CE693: Adv. Computer Networking

L-18 Data-Oriented Networking

Acknowledgments: Lecture slides are from the graduate level Computer Networks course thought by Srinivasan Seshan at CMU. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.

Outline

DOT/DONA

• CCN

• DTNs

To the beginning...

- What if you could re-architect the way "bulk" data transfer applications worked
 - HTTP
 - FTP
 - Email
 - etc.
- ... knowing what we know now?

Innovation in Data Transfer is Hard

- Imagine: You have a novel data transfer technique
- How do you deploy?
 - Update HTTP. Talk to IETF. Modify Apache, IIS, Firefox, Netscape, Opera, IE, Lynx, Wget, ...
 - Update SMTP. Talk to IETF. Modify Sendmail, Postfix, Outlook...
 - Give up in frustration

Data-Oriented Network Design

Data-Oriented Networking Overview

- In the beginning...
 - First applications strictly focused on host-to-host interprocess communication:
 - Remote login, file transfer, ...
 - Internet was built around this host-to-host model.
 - Architecture is well-suited for communication between pairs of stationary hosts.
- ... while today
 - Vast majority of Internet usage is data retrieval and service access.
 - Users care about the content and are oblivious to location.
 They are often oblivious as to delivery time:
 - Fetching headlines from CNN, videos from YouTube, TV from Tivo
 - Accessing a bank account at "www.bank.com".

Data Transfer Service

- Transfer Service responsible for finding/transferring data
 - Transfer Service is shared by applications
- How are users, hosts, services, and data named?
- How is data secured and delivered reliably?
- How are legacy systems incorporated?

Naming Data (DOT)

- Application defined names are not portable
- Use content-naming for globally unique names
- Objects represented by an OID

Objects are further sub-divided into "chunks"

Secure and scalable!

Similar Files: Rabin Fingerprinting

Naming Data (DOT)

- All objects are named based only on their data
- Objects are divided into chunks based only on their data
- Object "A" is named the same
 - Regardless of who sends it
 - Regardless of what application deals with it
- Similar parts of different objects likely to be named the same
 - e.g., PPT slides v1, PPT slides v1 + extra slides
 - First chunks of these objects are same

Naming Data (DONA)

- Names organized around principals.
- Names are of the form P: L.
 - P is cryptographic hash of principal's public key, and
 - L is a unique label chosen by the principal.
- Granularity of naming left up to principals.
- Names are "flat".

Self-certifying Names

- A piece of data comes with a public key and a signature.
- Client can verify the data did come from the principal by
 - Checking the public key hashes into P, and
 - Validating that the signature corresponds to the public key.
- Challenge is to resolve the flat names into a location.

Locating Data (DOT)

Name Resolution (DONA)

- Resolution infrastructure consists of Resolution Handlers.
 - Each domain will have one logical RH.
- Two primitives FIND(P:L) and REGISTER(P:L).
 - FIND(P:L) locates the object named P:L.
 - REGISTER messages set up the state necessary for the RHs to route FINDs effectively.

Locating Data (DONA)

REGISTER state

Establishing REGISTER state

- Any machine authorized to serve a datum or service with name P:L sends a REGISTER(P:L) to its firsthop RH
- RHs maintain a registration table that maps a name to both next-hop RH and distance (in some metric)
- REGISTERs are forwarded according to interdomain policies.
 - REGISTERs from customers to both peers and providers.
 - REGISTERs from peers optionally to providers/peers.

Forwarding FIND(P:L)

- When FIND(P:L) arrives to a RH:
 - If there's an entry in the registration table, the FIND is sent to the next-hop RH.
 - If there's no entry, the RH forwards the FIND towards to its provider.
- In case of multiple equal choices, the RH uses its local policy to choose among them.

Interoperability: New Tradeoffs

Data

ncreases

Limits

Interoperability: Datagrams vs. Data Blocks

	Datagrams	Data Blocks
What must be standardized?	IP Addresses	Data Labels
	Name→Address translation (DNS)	Name → Label translation (Google?)
Application Support	Exposes much of underlying network's capability	Practice has shown that this is what applications need
Lower Layer Support	Supports arbitrary links	Supports arbitrary links
	Requires end-to-end connectivity	Supports arbitrary transport
		Support storage (both in- network and for transport)

Outline

DOT/DONA

• CCN

• DTNs

Google...

Biggest content source

source: 'ATLAS' Internet Observatory 2009 Annual Report', C. Labovitz et.al.

What does the network look like...

What should the network look like...

Context Awareness?

- Like IP, CCN imposes no semantics on names.
- 'Meaning' comes from application, institution and global conventions:

```
/parc.com/people/van/presentations/CCN
/parc.com/people/van/calendar/freeTimeForMeeting
/thisRoom/projector
/thisMeeting/documents
/nearBy/available/parking
/thisHouse/demandReduction/2KW
```

CCN Names/Security

/nytimes.com/web/frontPage/v20100415/s0/0x3fdc96a4... signature 0x1b048347 kev nytimes.com/web/george/desktop public key nytimes.com/web/george Signed by Signed by nytimes.com/web Signed by nytimes.com

- Per-packet signatures using public key
 - Packet also contain link to public key

CCN node model

CCN node model

Flow/Congestion Control

One Interest pkt → one data packet

 All xfers are done hop-by-hop – so no need for congestion control

 Sequence numbers are part of the name space

What about connections/VoIP?

- Key challenge rendezvous
- Need to support requesting ability to request content that has not yet been published
- E.g., route request to potential publishers, and have them create the desired content in response

Outline

DOT/DONA

• CCN

• DTNs

Unstated Internet Assumptions

- Some path exists between endpoints
 - Routing finds (single) "best" existing route
- E2E RTT is not very large
 - Max of few seconds
 - Window-based flow/cong ctl. work well
- E2E reliability works well
 - Requires low loss rates
- Packets are the right abstraction
 - Routers don't modify packets much
 - Basic IP processing

New Challenges

- Very large E2E delay
 - Propagation delay = seconds to minutes
 - Disconnected situations can make delay worse
- Intermittent and scheduled links
 - Disconnection may not be due to failure (e.g. LEO satellite)
 - Retransmission may be expensive
- Many specialized networks won't/can't run IP

IP Not Always a Good Fit

- Networks with very small frames, that are connectionoriented, or have very poor reliability do not match IP very well
 - Sensor nets, ATM, ISDN, wireless, etc
- IP Basic header 20 bytes
 - Bigger with IPv6
- Fragmentation function:
 - Round to nearest 8 byte boundary
 - Whole datagram lost if any fragment lost
 - Fragments time-out if not delivered (sort of) quickly

IP Routing May Not Work

- End-to-end path may not exist
 - Lack of many redundant links [there are exceptions]
 - Path may not be discoverable [e.g. fast oscillations]
 - Traditional routing assumes at least one path exists, fails otherwise
- Insufficient resources
 - Routing table size in sensor networks
 - Topology discovery dominates capacity
- Routing algorithm solves wrong problem
 - Wireless broadcast media is not an edge in a graph
 - Objective function does not match requirements
 - Different traffic types wish to optimize different criteria
 - Physical properties may be relevant (e.g. power)

What about TCP?

- Reliable in-order delivery streams
- Delay sensitive [6 timers]:
 - connection establishment, retransmit, persist, delayed-ACK, FIN-WAIT, (keep-alive)
- Three control loops:
 - Flow and congestion control, loss recovery
- Requires duplex-capable environment
 - Connection establishment and tear-down

Performance Enhancing Proxies

- Perhaps the bad links can be 'patched up'
 - If so, then TCP/IP might run ok
 - Use a specialized middle-box (PEP)

TCP PEPs

- Modify the ACK stream
 - Smooth/pace ACKS → avoids TCP bursts

 - Local ACKs → go faster, goodbye e2e reliability
 - Local retransmission (snoop)
 - Fabricate zero-window during short-term disruption
- Manipulate the data stream
 - Compression, tunneling, prioritization

Architecture Implications of PEPs

- End-to-end "ness"
 - Many PEPs move the 'final decision' to the PEP rather than the endpoint
 - May break e2e argument [may be ok]
- Security
 - Tunneling may render PEP useless
 - Can give PEP your key, but do you really want to?
- Fate Sharing
 - Now the PEP is a critical component
- Failure diagnostics are difficult to interpret

Architecture Implications of PEPs [2]

- Routing asymmetry
 - Stateful PEPs generally require symmetry
 - Spacers and ACK killers don't

Delay-Tolerant Networking Architecture

Goals

- Support interoperability across 'radically heterogeneous' networks
- Tolerate delay and disruption
 - Acceptable performance in high loss/delay/error/ disconnected environments
 - Decent performance for low loss/delay/errors
- Components
 - Flexible naming scheme
 - Message abstraction and API
 - Extensible Store-and-Forward Overlay Routing
 - Per-(overlay)-hop reliability and authentication

Disruption Tolerant Networks

Disruption Tolerant Networks

DTN Routing

- DTN Routers form an overlay network
 - only selected/configured nodes participate
 - nodes have persistent storage
- DTN routing topology is a <u>time-varying</u> multigraph
 - Links come and go, sometimes predictably
 - Use any/all links that can possibly help (multi)
 - Scheduled, Predicted, or Unscheduled Links
 - May be direction specific [e.g. ISP dialup]
 - May learn from history to predict schedule
- Messages fragmented based on dynamics
 - Proactive fragmentation: optimize contact volume
 - · Reactive fragmentation: resume where you failed

Example Routing Problem

Example Graph Abstraction

Routing Solutions - Replication

- "Intelligently" distribute identical data copies to contacts to increase chances of delivery
 - Flooding (unlimited contacts)
 - Heuristics: random forwarding, history-based forwarding, predication-based forwarding, etc. (limited contacts)
- Given "replication budget", this is difficult
 - Using simple replication, only finite number of copies in the network [Juang02, Grossglauser02, Jain04, Chaintreau05]
 - Routing performance (delivery rate, latency, etc.) heavily dependent on "deliverability" of these contacts (or predictability of heuristics)
 - No single heuristic works for all scenarios!

Using Erasure Codes

- Rather than seeking particular "good" contacts, "split" messages and distribute to more contacts to increase chance of delivery
 - Same number of bytes flowing in the network, now in the form of coded blocks
 - Partial data arrival can be used to reconstruct the original message
 - Given a replication factor of r, (in theory) any 1/r code blocks received can be used to reconstruct original data
 - Potentially leverage more contacts opportunity that result in lowest worse-case latency
- Intuition:
 - Reduces "risk" due to outlier bad contacts

Erasure Codes

