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ABSTRACT

This paper considers the requirements for a scalable, eas-
ily manageable, fault-tolerant, and efficient data center net-
work fabric. Trends in multi-core processors, end-host vir-
tualization, and commodities of scale are pointing to future
single-site data centers with millions of virtual end points.
Existing layer 2 and layer 3 network protocols face some
combination of limitations in such a setting: lack of scal-
ability, difficult management, inflexible communication, or
limited support for virtual machine migration. To some ex-
tent, these limitations may be inherent for Ethernet/IP style
protocols when trying to support arbitrary topologies. We
observe that data center networks are often managed as a
single logical network fabric with a known baseline topol-
ogy and growth model. We leverage this observation in the
design and implementation of PortLand, a scalable, fault
tolerant layer 2 routing and forwarding protocol for data
center environments. Through our implementation and eval-
uation, we show that PortLand holds promise for supporting
a “plug-and-play” large-scale, data center network.

Categories and Subject Descriptors

C.2.1 [Network Architecture and Design]: Network
communications; C.2.2 [Network Protocols]: Routing
protocols

General Terms

Algorithms, Design, Performance, Management, Reliability

Keywords

Data center network fabric, Layer 2 routing in data centers

1. INTRODUCTION

There is an increasing trend toward migrating applica-
tions, computation and storage into data centers spread
across the Internet. Benefits from commodities of scale are

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’09, August 17-21, 2009, Barcelona, Spain.

Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

leading to the emergence of “mega data centers” hosting ap-
plications running on tens of thousands of servers [3]. For
instance, a web search request may access an inverted index
spread across 1,000+ servers, and data storage and analysis
applications may interactively process petabytes of informa-
tion stored on thousands of machines. There are significant
application networking requirements across all these cases.

In the future, a substantial portion of Internet communi-
cation will take place within data center networks. These
networks tend to be highly engineered, with a number of
common design elements. And yet, the routing, forwarding,
and management protocols that we run in data centers were
designed for the general LAN setting and are proving inad-
equate along a number of dimensions. Consider a data cen-
ter with 100,000 servers, each hosting 32 virtual machines
(VMs). This translates to a total of three million IP and
MAC addresses in the data center. Assuming one switch
is required for every 25 physical hosts and accounting for
interior nodes, the topology would consist of 8,000 switches.

Current network protocols impose significant management
overhead at this scale. For example, an end host’s IP ad-
dress may be determined by its directly-connected physi-
cal switch and appropriately synchronized with replicated
DHCP servers. VLANs may provide some naming flexibility
across switch boundaries but introduce their own configura-
tion and resource allocation overheads. Ideally, data cen-
ter network architects and administrators would have “plug-
and-play” deployment for switches. Consider some of the
requirements for such a future scenario:

¢ R1. Any VM may migrate to any physical machine.
Migrating VMs should not have to change their IP
addresses as doing so will break pre-existing TCP con-
nections and application-level state.

e R2. An administrator should not need to configure
any switch before deployment.

e R3. Any end host should be able to efficiently commu-
nicate with any other end host in the data center along
any of the available physical communication paths.

e R4. There should be no forwarding loops.

e R5. Failures will be common at scale, so failure de-
tection should be rapid and efficient. Existing unicast
and multicast sessions should proceed unaffected to the
extent allowed by underlying physical connectivity.

Let us now map these requirements to implications for the
underlying network protocols. R1 and R2 essentially require



supporting a single layer 2 fabric for the entire data center.
A layer 3 fabric would require configuring each switch with
its subnet information and synchronizing DHCP servers to
distribute IP addresses based on the host’s subnet. Worse,
transparent VM migration is not possible at layer 3 (save
through techniques designed for IP mobility) because VMs
must switch their TP addresses if they migrate to a host
on a different subnet. Unfortunately, layer 2 fabrics face
scalability and efficiency challenges because of the need to
support broadcast. Further, R3 at layer 2 requires MAC
forwarding tables with potentially hundreds of thousands
or even millions of entries, impractical with today’s switch
hardware. R4 is difficult for either layer 2 or layer 3 because
forwarding loops are possible during routing convergence. A
layer 2 protocol may avoid such loops by employing a single
spanning tree (inefficient) or tolerate them by introducing
an additional header with a TTL (incompatible). R5 re-
quires efficient routing protocols that can disseminate topol-
ogy changes quickly to all points of interest. Unfortunately,
existing layer 2 and layer 3 routing protocols, e.g., ISIS and
OSPF, are broadcast based, with every switch update sent
to all switches. On the efficiency side, the broadcast over-
head of such protocols would likely require configuring the
equivalent of routing areas [5], contrary to R2.

Hence, the current assumption is that the vision of a uni-
fied plug-and-play large-scale network fabric is unachievable,
leaving data center network architects to adopt ad hoc par-
titioning and configuration to support large-scale deploy-
ments. Recent work in SEATTLE [10] makes dramatic ad-
vances toward a plug-and-play Ethernet-compatible proto-
col. However, in SEATTLE, switch state grows with the
number of hosts in the data center, forwarding loops remain
possible, and routing requires all-to-all broadcast, violating
R3, R4, and R5. Section 3.7 presents a detailed discussion
of both SEATTLE and TRILL [17].

In this paper, we present PortLand, a set of Ethernet-
compatible routing, forwarding, and address resolution pro-
tocols with the goal of meeting R1-R5 above. The principal
observation behind our work is that data center networks are
often physically inter-connected as a multi-rooted tree [1].
Using this observation, PortLand employs a lightweight pro-
tocol to enable switches to discover their position in the
topology. PortLand further assigns internal Pseudo MAC
(PMAC) addresses to all end hosts to encode their position
in the topology. PMAC addresses enable efficient, provably
loop-free forwarding with small switch state.

We have a complete implementation of PortLand. We
provide native fault-tolerant support for ARP, network-layer
multicast, and broadcast. PortLand imposes little require-
ments on the underlying switch software and hardware. We
hope that PortLand enables a move towards more flexible,
efficient and fault-tolerant data centers where applications
may flexibly be mapped to different hosts, i.e. where the
data center network may be treated as one unified fabric.

2. BACKGROUND
2.1 Data Center Networks

Topology.

Current data centers consist of thousands to tens of thou-
sands of computers with emerging mega data centers hosting
100,000+ compute nodes. As one example, consider our in-

terpretation of current best practices [1] for the layout of
a 11,520-port data center network. Machines are organized
into racks and rows, with a logical hierarchical network tree
overlaid on top of the machines. In this example, the data
center consists of 24 rows, each with 12 racks. Each rack
contains 40 machines interconnected by a top of rack (ToR)
switch that delivers non-blocking bandwidth among directly
connected hosts. Today, a standard ToR switch contains 48
GigE ports and up to 4 available 10 GigE uplinks.

ToR switches connect to end of row (EoR) switches via
1-4 of the available 10 GigE uplinks. To tolerate individ-
ual switch failures, ToR switches may be connected to EoR
switches in different rows. An EoR switch is typically a mod-
ular 10 GigE switch with a number of ports corresponding to
the desired aggregate bandwidth. For maximum bandwidth,
each of the 12 ToR switches would connect all 4 available
10 GigE uplinks to a modular 10 GigE switch with up to 96
ports. 48 of these ports would face downward towards the
ToR switches and the remainder of the ports would face up-
ward to a core switch layer. Achieving maximum bandwidth
for inter-row communication in this example requires con-
necting 48 upward facing ports from each of 24 EoR switches
to a core switching layer consisting of 12 96-port 10 GigE
switches.

Forwarding.

There are a number of available data forwarding tech-
niques in data center networks. The high-level dichotomy
is between creating a Layer 2 network or a Layer 3 net-
work, each with associated tradeoffs. A Layer 3 approach
assigns IP addresses to hosts hierarchically based on their
directly connected switch. In the example topology above,
hosts connected to the same ToR could be assigned the same
/26 prefix and hosts in the same row may have a /22 prefix.
Such careful assignment will enable relatively small forward-
ing tables across all data center switches.

Standard intra-domain routing protocols such as OSPF [22]
may be employed among switches to find shortest paths
among hosts. Failures in large-scale network topologies will
be commonplace. OSPF can detect such failures and then
broadcast the information to all switches to avoid failed
links or switches. Transient loops with layer 3 forwarding is
less of an issue because the IP-layer TTL limits per-packet
resource consumption while forwarding tables are being
asynchronously updated.

Unfortunately, Layer 3 forwarding does impose adminis-
trative burden as discussed above. In general, the process
of adding a new switch requires manual administrator con-
figuration and oversight, an error prone process. Worse,
improperly synchronized state between system components,
such as a DHCP server and a configured switch subnet iden-
tifier can lead to unreachable hosts and difficult to diagnose
errors. Finally, the growing importance of end host virtual-
ization makes Layer 3 solutions less desirable as described
below.

For these reasons, certain data centers deploy a layer 2
network where forwarding is performed based on flat MAC
addresses. A layer 2 fabric imposes less administrative over-
head. Layer 2 fabrics have their own challenges of course.
Standard Ethernet bridging [24] does not scale to networks
with tens of thousands of hosts because of the need to sup-
port broadcast across the entire fabric. Worse, the presence
of a single forwarding spanning tree (even if optimally de-



signed) would severely limit performance in topologies that
consist of multiple available equal cost paths.

A middle ground between a Layer 2 and Layer 3 fab-
ric consists of employing VLANs to allow a single logical
Layer 2 fabric to cross multiple switch boundaries. While
feasible for smaller-scale topologies, VLANSs also suffer from
a number of drawbacks. For instance, they require band-
width resources to be explicitly assigned to each VLAN at
each participating switch, limiting flexibility for dynamically
changing communication patterns. Next, each switch must
maintain state for all hosts in each VLAN that they par-
ticipate in, limiting scalability. Finally, VLANs also use a
single forwarding spanning tree, limiting performance.

End Host Virtualization.

The increasing popularity of end host virtualization in the
data center imposes a number of requirements on the un-
derlying network. Commercially available virtual machine
monitors allow tens of VMs to run on each physical machine
in the data center', each with their own fixed IP and MAC
addresses. In data centers with hundreds of thousands of
hosts, this translates to the need for scalable addressing and
forwarding for millions of unique end points. While individ-
ual applications may not (yet) run at this scale, application
designers and data center administrators alike would still
benefit from the ability to arbitrarily map individual appli-
cations to an arbitrary subset of available physical resources.

Virtualization also allows the entire VM state to be trans-
mitted across the network to migrate a VM from one phys-
ical machine to another [11]. Such migration might take
place for a variety of reasons. A cloud computing hosting
service may migrate VMs for statistical multiplexing, pack-
ing VMs on the smallest physical footprint possible while
still maintaining performance guarantees. Further, variable
bandwidth to remote nodes in the data center could war-
rant migration based on dynamically changing communica-
tion patterns to achieve high bandwidth for tightly-coupled
hosts. Finally, variable heat distribution and power avail-
ability in the data center (in steady state or as a result of
component cooling or power failure) may necessitate VM
migration to avoid hardware failures.

Such an environment currently presents challenges both
for Layer 2 and Layer 3 data center networks. In a Layer 3
setting, the IP address of a virtual machine is set by its
directly-connected switch subnet number. Migrating the
VM to a different switch would require assigning a new IP
address based on the subnet number of the new first-hop
switch, an operation that would break all open TCP con-
nections to the host and invalidate any session state main-
tained across the data center, etc. A Layer 2 fabric is ag-
nostic to the IP address of a VM. However, scaling ARP
and performing routing/forwarding on millions of flat MAC
addresses introduces a separate set of challenges.

2.2 Fat Tree Networks

Recently proposed work [6, 14, 15] suggest alternate
topologies for scalable data center networks. In this paper,
we consider designing a scalable fault tolerant layer 2 do-

1One rule of thumb for the degree of VM-multiplexing allo-
cates one VM per thread in the underlying processor hard-
ware. x86 machines today have 2 sockets, 4 cores/processor,
and 2 threads/core. Quad socket, eight core machines will
be available shortly.

main over one such topology, a fat tree. As will become
evident, the fat tree is simply an instance of the traditional
data center multi-rooted tree topology (Section 2.1). Hence,
the techniques described in this paper generalize to existing
data center topologies. We present the fat tree because our
available hardware/software evaluation platform (Section 4)
is built as a fat tree.

Figure 1 depicts a 16-port switch built as a multi-stage
topology from constituent 4-port switches. In general, a
three-stage fat tree built from k-port switches can support
non-blocking communication among k3/4 end hosts using
5k?/4 individual k-port switches. We split the fat tree into
three layers, labeled edge, aggregation and core as in Fig-
ure 1. The fat tree as a whole is split into £ individual pods,
with each pod supporting non-blocking operation among
k2 /4 hosts. Non-blocking operation requires careful schedul-
ing of packets among all available paths, a challenging prob-
lem. While a number of heuristics are possible, for the
purposes of this work we assume ECMP-style hashing of
flows [16] among the k?/4 available paths between a given
source and destination. While current techniques are less
than ideal, we consider the flow scheduling problem to be
beyond the scope of this paper.

2.3 Related Work

Recently, there have been a number of proposals for net-
work architectures specifically targeting the data center.
Two recent proposals [14, 6] suggest topologies based on fat
trees [19]. As discussed earlier, fat trees are a form of multi-
rooted trees that already form the basis for many existing
data center topologies. As such, they are fully compatible
with our work and in fact our implementation runs on top
of a small-scale fat tree. DCell [15] also recently proposed a
specialized topology for the data center environment. While
not strictly a multi-rooted tree, there is implicit hierarchy in
the DCell topology, which should make it compatible with
our techniques.

Others have also recently recognized the need for more
scalable layer 2 networks. SmartBridge [26] extended the
original pioneering work on learning bridges [24] to move
beyond single spanning tree networks while maintaining the
loop free property of extended LANs. However, Smart-
Bridge still suffers from the scalability challenges character-
istic of Ethernet networks. Contemporaneous to our work,
MOOSE |[28] also suggests the use of hierarchical Ethernet
addresses and header rewriting to address some of Ether-
net’s scalability limitations.

RBridges and TRILL [25], its IETF standardization ef-
fort, address some of the routing challenges in Ethernet.
RBridges run a layer 2 routing protocol among switches.
Essentially switches broadcast information about their lo-
cal connectivity along with the identity of all directly con-
nected end hosts. Thus, all switches learn the switch topol-
ogy and the location of all hosts. To limit forwarding table
size, ingress switches map destination MAC addresses to the
appropriate egress switch (based on global knowledge) and
encapsulate the packet in an outer MAC header with the
egress switch identifier. In addition, RBridges add a sec-
ondary header with a TTL field to protect against loops.
We also take inspiration from CMU Ethernet [23], which
also proposed maintaining a distributed directory of all host
information. Relative to both approaches, PortLand is able
to achieve improved fault tolerance and efficiency by lever-
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Figure 1: Sample fat tree topology.

aging knowledge about the baseline topology and avoiding
broadcast-based routing protocols altogether.

Failure Carrying Packets (FCP) [18] shows the benefits
of assuming some knowledge of baseline topology in routing
protocols. Packets are marked with the identity of all failed
links encountered between source and destination, enabling
routers to calculate new forwarding paths based on the fail-
ures encountered thus far. Similar to PortLand, FCP shows
the benefits of assuming knowledge of baseline topology to
improve scalability and fault tolerance. For example, FCP
demonstrates improved routing convergence with fewer net-
work messages and lesser state.

To reduce the state and communication overhead associ-
ated with routing in large-scale networks, recent work [8,
9, 10] explores using DHTSs to perform forwarding on flat
labels. We achieve similar benefits in per-switch state over-
head with lower network overhead and the potential for im-
proved fault tolerance and efficiency, both in forwarding and
routing, by once again leveraging knowledge of the baseline
topology.

3. DESIGN

The goal of PortLand is to deliver scalable layer 2 rout-
ing, forwarding, and addressing for data center network en-
vironments. We leverage the observation that in data center
environments, the baseline multi-rooted network topology is
known and relatively fixed. Building and maintaining data
centers with tens of thousands of compute elements requires
modularity, advance planning, and minimal human interac-
tion. Thus, the baseline data center topology is unlikely
to evolve quickly. When expansion does occur to the net-
work, it typically involves adding more “leaves” (e.g., rows
of servers) to the multi-rooted tree topology described in
Section 2.1.

3.1 Fabric Manager

PortLand employs a logically centralized fabric manager
that maintains soft state about network configuration in-
formation such as topology. The fabric manager is a user
process running on a dedicated machine responsible for as-
sisting with ARP resolution, fault tolerance, and multicast
as further described below. The fabric manager may simply
be a redundantly-connected host in the larger topology or it
may run on a separate control network.

There is an inherent trade off between protocol simplicity
and system robustness when considering a distributed versus
centralized realization for particular functionality. In Port-
Land, we restrict the amount of centralized knowledge and
limit it to soft state. In this manner, we eliminate the need
for any administrator configuration of the fabric manager
(e.g., number of switches, their location, their identifier).
In deployment, we expect the fabric manager to be repli-
cated with a primary asynchronously updating state on one
or more backups. Strict consistency among replicas is not
necessary as the fabric manager maintains no hard state.

Our approach takes inspiration from other recent large-
scale infrastructure deployments. For example, modern stor-
age [13] and data processing systems [12] employ a central-
ized controller at the scale of tens of thousands of machines.
In another setting, the Route Control Platform [7] considers
centralized routing in ISP deployments. All the same, the
protocols described in this paper are amenable to distributed
realizations if the tradeoffs in a particular deployment envi-
ronment tip against a central fabric manager.

3.2 Positional Pseudo MAC Addresses

The basis for efficient forwarding and routing as well as
VM migration in our design is hierarchical Pseudo MAC
(PMAC) addresses. PortLand assigns a unique PMAC ad-
dress to each end host. The PMAC encodes the location of
an end host in the topology. For example, all end points
in the same pod will have the same prefix in their assigned
PMAC. The end hosts remain unmodified, believing that
they maintain their actual MAC (AMAC) addresses. Hosts
performing ARP requests receive the PMAC of the destina-
tion host. All packet forwarding proceeds based on PMAC
addresses, enabling very small forwarding tables. Egress
switches perform PMAC to AMAC header rewriting to
maintain the illusion of unmodified MAC addresses at the
destination host.

PortLand edge switches learn a unique pod number and
a unique position number within each pod. We employ the
Location Discovery Protocol (Section 3.4) to assign these
values. For all directly connected hosts, edge switches as-
sign a 48-bit PMAC of the form pod.position.port.vmid to
all directly connected hosts, where pod (16 bits) reflects the
pod number of the edge switch, position (8 bits) is its posi-
tion in the pod, and port (8 bits) is the switch-local view of



the port number the host is connected to. We use vmid (16
bits) to multiplex multiple virtual machines on the same
physical machine (or physical hosts on the other side of
a bridge). Edge switches assign monotonically increasing
vmid’s to each subsequent new MAC address observed on a
given port. PortLand times out vmid’s without any traffic
and reuses them.

Fabric [ 1P [ PMAC | @

Manager \ 10.5.1.2 | 00:00:01:02:00:01 |

Figure 2: Actual MAC to Pseudo MAC mapping.

When an ingress switch sees a source MAC address never
observed before, the packet is vectored to the switch soft-
ware. The software creates an entry in a local PMAC table
mapping the host’s AMAC and IP address to its PMAC.
The switch constructs the PMAC as described above and
communicates this mapping to the fabric manager as de-
picted in Figure 2. The fabric manager uses this state to
respond to ARP requests (Section 3.3). The switch also cre-
ates the appropriate flow table entry to rewrite the PMAC
destination address to the AMAC for any traffic destined to
the host.

In essence, we separate host location from host identi-
fier [21] in a manner that is transparent to end hosts and
compatible with existing commodity switch hardware. Im-
portantly, we do not introduce additional protocol headers.
From the underlying hardware, we require flow table en-
tries to perform deterministic PMAC « AMAC rewriting
as directed by the switch software. We also populate switch
forwarding entries based on longest prefix match against a
destination PMAC address. OpenFlow [4] supports both
operations and native hardware support is also available in
commodity switches [2].

3.3 Proxy-based ARP

Ethernet by default broadcasts ARPs to all hosts in the
same layer 2 domain. We leverage the fabric manager to
reduce broadcast overhead in the common case, as depicted
in Figure 3. In step 1, an edge switch intercepts an ARP
request for an IP to MAC address mapping and forwards the
request to the fabric manager in step 2. The fabric manager
consults its PMAC table to see if an entry is available for
the target IP address. If so, it returns the PMAC in step 3
to the edge switch. The edge switch creates an ARP reply
in step 4 and returns it to the original host.

It is possible that the fabric manager does not have the IP
to PMAC mapping available, for example after failure. In
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Figure 3: Proxy ARP.

this case, the fabric manager will fall back to broadcast to
all end hosts to retrieve the mapping. Efficient broadcast is
straightforward in the failure-free case (fault-tolerance ex-
tensions are described below): the ARP is transmitted to
any core switch, which in turn distributes it to all pods and
finally all edge switches. The target host will reply with its
AMAC, which will be rewritten by the ingress switch to the
appropriate PMAC before forwarding to both the querying
host and the fabric manager.

Note that end hosts receive PMACs in response to an ARP
request and that all packet forwarding proceeds based on
the hierarchical PMAC. The egress switch performs PMAC
to AMAC rewriting only on the last hop to the destina-
tion host. In the baseline, forwarding in each switch re-
quires just O(k) state using hierarchical PMAC addresses.
This required state compares favorably to standard layer 2
switches that require an entry for every flat MAC address in
the network, i.e., tens or even hundreds of thousands in large
deployments. Additional forwarding state may be required
to perform per-flow load balancing across multiple paths [6].

There is one additional detail for supporting VM migra-
tion. Upon completing migration from one physical machine
to another, the VM sends a gratuitous ARP with its new IP
to MAC address mapping. This ARP is forwarded to the
fabric manager in the normal manner. Unfortunately, any
hosts communicating with the migrated VM will maintain
that host’s previous PMAC in their ARP cache and will be
unable to continue communication until their ARP cache
entry times out. To address this limitation, the fabric man-
ager forwards an invalidation message to the migrated VM’s
previous switch. This message sets up a flow table entry to
trap handling of subsequent packets destined to the invali-
dated PMAC to the switch software. The switch software
transmits a unicast gratuitous ARP back to any transmit-
ting host to set the new PMAC address in that host’s ARP
cache. The invalidating switch may optionally transmit the
packet to the actual destination to prevent packet loss.

3.4 Distributed Location Discovery

PortLand switches use their position in the global topol-
ogy to perform more efficient forwarding and routing using
only pairwise communication. Switch position may be set
manually with administrator intervention, violating some of
our original goals. Since position values should be slow to



Algorithm 1 LDP_listener_thread()

1: While (true)
: For each tp in tentative_pos

2
3 If (curr_time — tp.time) > timeout

4 tentative_pos < tentative_pos — {tp};
5: > Case 1: On receipt of LDM P

6: Neighbors «— Neighbors | J{switch that sent P}
7.

8

9

If (curr_time — start_time > T and |Neighbors| <

k
2
my_level < 0; incoming_port < up;

~

: Acquire_position_thread();
10: If (P.level = 0 and P.dir = up)

11: my_level «— 1; incoming_port < down;

12: Else If (P.dir = down)

13: incoming_port < up;

14: If (my_level = —1 and |Neighbors| = k)

15: is_core « true;

16: For each switch in Neighbors

17: If (switch.level # 1 or switch.dir # —1)
18: is_core «— false; break;

19: If (is_core = true)

20: my_level «— 2; Set dir of all ports to down;
21: If (P.pos # —1 and P.pos ¢ Pos_used)

22: Pos_used «— Pos_used |J {P.pos};

23: If (P.pod # —1 and my_level # 2)

24: my_pod «— P.pod;

25:

26: > Case 2: On receipt of position proposal P

27: If (P.proposal ¢ (Pos_used | tentative_pos))

28: reply «— {“Yes"};

29: tentative_pos «— tentative_pos | J{ P.proposal};
30: Else

31: reply — {“No”, Pos_used, tentative_pos};

Algorithm 2 Acquire_position_thread()

1: taken_pos = {};
2: While (my_pos = —1)
proposal random()%g, s.t. proposal )¢_ taken_pos
Send proposal on all upward facing ports
Sleep(T));
If (more than % + 1 switches confirm proposal)
my_pos = proposal;
If (my_pos = 0)
my_pod = Request from Fabric Manager;
Update taken_pos according to replies;
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change, this may still be a viable option. However, to ex-
plore the limits to which PortLand switches may be entirely
plug-and-play, we also present a location discovery protocol
(LDP) that requires no administrator configuration. Port-
Land switches do not begin packet forwarding until their
location is established.

PortLand switches periodically send a Location Discovery
Message (LDM) out all of their ports both, to set their posi-
tions and to monitor liveness in steady state. LDMs contain
the following information:

e Switch identifier (switch_id): a globally unique identi-
fier for each switch, e.g., the lowest MAC address of
all local ports.

e Pod number (pod): a number shared by all switches
in the same pod (see Figure 1). Switches in different
pods will have different pod numbers. This value is
never set for core switches.

e Position (pos): a number assigned to each edge switch,
unique within each pod.

o Tree level (level): 0, 1, or 2 depending on whether the
switch is an edge, aggregation, or core switch. Our
approach generalizes to deeper hierarchies.

e Up/down (dir): Up/down is a bit which indicates
whether a switch port is facing downward or upward
in the multi-rooted tree.

Initially, all values other than the switch identifier and
port number are unknown and we assume the fat tree topol-
ogy depicted in Figure 1. However, LDP also generalizes
to multi-rooted trees as well as partially connected fat trees.
We assume all switch ports are in one of three states: discon-
nected, connected to an end host, or connected to another
switch.

The key insight behind LDP is that edge switches receive
LDMs only on the ports connected to aggregation switches
(end hosts do not generate LDMs). We use this observation
to bootstrap level assignment in LDP. Edge switches learn
their level by determining that some fraction of their ports
are host connected. Level assignment then flows up the tree.
Aggregations switches set their level once they learn that
some of their ports are connected to edge switches. Finally,
core switches learn their levels once they confirm that all
ports are connected to aggregation switches.

Algorithm 1 presents the processing performed by each
switch in response to LDMs. Lines 2-4 are concerned with
position assignment and will be described below. In line 6,
the switch updates the set of switch neighbors that it has
heard from. In lines 7-8, if a switch is not connected to more
than k/2 neighbor switches for sufficiently long, it concludes
that it is an edge switch. The premise for this conclusion is
that edge switches have at least half of their ports connected
to end hosts. Once a switch comes to this conclusion, on any
subsequent LDM it receives, it infers that the corresponding
incoming port is an upward facing one. While not shown for
simplicity, a switch can further confirm its notion of position
by sending pings on all ports. Hosts will reply to such pings
but will not transmit LDMs. Other PortLand switches will
both reply to the pings and transmit LDMs.

In lines 10-11, a switch receiving an LDM from an edge
switch on an upward facing port concludes that it must be
an aggregation switch and that the corresponding incoming
port is a downward facing port. Lines 12-13 handle the case
where core/aggregation switches transmit LDMs on down-
ward facing ports to aggregation/edge switches that have
not yet set the direction of some of their ports.

Determining the level for core switches is somewhat more
complex, as addressed by lines 14-20. A switch that has
not yet established its level first verifies that all of its active
ports are connected to other PortLand switches (line 14). It
then verifies in lines 15-18 that all neighbors are aggregation
switches that have not yet set the direction of their links
(aggregation switch ports connected to edge switches would
have already been determined to be downward facing). If
these conditions hold, the switch can conclude that it is a
core switch and set all its ports to be downward facing (line
20).

Edge switches must acquire a unique position number in
each pod in the range of 0..% — 1. This process is depicted in
Algorithm 2. Intuitively, each edge switch proposes a ran-
domly chosen number in the appropriate range to all aggre-
gation switches in the same pod. If the proposal is verified
by a majority of these switches as unused and not tenta-



tively reserved, the proposal is finalized and this value will
be included in future LDMs from the edge switch. As shown
in lines 2-4 and 29 of Algorithm 1, aggregation switches will
hold a proposed position number for some period of time
before timing it out in the case of multiple simultaneous
proposals for the same position number.

LDP leverages the fabric manager to assign unique pod
numbers to all switches in the same pod. In lines 8-9 of
Algorithm 2, the edge switch that adopts position 0 requests
a pod number from the fabric manager. This pod number
spreads to the rest of the pod in lines 21-22 of Algorithm 1.

For space constraints, we leave a description of the entire
algorithm accounting for a variety of failure and partial con-
nectivity conditions to separate work. We do note one of the
interesting failure conditions, miswiring. Even in a data cen-
ter environment, it may still be possible that two host facing
ports inadvertently become bridged. For example, someone
may inadvertently plug an Ethernet cable between two out-
ward facing ports, introducing a loop and breaking some of
the important PortLand forwarding properties. LDP pro-
tects against this case as follows. If an uninitialized switch
begins receiving LDMs from an edge switch on one of its
ports, it must be an aggregation switch or there is an error
condition. It can conclude there is an error condition if it
receives LDMs from aggregation switches on other ports or
if most of its active ports are host-connected (and hence re-
ceive no LDMs). In an error condition, the switch disables
the suspicious port and signals an administrator exception.

3.5 Provably Loop Free Forwarding

Once switches establish their local positions using LDP,
they employ updates from their neighbors to populate their
forwarding tables. For instance, core switches learn the pod
number of directly-connected aggregation switches. When
forwarding a packet, the core switch simply inspects the bits
corresponding to the pod number in the PMAC destination
address to determine the appropriate output port.

Similarly, aggregation switches learn the position number
of all directly connected edge switches. Aggregation switches
must determine whether a packet is destined for a host in
the same or different pod by inspecting the PMAC. If in the
same pod, the packet must be forwarded to an output port
corresponding to the position entry in the PMAC.

If in a different pod, the packet may be forwarded along
any of the aggregation switch’s links to the core layer in the
fault-free case. For load balancing, switches may employ
any number of techniques to choose an appropriate output
port. The fabric manager would employ additional flow ta-
ble entries to override the default forwarding behavior for
individual flows. However, this decision is orthogonal to
this work, and so we assume a standard technique such as
flow hashing in ECMP [16].

PortLand maps multicast groups to a core switch using a
deterministic hash function. PortLand switches forward all
multicast packets towards this core, e.g., using flow hashing
to pick among available paths. With simple hardware sup-
port, the hash function may be performed in hardware with
no additional state in the fault-free case (exceptions for fail-
ures could be encoded in switch SRAM). Without hardware
support, there would be one entry per multicast group. Edge
switches forward IGMP join requests to the fabric manager
using the PMAC address of the joining host. The fabric
manager then installs forwarding state in all core and aggre-

gation switches necessary to ensure multicast packet delivery
to edge switches with at least one interested host.

Our forwarding protocol is provably loop free by observ-
ing up-down semantics [27] in the forwarding process as ex-
plained in Appendix A. Packets will always be forwarded
up to either an aggregation or core switch and then down
toward their ultimate destination. We protect against tran-
sient loops and broadcast storms by ensuring that once a
packet begins to travel down, it is not possible for it to travel
back up the topology. There are certain rare simultaneous
failure conditions where packets may only be delivered by,
essentially, detouring back down to an aggregation switch to
get to a core switch capable of reaching a given destination.
We err on the side of safety and prefer to lose connectivity
in these failure conditions rather than admit the possibility
of loops.

3.6 Fault Tolerant Routing
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Figure 4: Unicast: Fault detection and action.

Given a largely fixed baseline topology and the ability
to forward based on PMACs, PortLand’s routing proto-
col is largely concerned with detecting switch and link fail-
ure/recovery. LDP exchanges (Section 3.4) also serve the
dual purpose of acting as liveness monitoring sessions. We
describe our failure recovery process using an example, as
depicted in Figure 4. Upon not receiving an LDM (also
referred to as a keepalive in this context) for some config-
urable period of time, a switch assumes a link failure in step
1. The detecting switch informs the fabric manager about
the failure in step 2. The fabric manager maintains a logical
fault matrix with per-link connectivity information for the
entire topology and updates it with the new information in
step 3. Finally, in step 4, the fabric manager informs all
affected switches of the failure, which then individually re-
calculate their forwarding tables based on the new version
of the topology. Required state for network connectivity is
modest, growing with k®/2 for a fully-configured fat tree
built from k-port switches.

Traditional routing protocols require all-to-all commu-
nication among n switches with O(n?) network messages
and associated processing overhead. PortLand requires
O(n) communication and processing, one message from the
switch detecting failure to the fabric manager and, in the
worst case, n messages from the fabric manager to affected
switches.



Fault Matrix 7 i
Fabric I Multicast State Oﬁ

Manager @ Multicast MAC [ Subscribers | Roots
O1:5E:E1:00:00:24| 03,6 | 16

[InPort | VLAN | Dst MAC [ Stc MAC [ Type [N/W Dst [ N/W Src | [ |
[0 | FFFF [O0L:SE:EL:00:00:24 | 00:01:00:02:00:01 | 0800 | - | - [ .. | 3 |

Figure 5: Multicast: Fault detection and action.

We now consider fault tolerance for the multicast and
broadcast case. Relative to existing protocols, we consider
failure scenarios where there is no single spanning tree
rooted at a core switch able to cover all receivers for a
multicast group or broadcast session. Consider the example
in Figure 5. Here, we have a multicast group mapped to
the left-most core switch. There are three receivers, spread
across pods 0 and 1. A sender forwards packets to the
designated core, which in turn distributes the packets to the
receivers. In step 1, two highlighted links in pod 0 simulta-
neously fail. Two aggregation switches detect the failure in
step 2 and notify the fabric manager, which in turn updates
its fault matrix in step 3. The fabric manager calculates
forwarding entries for all affected multicast groups in step
4.

In this example, recovering from the failure requires for-
warding through two separate aggregation switches in pod
0. However, there is no single core switch with simultaneous
connectivity to both aggregation switches. Hence, a rela-
tively simple failure scenario would result in a case where
no single core-rooted tree can cover all interested receivers.
The implications are worse for broadcast. We deal with
this scenario by calculating a greedy set cover for the set of
receivers associated with each multicast group. This may
result in more than one designated core switch associated
with a multicast or broadcast group. The fabric manager
inserts the required forwarding state into the appropriate
tables in step 5 of Figure 5.

Finally, Figure 6 depicts the forwarding state for the
sender after the failure recovery actions. The multicast
sender’s edge switch now forwards two copies of each packet
to two separate cores that split the responsibility for trans-
mitting the multicast packet to the receivers.

3.7 Discussion

Given an understanding of the PortLand architecture, we
now compare our approach to two previous techniques with
similar goals, TRILL [25] and SEATTLE [10]. Table 1 sum-
marizes the similarities and differences along a number of di-
mensions. The primary difference between the approaches is
that TRILL and SEATTLE are applicable to general topolo-
gies. PortLand on the other hand achieves its simplicity and
efficiency gains by assuming a multi-rooted tree topology
such as those typically found in data center settings.
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Figure 6: Multicast: After fault recovery.

For forwarding, both TRILL and SEATTLE must in the
worst case maintain entries for every host in the data cen-
ter because they forward on flat MAC addresses. While in
some enterprise deployment scenarios the number of popu-
lar destination hosts is limited, many data center applica-
tions perform all-to-all communication (consider search or
MapReduce) where every host talks to virtually all hosts
in the data center over relatively small time periods. Port-
Land forwards using hierarchical PMACs resulting in small
forwarding state. TRILL employs MAC-in-MAC encapsu-
lation to limit forwarding table size to the total number of
switches, but must still maintain a rewriting table with en-
tries for every global host at ingress switches.

Both TRILL and SEATTLE employ a broadcast-based
link state protocol to discover the network topology. Port-
Land leverages knowledge of a baseline multi-rooted tree to
allow each switch to establish its topological position based
on local message exchange. We further leverage a logically
centralized fabric manager to distribute failure information.

TRILL handles ARP locally since all switches maintain
global topology knowledge. In TRILL, the link state proto-
col further broadcasts information about all hosts connected
to each switch. This can add substantial overhead, especially
when considering virtual machine multiplexing. SEATTLE
distributes ARP state among switches using a one-hop DHT.
All switches register the IP address to MAC mapping for
their local hosts to a designated resolver. ARPs for an IP
address may then be forwarded to the resolver rather than
broadcast throughout the network.

While decentralized and scalable, this approach does ad-
mit unavailability of otherwise reachable hosts during the
recovery period (i.e., several seconds) after a resolver switch
fails. Worse, simultaneous loss of soft state in both the re-
solving switch and a host’s ingress switch may leave certain
hosts unreachable for an extended period of time. PortLand
protects against these failure conditions by falling back to
broadcast ARPs in the case where a mapping is unavailable
in the fabric manager and associated state is lost. We are
able to do so because the PortLand broadcast protocol is
efficient, fault tolerant, and provably loop free.

To protect against forwarding loops, TRILL adds a sec-
ondary TRILL header to each packet with a TTL field. Un-
fortunately, this means that switches must both decrement
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Table 1: System comparison

the TTL and recalculate the CRC for every frame, adding
complexity to the common case. SEATTLE admits routing
loops for unicast traffic. It proposes a new “group” construct
for broadcast/multicast traffic. Groups run over a single
spanning tree, eliminating the possibility of loops for such
traffic. PortLand’s forwarding is provably loop free with
no additional headers. It further provides native support
for multicast and network-wide broadcast using an efficient
fault-tolerance mechanism.

4. IMPLEMENTATION
4.1 Testbed Description

Our evaluation platform closely matches the layout in Fig-
ure 1. Our testbed consists of 20 4-port NetFPGA PCI card
switches [20]. Each switch contains 4 GigE ports along with
Xilinx FPGA for hardware extensions. We house the NetF-
PGAs in 1U dual-core 3.2 GHz Intel Xeon machines with
3GB RAM. The network interconnects 16 end hosts, 1U
quad-core 2.13GHz Intel Xeon machines with 3GB of RAM.
All machines run Linux 2.6.18-92.1.18el5.

The switches run OpenFlow v0.8.9r2 [4], which provides
the means to control switch forwarding tables. One benefit
of employing OpenFlow is that it has already been ported to
run on a variety of hardware platforms, including switches
from Cisco, Hewlett Packard, and Juniper. This gives us
some confidence that our techniques may be extended to
commercial platforms using existing software interfaces and
hardware functionality. Each switch has a 32-entry TCAM
and a 32K entry SRAM for flow table entries. Each incoming
packet’s header is matched against 10 fields in the Ethernet,
IP and TCP/UDP headers for a match in the two hardware
flow tables. Each TCAM and SRAM entry is associated with
an action, e.g., forward the packet along an output port or
to the switch software. TCAM entries may contain “don’t
care” bits while SRAM matches must be exact.

4.2 System Architecture

PortLand intercepts all ARP requests and IGMP join re-
quests at the edge switch and forwards them to the local
switch software module running separately on the PC host-
ing each NetFPGA. The local switch module interacts with
the OpenFlow fabric manager to resolve ARP requests and
to manage forwarding tables for multicast sessions. The first
few packets for new flows will miss in hardware flow tables
and will be forwarded to the local switch module as a re-
sult. The switch module uses ECMP style hashing to choose
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Figure 7: System architecture.

among available forwarding paths in the switch and inserts
a new flow table entry matching the flow. On receiving fail-
ure and recovery notifications from the fabric manager, each
switch recalculates global connectivity and modifies the ap-
propriate forwarding entries for the affected flows through
the switch.

The OpenFlow fabric manager monitors connectivity with
each switch module and reacts to the liveness information
by updating its fault matrix. Switches also send keepalives
to their immediate neighbors every 10ms. If no keepalive is
received after 50ms, they assume link failure and update the
fabric manager appropriately.

Figure 7 shows the system architecture. OpenFlow switch
modules run locally on each switch. The fabric manager
transmits control updates using OpenFlow messages to each
switch. In our testbed, a separate control network supports
communication between the fabric manager and local switch
modules. It is of course possible to run the fabric manager
simply as a separate host on the data plane and to communi-
cate inband. The cost and wiring for a separate lower-speed
control network will actually be modest. Consider a control
network for a 2,880-switch data center for the k = 48 case.
Less than 100 low-cost, low-speed switches should suffice
to provide control plane functionality. The real question is
whether the benefits of such a dedicated network will justify
the additional complexity and management overhead.



Table 2 summarizes the state maintained locally at each
switch as well as the fabric manager. Here
k = Number of ports on the switches,
m = Number of local multicast groups,
p = Number of multicast groups active in the system.

State Switch | Fabric Manager
Connectivity Matrix O(k3/2) O(k3/2)
Multicast Flows O(m) O(p)

IP — PMAC mappings | O(k/2) O(k3/4)

Table 2: State requirements.

S. EVALUATION

In this section, we evaluate the efficiency and scalability
of our implementation. We describe the experiments carried
out on our system prototype and present measurements to
characterize convergence and control overhead for both mul-
ticast and unicast communication in the presence of link
failures. We ran all experiments on our testbed described in
Section 4.
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Figure 8: Convergence time with increasing faults.

Convergence Time With Increasing Faults.

We measured convergence time for a UDP flow while intro-
ducing a varying number of random link failures. A sender
transmits packets at 250Mbps to a receiver in a separate
pod. In the case where at least one of the failures falls on
the default path between sender and receiver, we measured
the total time required to re-establish communication.

Figure 8 plots the average convergence time across 20 runs
as a function of the number of randomly-induced failures.
Total convergence time begins at about 65ms for a single
failure and increases slowly with the number of failures as a
result of the additional processing time.

TCP convergence.

We repeated the same experiment for TCP communica-
tion. We monitored network activity using tcpdump at the
sender while injecting a link failure along the path between
sender and receiver. As illustrated in Figure 9, convergence
for TCP flows takes longer than the baseline for UDP de-
spite the fact that the same steps are taken in the underlying
network. This discrepancy results because TCP loses an en-
tire window worth of data. Thus, TCP falls back to the
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Figure 10: Multicast convergence.

retransmission timer, with TCP’s RTO,p:n set to 200ms in
our system. By the time the first retransmission takes place,
connectivity has already been re-established in the underly-
ing network.

Multicast Convergence.

We further measured the time required to designate a new
core when one of the subscribers of a multicast group loses
connectivity to the current core. For this experiment, we
used the same configuration as in Figure 5. In this case, the
sender transmits a multicast flow to a group consisting of 3
subscribers, augmenting each packet with a sequence num-
ber. As shown in Figure 10, 4.5 seconds into the experiment
we inject two failures (as depicted in Figure 5), causing one
of the receivers to lose connectivity. After 110ms, connectiv-
ity is restored. In the intervening time, individual switches
detect the failures and notify the fabric manager, which in
turn reconfigures appropriate switch forwarding tables.

Scalability.

One concern regarding PortLand design is scalability of
the fabric manager for larger topologies. Since we do not
have a prototype at scale, we use measurements from our
existing system to project the requirements of larger sys-
tems. Figure 11 shows the amount of ARP control traffic
the fabric manager would be expected to handle as a func-
tion of overall cluster size. One question is the number of
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ARPs transmitted per host. Since we are interested in scal-
ability under extreme conditions, we considered cases where
each host transmitted 25, 50 and 100 ARP requests/sec to
the fabric manager. Note that even 25 ARPs/sec is likely to
be extreme in today’s data center environments, especially
considering the presence of a local ARP cache with a typ-
ical 60-second timeout. In a data center with each of the
27,648 hosts transmitting 100 ARPs per second, the fabric
manager must handle a manageable 376Mbits/s of control
traffic. More challenging is the CPU time required to han-
dle each request. Our measurements indicate approximately
25 us of time per request in our non-optimized implementa-
tion. Fortunately, the work is highly parallelizable, making
it amenable to deployment on multiple cores and multiple
hardware thread contexts per core. Figure 12 shows the
CPU requirements for the fabric manager as a function of
the number of hosts in the data center generating different
numbers of ARPs/sec. For the highest levels of ARPs/sec
and large data centers, the required level of parallelism to
keep up with the ARP workload will be approximately 70
independent cores. This is beyond the capacity of a single
modern machine, but this also represents a relatively signif-
icant number of ARP misses/second. Further, it should be
possible to move the fabric manager to a small-scale cluster
(e.g., four machines) if absolutely necessary when very high
frequency of ARP requests is anticipated.
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Figure 13: State and TCP application transfer dur-
ing VM migration.

VM Migration.

Finally, we evaluate PortLand’s ability to support virtual
machine migration. In this experiment, a sender transmits
data at 150 Mbps to a virtual machine (hosted on Xen)
running on a physical machine in one pod. We then mi-
grate the virtual machine to a physical machine in another
pod. On migration, the host transmits a gratuitous ARP
with its new MAC address, which is in turn forwarded to all
hosts communicating with that VM by the previous egress
switch. The communication is not at line-rate (1 Gbps)
since we use software MAC layer rewriting capability pro-
vided by OpenFlow to support PMAC and AMAC transla-
tion at edge switches. This introduces additional per packet
processing latency. Existing commercial switches have MAC
layer rewriting support directly in hardware [2].

Figure 13 plots the results of the experiment with mea-
sured TCP rate for both state transfer and flow transfer
(measured at the sender) on the y-axis as a function of time
progressing on the x-axis. We see that 5+ seconds into the
experiment, throughput of the tcp flow drops below the peak
rate as the state of the VM begins to migrate to a new phys-
ical machine. During migration there are short time periods
(200-600ms) during which the throughput of the flow drops
to near zero (not visible in the graph due to the scale). Com-
munication resumes with the VM at full speed after approx-
imately 32 seconds (dominated by the time to complete VM
state transfer).

6. CONCLUSIONS

The goal of this work is to explore the extent to which
entire data center networks may be treated as a single plug-
and-play fabric. Modern data centers may contain 100,000
hosts and employ virtual machine multiplexing that results
in millions of unique addressable end hosts. Efficiency, fault
tolerance, flexibility and manageability are all significant
concerns with general-purpose Ethernet and IP-based proto-
cols. In this paper, we present PortLand, a set of Ethernet-
compatible routing, forwarding, and address resolution pro-
tocols specifically tailored for data center deployments. It
is our hope that through protocols like PortLand, data cen-
ter networks can become more flexible, efficient, and fault
tolerant.
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Appendix A: Loop-Free Proof

A fat-tree network topology has many physical loops, which
can easily lead to forwarding loops given some combination
of forwarding rules present in the switches. However, phys-
ical loops in data center networks are desirable and provide
many benefits such as increased network bisection band-
width and fault tolerance. Traditional Ethernet uses a min-
imum spanning tree to prevent forwarding loops at the cost
of decreased bisection bandwidth and fault tolerance.

Here we show that fat trees can be constrained in such
a way as to prevent forwarding loops, without requiring an
explicit spanning tree. This constraint is simple, stateless,
local to an individual switch, and uniform across all switches
in the fat tree.

CONSTRAINT 1. A switch must never forward a packet
out along an upward-facing port when the ingress port for
that packet is also an upward-facing port.

THEOREM 1. When all switches satisfy Constraint 1
(C1), a fat tree will contain no forwarding loops.

ProOF. C1 prevents traffic from changing direction more
than once. It imposes the logical notion of up-packets and
down-packets. Up-packets may travel only upward through
the tree, whereas down-packets may travel only downward.
C1 effectively allows a switch to perform a one-time conver-
sion of an up-packet to a down-packet. There is no provision
for converting a down-packet to an up-packet. In order for a
switch to receive the same packet from the same ingress port
more than once, this packet should change its direction at
least twice while routed through the tree topology. However
this is not possible since there is no mechanism for convert-
ing a down-packet to an up-packet, something that would be
required for at least one of these changes in direction. [



