
CE 874 - Secure Software Systems

Secure Architecture II

Mehdi Kharrazi

Department of Computer Engineering

Sharif University of Technology

Acknowledgments: Some of the slides are fully or partially obtained from other sources. A
reference is noted on the bottom of each slide, when the content is fully obtained from
another source. Otherwise a full list of references is provided on the last slide.

Spring 1398 Ce 874 - Secure Architecture II

Secure Architecture

• How to come up with a secure
architecture?

• What design principals is should be
followed?

• What are the available mechanisms?

• How do you trust the code getting

executed?

xkcd.com

Spring 1398 Ce 874 - Secure Architecture II

Example: Virtual Machines

Spring 1398 Ce 874 - Secure Architecture II

The idea of Virtualization: from 1960’s

• IBM VM/370 – A VMM for IBM mainframe

• Multiple OS environments on expensive hardware

• Desirable when few machine around

• Popular research idea in 1960s and 1970s

• Entire conferences on virtual machine monitors

• Hardware/VMM/OS designed together

• Allowed multiple users to share a batch oriented system

• Interest died out in the 1980s and 1990s

• Hardware got more cheaper

• Operating systems got more powerful (e.g. multi-user)

[Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

A Return to Virtual Machines

• Disco: Stanford research project (SOSP ’97)

• Run commodity OSes on scalable multiprocessors

• Focus on high-end: NUMA, MIPS, IRIX

• Commercial virtual machines for x86 architecture

• VMware Workstation (now EMC) (1999-)

• Connectix VirtualPC (now Microsoft)

• Research virtual machines for x86 architecture

• Xen (SOSP ’03)

• plex86

• OS-level virtualization

• FreeBSD Jails, User-mode-linux, UMLinux

[Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

Starting Point: A Physical Machine

• Physical Hardware

• Processors, memory, chipset,

I/O devices, etc.

• Resources often grossly

underutilized

• Software

• Tightly coupled to physical
hardware

• Single active OS instance

• OS controls hardware

[Eyal DeLara, Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

What is a Virtual Machine?

• Software Abstraction

• Behaves like hardware

• Encapsulates all OS and

application state

• Virtualization Layer

• Extra level of indirection

• Decouples hardware, OS

• Enforces isolation

• Multiplexes physical hardware

across VMs

[Eyal DeLara, Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

Virtualization Properties, Features

• Isolation

• Fault isolation and Performance isolation (+ software isolation, …)

• Encapsulation

• Cleanly capture all VM state and Enables VM snapshots, clones

• Portability

• Independent of physical hardware

• Enables migration of live, running VMs (freeze, suspend,…)

• Clone VMs easily, make copies

• Interposition

• Transformations on instructions, memory, I/O

• Enables transparent resource overcommitment, 

encryption, compression, replication …

[Eyal DeLara, Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

Types of Virtualization

• Process Virtualization (Figure [a])

• Language-level Java, .NET, Smalltalk

• OS-level processes, Solaris Zones, BSD Jails, Docker Containers

• Cross-ISA emulation Apple 68K-PPC-x86

• System Virtualization (Figure [b])

• VMware Workstation, Microsoft VPC, Parallels

• VMware ESX, Xen, Microsoft Hyper-V

[Eyal DeLara, Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

Types of VMs – Emulation

• Another (older) way for running one OS on a different OS

• Virtualization requires underlying CPU to be same as guest was compiled

for while Emulation allows guest to run on different CPU

• Need to translate all guest instructions from guest CPU to native CPU

• Emulation, not virtualization

• Useful when host and guest have differnet processor architectures

• Company replacing outdated servers with new servers containing different
CPU architecture, but still want to run old applications

• Performance challenge – order of magnitude slower than native code

• New machines faster than older machines so can reduce slowdown

• Where do you think it is used still?

• Very popular – especially in gaming where old consoles emulated on new

[Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

VMs – Application Containers

• Some goals of virtualization are segregation of apps, performance and resource
management, easy start, stop, move, and management of them

• Can do those things without full-fledged virtualization

• If applications compiled for the host operating system, don’t need full

virtualization to meet these goals

• Oracle containers/zones for example create virtual layer between OS and apps

• Only one kernel running – host OS

• OS and devices are virtualized, providing resources within zone with

impression that they are only processes on system

• Each zone has its own applications; networking stack, addresses, and ports;

user accounts, etc

• CPU and memory resources divided between zones

• Zone can have its own scheduler to use those resources

[Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

Types of System Virtualization

• Native/Bare metal (Type 1)

• Higher performance

• ESX, Xen, HyperV

• Hosted (Type 2)

• Easier to install

• Leverage host’s device drivers

• VMware Workstation, Parallels

[Eyal DeLara, Seshan’16]

Spring 1398 Ce 874 - Secure Architecture II

Example: Virtual Machines
VMM Introspection

Spring 1398 Ce 874 - Secure Architecture II

Intrusion Detection / Anti-virus

• Runs as part of OS kernel and user space process

• Kernel root kit can shutdown protection system

• Common practice for modern malware

• Standard solution: run IDS system in the network

• Problem: insufficient visibility into user’s machine

• Better: run IDS as part of VMM (protected from malware)

• VMM can monitor virtual hardware for anomalies

• VMI: Virtual Machine Introspection

• Allows VMM to check Guest OS internals

[Boneh’15]

Spring 1398 Ce 874 - Secure Architecture II

Infected VM

malware

VMM

Guest OS

Hardware

IDS

[Boneh’15]

Spring 1398 Ce 874 - Secure Architecture II

Sample checks

• Stealth root-kit malware:

• Creates processes that are invisible to “ps”

• Opens sockets that are invisible to “netstat”

• 1. Lie detector check

• Goal: detect stealth malware that hides processes  

and network activity

• Method:

• VMM lists processes running in GuestOS

• VMM requests GuestOS to list processes (e.g. ps)

• If mismatch: kill VM

[Boneh’15]

Spring 1398 Ce 874 - Secure Architecture II

Sample checks

• 2. Application code integrity detector

• VMM computes hash of user app code running in VM

• Compare to whitelist of hashes

• Kills VM if unknown program appears

• 3. Ensure GuestOS kernel integrity

• example: detect changes to sys_call_table

• 4. Virus signature detector

• Run virus signature detector on GuestOS memory

[Boneh’15]

Spring 1398 Ce 874 - Secure Architecture II

Example: Virtual Machines
Exploiting VM Isolation

Spring 1398 Ce 874 - Secure Architecture II

The MATRIX

[Boneh’15]

Spring 1398 Ce 874 - Secure Architecture II [Boneh’15]

Spring 1398 Ce 874 - Secure Architecture II

SubVirt: Implementing malware with virtual
machines, King, Samuel T., and Peter M. Chen, IEEE
Symposium on Security and Privacy (S&P’06), 2006

Spring 1398 Ce 874 - Secure Architecture II

Motivation

• Attackers and defenders strive for control

• Attackers monitor and perturb execution

• Avoid defenders

• Defenders detect and remove attacker

• Control by lower layers

Hardware

Operating system

App1 App2
Attackers Defenders

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Virtual-machine based rootkits (VMBRs)

• VMM runs beneath the OS

• Effectively new processor privilege level

• Fundamentally more control

• No visible states or events

• Easy to develop malicious services

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Virtual-machine based rootkits (VMBRs)

Hardware

Target OS

App1 App2

Before
infection

Hardware

Target OS

App1 App2

VMM

Attack
system

After
infection

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Installation

• Assume attacker has kernel privilege

• Traditional remote exploit

• Bribe employee

• Malicious bootable CD-Rom

• Install during shutdown

• Few processes running

• Efforts to prevent notification of activity

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Installing a VMBR

• Modify the boot sequence

BIOS

Master
boot

record
Boot

sector OS

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Installing a VMBR

• Modify the boot sequence

BIOS

BIOS

Master
boot

record
Boot

sector OS

VMBR
loads

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Maintaining control

• Hardware reset VMBR loses control

• Illusion of reset w/o losing control

• Reboot easy, shutdown harder

BIOS

BIOS

Master
boot

record
Boot

sector OS

VMBR
loads

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Maintaining control

• ACPI BIOS used for low power mode

• Spin down disks

• Display low power mode

• Change power LED

• Illusion of power off, emulate shutdown

• Control the power button

• System functionally unchanged

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Malicious services

• Advantages of high and low layer malware

• Provides low layer implementation

• Still easy to implement services

• Use a separate attack OS to implement

Hardware

Target OS

App1 App2

VMM

Attack OS

App

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Malicious services

• Zero interaction malicious services

• E.g., phishing web server

• Passive monitoring

• E.g., keystroke logger, file system scanner

• Active execution modifications

• E.g., defeat VM detection technique

• All easy to implement

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Defending against VMBRs

• Detecting VMBRs

• Perturbations

• Where to run detection software

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

VMBR perturbations

• Inherent

• Timing	 of key events

• Space

• Hardware artifacts

• Device differences

• See paper for more details

• Software artifacts

• VM icon

• Device names

Easy to
hide

Hard to
hide

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Security software above

• Attack state not visible

• Can only detect side effects, e.g., timing

• VMBR can manipulate execution

• Clock controlled by VMBR

• Prevent security service from running

• Turn off network

• Disable notification of intrusion

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Security software below

• More control, direct access to resources

• Could detect states or events

• Secure VMM and/or secure hardware

• Boot from safe medium

• Unplug machine from wall

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Proof-of-concept VMBRs

• VMware / Linux host

• Virtual PC / Windows XP host

• Host OS was attack OS

• Malware payload ~100MB compressed

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Proof-of-concept VMBRs

• Implemented four malicious services

• Phishing web server

• Keystroke logger + password parser

• File system scanner

• Countermeasure to detection tool

• Installation scripts and modules

• ACPI shutdown emulation

• Both sleep states and power button control

[King’06]

Spring 1398 Ce 874 - Secure Architecture II

Subverting VistaTM Kernel For Fun And Profit,
Joanna Rutkowska, Advanced Malware Labs, Black Hat
2006

Spring 1398 Ce 874 - Secure Architecture II

Content

• Part I

• Loading unsigned code into Vista Beta 2 kernel (x64) without reboot

• Part II

• Blue Pill – creating undetectable malware on x64 using Pacifica technology

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Part I – getting into the kernel

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Signed Drivers in Vista x64

• All kernel mode drivers must be signed

• Vista allows to load only signed code into kernel

• Even administrator can not load unsigned module!

• This is to prevent kernel malware and anti-DRM

• Mechanism can be deactivated by:

• attaching Kernel Debugger (reboot required)

• Using F8 during boot (reboot required)

• using BCDEdit (reboot required, will not be available in later Vista versions)

• This protection has been for the first time implemented in Vista Beta 2 build
5384.

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

How to bypass?

• Vista allows usermode app to get raw access to disk (provided they run with
admin privileges of course)

• CreateFile(\\.\C:)

• CreateFile(\\.\PHYSICALDRIVE0))

• This allows us to read and write disk sectors which are occupied by the
pagefile

• So, we can modify the contents of the pagefile, which may contain the code
and data of the paged kernel drivers!

• No undocumented functionality required – all documented in SDK :)

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Challenges

• How to make sure that the specific kernel code is paged out to the pagefile?

• How to find that code inside pagefile?

• How to cause the code (now modified) to be loaded into kernel again?

• How to make sure this new code is executed by kernel?

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

How to force drivers to be paged?

• Allocate *lots of* memory for a process (e.g. using VirtualAlloc())

• The system will try to do its best to back up this memory with the actual

physical pages

• At some point there will be no more physical pages available, so the system

will try to page out some unused code…

• Guess what is going to paged now… some unused drivers :)

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Eating memory…

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

What could be paged?

• Pageable sections of kernel drivers (recognized by the section name starting
with ‘PAGE’ string)

• Driver’s data allocated from a Paged pool (e.g. ExAllocatePool())

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Finding a target

• We need to find some rarely used driver, which has some of its code sections
marked as pageable…

• How about NULL.SYS?

• After quick look at the code we see that its dispatch routine is located inside

a PAGE section – one could not ask for more :)

• It should be noted that there are more drivers which could be used instead of

NULL – finding them all is left as an exercise to the audience ;)

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Locating paged code inside pagefile

• This is easy – we just do a pattern search

• if we take a sufficiently long binary string (a few tens of bytes) its very

unlikely that it will appear more then once in a page file

• Once we find a pattern we just replace the first bytes of the dispatch function

with our shellcode

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

How to make sure our shellcode gets
executed?

• We need to ask kernel to be kind enough and execute our driver’s routine
(whose code we have just replaced in pagefile)

• In case of replacing driver’s dispatch routine it’s just enough to call
CreateFile() specifying the target driver’s object to be opened

• This will cause the driver’s paged section to be loaded into memory and then
executed!

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Putting it all together

• Allocate lots of memory to cause unused drivers code to be paged

• Replace the paged out code (inside pagefile) with some shellcode

• Ask kernel to call the driver code which was just replaced

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Part II – Blue Pill

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Invisibility by Obscurity

• Current malware is based on a concept...

• e.g. FU unlinks EPROCESS from the list of active processes in the system

• e.g. deepdoor modifies some function pointers inside NDIS data structures

• … etc…

• Once you know the concept you can write a detector!

• This is boring!

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Imagine a malware…

• …which does not rely on a concept to remain undetected…

• …which can not be detected, even though its algorithm (concept) is publicly

known!

• …which can not be detected, even though it’s code is publicly known!

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Blue Pill Idea

• Exploit AMD64 SVM extensions to move the operating system into the virtual
machine (do it ‘on-the-fly’)

• Provide thin hypervisor to control the OS

• Hypervisor is responsible for controlling “interesting” events inside gust OS

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

AMD64 & SVM

• Secure Virtual Machine (AMD SVM) Extensions (AKA Pacifica)

• May 23rd, 2006 – AMD releases Athlon 64 processors based on socket AM2

(revision F)

• AM2 based processors are the first to support SVM extensions

• AM2 based hardware is available in shops for end users as of June 2006

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

SVM

• SVM is a set of instructions which can be used to implement Secure Virtual
Machines on AMD64

• MSR EFER register: bit 12 (SVME) controls weather SVM mode is enabled or
not

• EFER.SVME must be set to 1 before execution of any SVM instruction.

• Reference:

• AMD64 Architecture Programmer’s Manual Vol. 2: System Programming
Rev 3.11

• http://www.amd.com/us-en/assets/content_type/
white_papers_and_tech_docs/24593.pdf

[Rutkowska’06,
COSEINC Research]

http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf
http://www.amd.com/us-en/assets/content_type/white_papers_and_tech_docs/24593.pdf

Spring 1398 Ce 874 - Secure Architecture II

The heart of SVM: VMRUN instruction

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

• `

Blue Pill Idea (simplified)

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

BP installs itself ON THE FLY!

• The main idea behind BP is that it installs itself on the fly

• Thus, no modifications to BIOS, boot sector or system files are necessary

• BP, by default, does not survive system reboot

• But this is not a problem:

• servers are rarely restarted

• In Vista the ‘Power Off’ button does not shut down the system – it only

puts it into stand by mode!

• And also we can intercept (this has not been yet implemented):

• restart events (hypervisor survives the reboot)

• shutdown events (emulated shutdown)

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

SubVirt Rootkit

• SubVirt has been created a few months ago by researches at MS Research
and University of Michigan

• SubVirt uses commercial VMM (Virtual PC or VMWare) to run the original OS
inside a VM

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

SubVirt vs. Blue Pill

• SV is permanent! SV has to take
control before the original OS
during the boot phase. SV can be
detected off line.

• SV runs on x86, which does not
allow for full virtualization

• SV is based on a commercial VMM,
which creates and emulates virtual
hardware. This allows for easy
detection

• Blue Pill can be installed on the fly –
no reboot nor any modifications in
BIOS or boot sectors are necessary.
BP can not be detected off line.

• BP relies on AMD SVM technology
which promises full virtualization

• BP uses ultra thin hypervisor and all
the hardware is natively accessible
without performance penalty

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Matrix inside another Matrix

• What happens when you install Blue Pill inside a system which is already
bluepilled?

• If nested virtualization is not handled correctly this will allow for trivial
detection – all the detector would have to do was to try creating a test VM
using a VMRUN instruction

• Of course we can cheat the guest OS that the processor does not support
SVM (because we control MSR registers from hypervisor), but this wouldn’t
cheat more inquisitive users ;)

• So, we need to handle nested VMs…

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Nested VMs

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Detection via timing analysis

• We can assume that some of the instructions are always intercepted by the
hypervisor

• VMMCALL

• RDMSR – to cheat about the value of EFER.SVME bit

• So, not surprisingly, the time needed to execute RDMSR to read the value of

EFER would be different (longer) when running from guest

• Detector can execute such instructions a few millions of times and measure

the time.

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Cheating timing analysis

• The first problem is that detector (usually) does not have a base line to
compare the results with…

• But even if it had (e.g. when testing access to physical pages and while one
of them being backed up by disk) still we can cheat it!

• SVM offers a way to fool the guest’s time stamp counter (obtained using
RDTSC).

• All we have to do is to adjust VMCB.TSC_OFFSET accordingly before
executing VMRUN (which resumes the guest)

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Time dilatation for guest

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Getting the real time…

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Time profiling in practice

• Now imagine that you need to check 1000 computers in your company using
the “external” stopwatch…

• Now imagine that you need to do this a couple of time every day…

• Time dilatation should make it impossible to write a self sufficient detector

based on timing analysis!

• The challenge: we need a good ‘calibrating’ mechanism so that we know how
much time to subtract.

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Pacifica vs. Vanderpool

• Pacifica (SVM) and Vanderpool (VT-x) are not binary compatible

• However they seem to be very similar

• XEN even implements a common abstraction layer for both technologies

• It seems possible to port BP to Intel VT-x

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Android Security Architecture

[Rutkowska’06,
COSEINC Research]

Spring 1398 Ce 874 - Secure Architecture II

Introduction

• Next generation open operation system will be developed on small mobile
devices.

• Android (Google)

• a widely anticipated open source operating system for mobile devices

• it provide base operation system, application middleware layer, Java

software development kit and a collection of system applications.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

 Introduction (cont.)

• Feature of Android

• Doesn’t support applications developed for other platforms

• Restricts application interaction to its special APIs by running each

application as its own user identity

• Uses a simple permission label assignment model to restrict access to

resources and other applications

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Android Applications --- Example

• Example of location-sensitive social networking application for mobile phones
in which users can discover their friends locations.

• Activities provide a user interface, Services execute background processing,
Content providers are data storage facilities, and Broadcast receivers act
as mailboxes for messages from other applications.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Android Applications --- Example
Application(cont.)

• Take FriendTracker application for example,

• FriendTracker (Service) polls an external service to discover friends locations

• FriendProvider (Content provider) maintains the most recent geographic

coordinates for friends

• FriendTrackerControl (Activity) defines a user interface for starting and stopping

the tracking functionality

• BootReceiver (Broadcast receiver) gets a notification from the system once it

boots (app uses this to automatically start the FriendTracker service).
[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Android Applications--- Component
Interaction

• Intent - is the primary mechanism for component interaction, which is simply
a message object containing a destination component address and data

• Action - the process of inter-components communication

• The Android API defines methods that accept intents and uses that

information to

• start activities (startActivity(Intent))

• start services (startService (Intent))

• broadcast messages (sendBroadcast(Intent)).

• The invocation of these methods tells the Android framework to begin

executing code in the target application.

• In other words: an intent object defines the “intent” to perform an “action.”

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Android Applications--- Component
Interaction (cont.)

• Example: Interaction between components in applications and with
components in system applications. Interactions occur primarily at the
component level.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Android Applications--- Component
Interaction (cont.)

• Each component type supports interaction specific to its type. For example,
Service components support start , stop, and bind actions, so the
FriendTrackerControl (Activity) can start and stop the FriendTracker (Service)
that runs in the background.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Enforcement

• Android protect application at system level and at the Inter-component
communication (ICC) level. This article focus on the ICC level enforcement.

• Each application runs as a unique user identity, which lets Android limit the
potential damage of programming flaws.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Enforcement (cont.)

Example: Protection. Security enforcement in Android occurs in two places: each
application executes as its own user identity, allowing the underlying Linux system
to provide system-level isolation; and the Android middleware contains a reference
monitor that mediates the establishment of inter-component communication (ICC).

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Enforcement (cont.)

• Core idea of Android security enforcement - labels assignment to applications
and components

• A reference monitor provides mandatory access control (MAC) enforcement
of how applications access components.

• Access to each component is restricted by assigning it an access permission
label; applications are assigned collections of permission labels.

• When a component initiates ICC, the reference monitor looks at the
permission labels assigned to its containing application and— if the target
component’s access permission label is in that collection— allows ICC
establishment to proceed.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Enforcement (cont.)

• Example: Access permission logic. The Android middleware implements a
reference monitor providing mandatory access control (MAC) enforcement
about how applications access components. The basic enforcement model is
the same for all component types. Component A’s ability to access
components B and C is determined by comparing the access permission
labels on B and C to the collection of labels assigned to application 1.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

• Assigning permission labels to an application specifies its protection domain.
Assigning permissions to the components in an application specifies an
access policy to protect its resources.

• Android’s policy enforcement is mandatory, all permission labels are set at
install time and can’t change until the application is reinstalled.

• Android’s permission label model only restricts access to components and
doesn’t currently provide information flow guarantees.

[Wu’09, Enck’09]

Security Enforcement (cont.)

Spring 1398 Ce 874 - Secure Architecture II

Security Refinements --- Public vs. Private
Components

• Applications often contain components that another application should never
access.

• For example, component related to password storing. The solution is to

define private component.

• This significantly reduces the attack surface for many applications.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Refinements --- Implicitly Open
Components

• At development time, if the decision of access permission is unclear, The
developer can permit the functionality by not assigning an access permission
to it.

• If a public component doesn’t explicitly have an access permission listed in
its manifest definition, Android permits any application to access it.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Refinements --- Broadcast Intent
Permissions

• Sending the unprotected intent is a privacy risk.

• Other apps maybe listening in.

• Android API for broadcasting intents optionally allows the developer to
specify a permission label to restrict access to the intent object.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Refinements --- Content Provider
Permissions

• If the developer want his application to be the only one to update the
contents but for other applications to be able to read them.

• Android allows such a security policy assigning read or write permissions.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Refinements --- Protected APIs

• Not all system resources(for example, network) are accessed through
components—instead, Android provides direct API access.

• Android protects these sensitive APIs with additional permission label checks:

• an application must declare a corresponding permission label in its

manifest file to use them.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Refinements --- Permission 
Protection Levels

• The permission protection levels provide a means of controlling how
developers assign permission labels:

• Normal

• for legacy support, equivalent to old application permission type

• Dangerous permission granted after user confirmation

• Signature permissions ensure that only the framework developer can use

the specific functionality

• only Google applications can directly interface the telephony API, for

example

• Signature or System

• for legacy support, equivalent to old system permission type

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Security Refinements --- Pending Intents

• Pending intent:

• A developer defines an intent object to perform an action.

• How ever, instead of performing the action, the developer passes the

intent to a special method that creates a PendingIntent object
corresponding to the desired action.

• The PendingIntent object is simply a reference pointer that can pass to
another application.

• when intent is invoked, it causes a RPC with the original application, in
which the ICC executes with all its permissions

• Pending intents allow applications included with the framework to integrate
better with third-party applications.

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Lessons in Defining Policy

• Android security policy begins with a relatively easy-to-understand MAC
enforcement model, but the number and subtlety of refinements make it
difficult to discover an application’s policy.

• For example, how do you control access to permission labels?

• Android’s permission protection levels provide some control, but more

expressive constraints aren’t possible.

• e.g. should an application be able to access both the microphone and the

Internet?

[Wu’09, Enck’09]

Spring 1398 Ce 874 - Secure Architecture II

Acknowledgments/References

• [Seshan’16] 15-440: Distributed Systems Syllabus, Yuvraj Agarwal, Srini
Seshan, CMU, Fall 2016

• [Boneh’15] CS 155, Computer Security, Dan Boneh, Stanford University, 2015

• [King’06] SubVirt: Implementing malware with virtual machines, King, Samuel

T., and Peter M. Chen, IEEE Symposium on Security and Privacy (S&P’06),
2006

• [Rutkowska’06, COSEINC Research] Subverting Vista Kernel For Fun And
Profit, Joanna Rutkowska, Black Hat Briefing 2006. Copyright COSEINC
Research, Advanced Malware Labs.

• [Wu’09, Enck’09] CS 585: Computer Security, Feng Zhu, University of
Alabama in Huntsville, Spring 2009 AND Understanding Android Security,
William Enck, Machigar Ongtang and Patrick Mcdaniel, IEEE Security and
Privacy magazine 2009

�91

