research]
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Eating memory…

[Rutkowska’06,  
COSEINC Research]
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What could be paged?

• Pageable sections of kernel drivers (recognized by the section name starting 
with ‘PAGE’ string)


• Driver’s data allocated from a Paged pool (e.g. ExAllocatePool())

[Rutkowska’06,  
COSEINC Research]
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Finding a target

• We need to find some rarely used driver, which has some of its code sections 
marked as pageable…


• How about NULL.SYS?

• After quick look at the code we see that its dispatch routine is located inside 

a PAGE section – one could not ask for more :)

• It should be noted that there are more drivers which could be used instead of 

NULL – finding them all is left as an exercise to  the audience ;)

[Rutkowska’06,  
COSEINC Research]
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Locating paged code inside pagefile

• This is easy – we just do a pattern search

• if we take a sufficiently long binary string (a few tens of bytes) its very 

unlikely that it will appear more then once in a page file

• Once we find a pattern we just replace the first bytes of the dispatch function 

with our shellcode

[Rutkowska’06,  
COSEINC Research]
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How to make sure our shellcode gets 
executed?

• We need to ask kernel to be kind enough and execute our driver’s routine 
(whose code we have just replaced in pagefile)


• In case of replacing driver’s dispatch routine it’s just enough to call 
CreateFile() specifying the target driver’s object to be opened


• This will cause the driver’s paged section to be loaded into memory and then 
executed!

[Rutkowska’06,  
COSEINC Research]
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Putting it all together

• Allocate lots of memory to cause unused drivers code to be paged

• Replace the paged out code (inside pagefile) with some shellcode

• Ask kernel to call the driver code which was just replaced

[Rutkowska’06,  
COSEINC Research]
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Part II – Blue Pill

[Rutkowska’06,  
COSEINC Research]
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Invisibility by Obscurity

• Current malware is based on a concept...

• e.g. FU unlinks EPROCESS from the list of active processes in the system

• e.g. deepdoor modifies some function pointers inside NDIS data structures

• … etc…

• Once you know the concept you can write a detector! 

• This is boring!

[Rutkowska’06,  
COSEINC Research]
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Imagine a malware…

• …which does not rely on a concept to remain undetected…

• …which can not be detected, even though its algorithm (concept) is publicly 

known!

• …which can not be detected, even though it’s code is publicly known!

[Rutkowska’06,  
COSEINC Research]
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Blue Pill Idea

• Exploit AMD64 SVM extensions to move the operating system into the virtual 
machine (do it ‘on-the-fly’)


• Provide thin hypervisor to control the OS

• Hypervisor is responsible for controlling “interesting” events inside gust OS

[Rutkowska’06,  
COSEINC Research]
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AMD64 & SVM

• Secure Virtual Machine (AMD SVM) Extensions (AKA Pacifica)

• May 23rd, 2006 – AMD releases Athlon 64 processors based on socket AM2 

(revision F)

• AM2 based processors are the first to support SVM extensions

• AM2 based hardware is available in shops for end users as of June 2006

[Rutkowska’06,  
COSEINC Research]
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SVM

• SVM is a set of instructions which can be used to implement Secure Virtual 
Machines on AMD64


• MSR EFER register: bit 12 (SVME) controls weather SVM mode is enabled or 
not


• EFER.SVME must be set to 1 before execution of any SVM instruction.

• Reference:


• AMD64 Architecture Programmer’s Manual Vol. 2: System Programming 
Rev 3.11


• http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/24593.pdf

[Rutkowska’06,  
COSEINC Research]

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
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The heart of SVM: VMRUN instruction

[Rutkowska’06,  
COSEINC Research]
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• `

Blue Pill Idea (simplified)

[Rutkowska’06,  
COSEINC Research]
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BP installs itself ON THE FLY!

• The main idea behind BP is that it installs itself on the fly

• Thus, no modifications to BIOS, boot sector or system files are necessary

• BP, by default, does not survive system reboot

• But this is not a problem:


• servers are rarely restarted

• In Vista the ‘Power Off’ button does not shut down the system – it only 

puts it into stand by mode!

• And also we can intercept (this has not been yet implemented):


• restart events (hypervisor survives the reboot)

• shutdown events (emulated shutdown)

[Rutkowska’06,  
COSEINC Research]
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SubVirt Rootkit

• SubVirt has been created a few months ago by researches at MS Research 
and University of Michigan


• SubVirt uses commercial VMM (Virtual PC or VMWare) to run the original OS 
inside a VM

[Rutkowska’06,  
COSEINC Research]
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SubVirt vs. Blue Pill

• SV is permanent! SV has to take 
control before the original OS 
during the boot phase. SV can be 
detected off line.


• SV runs on x86, which does not 
allow for full virtualization 


• SV is based on a commercial VMM, 
which creates and emulates virtual 
hardware. This allows for easy 
detection

• Blue Pill can be installed on the fly – 
no reboot nor any modifications in 
BIOS or boot sectors are necessary. 
BP can not be detected off line.


• BP relies on AMD SVM technology 
which promises full virtualization


• BP uses ultra thin hypervisor and all 
the hardware is natively accessible 
without performance penalty

[Rutkowska’06,  
COSEINC Research]
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Matrix inside another Matrix

• What happens when you install Blue Pill inside a system which is already 
bluepilled?


• If nested virtualization is not handled correctly this will allow for trivial 
detection – all the detector would have to do was to try creating a test VM 
using a VMRUN instruction 


• Of course we can cheat the guest OS that the processor does not support 
SVM (because we control MSR registers from hypervisor), but this wouldn’t 
cheat more inquisitive users ;)


• So, we need to handle nested VMs…

[Rutkowska’06,  
COSEINC Research]
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Nested VMs

[Rutkowska’06,  
COSEINC Research]
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Detection via timing analysis

• We can assume that some of the instructions are always intercepted by the 
hypervisor

• VMMCALL 

• RDMSR – to cheat about the value of EFER.SVME bit

• So, not surprisingly, the time needed to execute RDMSR to read the value of 

EFER would be different (longer) when running from guest

• Detector can execute such instructions a few millions of times and measure 

the time.

[Rutkowska’06,  
COSEINC Research]
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Cheating timing analysis

• The first problem is that detector (usually) does not have a base line to 
compare the results with…


• But even if it had (e.g. when testing access to physical pages and while one 
of them being backed up by disk) still we can cheat it!


• SVM offers a way to fool the guest’s time stamp counter (obtained using 
RDTSC).


• All we have to do is to adjust VMCB.TSC_OFFSET accordingly before 
executing VMRUN (which resumes the guest)

[Rutkowska’06,  
COSEINC Research]
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Time dilatation for guest

[Rutkowska’06,  
COSEINC Research]
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Getting the real time…

[Rutkowska’06,  
COSEINC Research]
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Time profiling in practice

• Now imagine that you need to check 1000 computers in your company using 
the “external” stopwatch…


• Now imagine that you need to do this a couple of time every day…

• Time dilatation should make it impossible to write a self sufficient detector 

based on timing analysis!


• The challenge: we need a good ‘calibrating’ mechanism so that we know how 
much time to subtract.

[Rutkowska’06,  
COSEINC Research]
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Pacifica vs. Vanderpool

• Pacifica (SVM) and Vanderpool (VT-x) are not binary compatible

• However they seem to be very similar

• XEN even implements a common abstraction layer for both technologies

• It seems possible to port BP to Intel VT-x

[Rutkowska’06,  
COSEINC Research]
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Android Security Architecture

[Rutkowska’06,  
COSEINC Research]
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Introduction

• Next generation open operation system will be developed on small mobile 
devices. 


• Android (Google)

• a widely anticipated open source operating system for mobile devices 

• it provide base operation system, application middleware layer,  Java 

software development kit and a collection of system applications.

[Wu’09, Enck’09]
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 Introduction (cont.)

• Feature of Android

• Doesn’t support applications developed for other platforms

• Restricts application interaction to its special APIs by running each 

application as its own user identity

• Uses a simple permission label assignment model to restrict access to 

resources and other applications

[Wu’09, Enck’09]
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Android Applications --- Example

• Example of location-sensitive social networking application for mobile phones 
in which users can discover their friends locations. 


• Activities provide a user interface, Services execute background processing, 
Content providers are data storage facilities, and Broadcast receivers act 
as mailboxes for messages from other applications.

[Wu’09, Enck’09]
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Android Applications --- Example 
Application(cont.)

• Take FriendTracker application for example,

• FriendTracker (Service) polls an external service to discover friends locations

• FriendProvider (Content provider) maintains the most recent geographic 

coordinates for friends

• FriendTrackerControl (Activity) defines a user interface for starting and stopping 

the tracking functionality

• BootReceiver (Broadcast receiver) gets a notification from the system once it 

boots (app uses this to automatically start the FriendTracker service).
[Wu’09, Enck’09]
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Android Applications--- Component 
Interaction

• Intent - is the primary mechanism for component interaction, which is simply 
a message object containing a destination component address and data


• Action - the process of inter-components communication

• The Android API defines methods that accept intents and uses that 

information to 

• start activities (startActivity(Intent))

• start services (startService (Intent))

• broadcast messages (sendBroadcast(Intent)). 

• The invocation of these methods tells the Android framework to begin 

executing code in the target application. 

• In other words: an intent object defines the “intent” to perform an “action.” 

[Wu’09, Enck’09]
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Android Applications--- Component 
Interaction (cont.)

• Example: Interaction between components in applications and with 
components in system applications. Interactions occur primarily at the 
component level.

[Wu’09, Enck’09]
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Android Applications--- Component 
Interaction (cont.)

• Each component type supports interaction specific to its type. For example, 
Service components support start , stop, and bind actions, so the 
FriendTrackerControl (Activity) can start and stop the FriendTracker (Service) 
that runs in the background.

[Wu’09, Enck’09]
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Security Enforcement

• Android protect application at system level and at the Inter-component 
communication (ICC) level. This article focus on the ICC level enforcement.


• Each application runs as a unique user identity, which lets Android limit the 
potential damage of programming flaws.

[Wu’09, Enck’09]
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Security Enforcement (cont.)

Example: Protection. Security enforcement in Android occurs in two places: each 
application executes as its own user identity, allowing the underlying Linux system 
to provide system-level isolation; and the Android middleware contains a reference 
monitor that mediates the establishment of inter-component communication (ICC). 

[Wu’09, Enck’09]
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Security Enforcement (cont.)

• Core idea of Android security enforcement - labels assignment to applications 
and components


• A reference monitor provides mandatory access control (MAC) enforcement 
of how applications access components. 


• Access to each component is restricted by assigning it an access permission 
label; applications are assigned collections of permission labels.


• When a component initiates ICC, the reference monitor looks at the 
permission labels assigned to its containing application and— if the target 
component’s access permission label is in that collection— allows ICC 
establishment to proceed.

[Wu’09, Enck’09]
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Security Enforcement (cont.)

• Example: Access permission logic. The Android middleware implements a 
reference monitor providing mandatory access control (MAC) enforcement 
about how applications access components. The basic enforcement model is 
the same for all component types. Component A’s ability to access 
components B and C is determined by comparing the access permission 
labels on B and C to the collection of labels assigned to application 1.

[Wu’09, Enck’09]
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• Assigning permission labels to an application specifies its protection domain.  
Assigning permissions to the components in an application specifies an 
access policy to protect its resources. 


• Android’s policy enforcement is mandatory, all permission labels are set at 
install time and can’t change until the application is reinstalled.


• Android’s permission label model only restricts access to components and 
doesn’t currently provide information flow guarantees.

[Wu’09, Enck’09]

Security Enforcement (cont.)
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Security Refinements --- Public vs. Private 
Components

• Applications often contain components that another application should never 
access.  

• For example,  component related to password storing. The solution is to 

define private component.

• This significantly reduces the attack surface for many applications.

[Wu’09, Enck’09]
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Security Refinements --- Implicitly Open 
Components

• At development time, if the decision of access permission is unclear, The 
developer can permit the functionality by not assigning an access permission 
to it.


• If a public component doesn’t explicitly have an access permission listed in 
its manifest definition, Android permits any application to access it.

[Wu’09, Enck’09]
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Security Refinements --- Broadcast Intent 
Permissions

• Sending the unprotected intent is a privacy risk.

• Other apps maybe listening in.


• Android API for broadcasting intents optionally allows the developer to 
specify a permission label to restrict access to the intent object.

[Wu’09, Enck’09]
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Security Refinements --- Content Provider 
Permissions

• If the developer want his application to be the only one to update the 
contents but for other applications to be able to read them. 


• Android allows such a security policy assigning read or write permissions.

[Wu’09, Enck’09]



Spring 1398 Ce 874 - Secure Architecture II

Security Refinements --- Protected APIs

• Not all system resources(for example, network) are accessed through 
components—instead, Android provides direct API access.


• Android protects these sensitive APIs with additional permission label checks:

• an application must declare a corresponding permission label in its 

manifest file to use them.

[Wu’09, Enck’09]
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Security Refinements --- Permission 
Protection Levels

• The permission protection levels provide a means of controlling how 
developers assign permission labels:

• Normal 

• for legacy support, equivalent to old application permission type

• Dangerous permission granted after user confirmation 

• Signature permissions ensure that only the framework developer can use 

the specific functionality

• only Google applications can directly interface the telephony API, for 

example

• Signature or System  

• for legacy support, equivalent to old system permission type

[Wu’09, Enck’09]
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Security Refinements --- Pending Intents

• Pending intent:

• A developer defines an intent object to perform an action.

• How ever, instead of performing the action, the developer passes the 

intent to a special method that creates a PendingIntent object 
corresponding to the desired action. 


• The PendingIntent object is simply a reference pointer that can pass to 
another application.


• when intent is invoked, it causes a RPC with the original application, in 
which the ICC executes with all its permissions 


• Pending intents allow applications included with the framework to integrate 
better with third-party applications.

[Wu’09, Enck’09]
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Lessons in Defining Policy

• Android security policy begins with a relatively easy-to-understand MAC 
enforcement model, but the number and subtlety of refinements make it 
difficult to discover an application’s policy.


• For example, how do you control access to permission labels? 

• Android’s permission protection levels provide some control, but more 

expressive constraints aren’t possible. 

• e.g. should an application be able to access both the microphone and the 

Internet? 

[Wu’09, Enck’09]
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