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L-18 Data-Oriented Networking

Acknowledgments: Lecture slides are from the graduate level Computer
Networks course thought by Srinivasan Seshan at CMU. When slides are
obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.
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To the beginning...

. s s s

* What if you could re-architect the way “bulk”
data transfer applications worked
+ HTTP

- FTP

* Email
* efc.
* ... knowing what we know now??
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Innovation in Data Transfer is Hard %%
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« Imagine: You have a novel data transfer technique

 How do you deploy?

 Update HTTP. Talk to IETF. Modify Apache, IIS, Firefox,
Netscape, Opera, IE, Lynx, Wget, ...

« Update SMTP. Talk to IETF. Modify Sendmail, Postfix, Outlook...
» Give up in frustration




Data-Oriented Network Design
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Data-Oriented Networking Overview
~Inthebeginning...

— First applications strictly focused on host-to-host
interprocess communication:

« Remote login, file transfer, .
— Internet was built around this host-to-host model.

— Architecture is well-suited for communication between pairs
of stationary hosts.

.. while today

— Vast majority of Internet usage is data retrieval and service
access.

— Users care about the content and are oblivious to location.
They are often oblivious as to delivery time:

» Fetching headlines from CNN, videos from YouTube, TV from Tivo
» Accessing a bank account at “www.bank.com”.




New Approach: Adding to the Protocol Stac@
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Data Transfer Service

Application Protocol Receiver
and Data

Sender

Xfer Service Xfer Service
n

Data

Transfer Service responsible for finding/transferring data
» Transfer Service is shared by applications

How are users, hosts, services, and data named?
How is data secured and delivered reliably?
How are legacy systems incorporated?




Naming Data (DOT)

. s s s
* Application defined names are not portable
» Use content-naming for globally unigue names

* Objects represented by an OID

Foo.txt N OID
Cryptographic Hash

» Objects are further sub-divided into “chunks”
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« Secure and scalable!




Similar Files: Rabin Fingerprinting ﬁ;%
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Naming Data (DOT)

. s s s
All objects are named based only on their data

(Cj)btjects are divided into chunks based only on their
ata

Object “A” is named the same
* Regardless of who sends it
* Regardless of what application deals with it

Similar parts of different objects likely to be named
the same

* e.g., PPT slides v1, PPT slides v1 + extra slides
 First chunks of these objects are same




Naming Data (DONA)

— s s s
 Names organized around principals.
 Names are of the form P : L.

* P is cryptographic hash of principal’s public key,
and

* L is a unique label chosen by the principal.
» Granularity of naming left up to principals.
 Names are “flat’.




Self-certifying Names

. s s s

* A piece of data comes with a public key and
a signature.

» Client can verity the data did come from the
principal by

« Checking the public key hashes into P, and
 Validating that the signature corresponds to the
public key.

* Challenge is to resolve the flat names into a
location.
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Name Resolution (DONA)

. I I I
 Resolution infrastructure consists of
Resolution Handlers.

« Each domain will have one logical RH.
* Two primitives FIND(P:L) and

REGISTER(P:L).
 FIND(P:L) locates the object named P:L.

« REGISTER messages set up the state
necessary for the RHs to route FINDs
effectively.




Locating Data (DONA) ”;i%{

REGISTER state
¢ FIND being routed




Establlshlng REGISTER state

I | N N

* Any machlne authorized to serve a datum or service
with name P:L sends a REGISTER(P:L) to its first-
hop RH

 RHs maintain a registration table that maps a name
to both next-nop RH and distance (in some metric)

« REGISTERSs are forwarded according to
iInterdomain policies.

« REGISTERS from customers to both peers and
providers.

« REGISTERSs from peers optionally to providers/peers.




Forwardlng FIND(P L)

* When FIND(P L) arrlves to a RH

* If there’s an entry in the registration table, the
FIND is sent to the next-hop RH.

* |f there’'s no entry, the RH forwards the FIND
towards to its provider.

 In case of multiple equal choices, the RH
uses its local policy to choose among them.




Interoperability: New Tradeoffs ﬁ%i{
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Interoperability: Datagrams vs. Data Blocks} <
I BN |

What must be
standardized?

Application
Support

Lower Layer
Support

|P Addresses

Name—->Address
translation (DNS)

Exposes much of
underlying network’s
capability

Supports arbitrary links

Requires end-to-end
connectivity

Data Labels

Name - Label
translation (Google?)

Practice has shown that
this is what applications
need

Supports arbitrary links

Supports arbitrary
transport

Support storage (both in-
network and for transport)
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Google...

Google as a Percentage of all Intemet Traffic

Biggest content source

Third largest ISP

source: ‘ATLAS’ Internet Observatory 2009 Annual Report’, C. Labovitz et.al.
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What does the network look like...
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\What should the network look like...
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Context Awareness?
. s s s
« Like IP, CCN imposes no semantics on names.

* ‘Meaning’ comes from application, institution and
global conventions:

/parc.com/people/van/presentations/CCN
/parc.com/people/van/calendar/freeTimeForMeeting
/thisRoom/projector

/thisMeeting/documents

/nearBy/available/parking
[thisHouse/demandReduction/2KW
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CCN Names/Security Jss
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/nytimes.com/web/frontPage/v20100415/s0/0x3fdc96a4...
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0x1b048347 ~ key

* Per-packet signatures using public key
» Packet also contain link to public key
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CCN node model
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CCN node model
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Flow/Congestion Control
. s s s
* One Interest pkt - one data packet

 All xfers are done hop-by-hop — so no need
for congestion control

* Sequence numbers are part of the name
space




What about connections/VolP?

— s s s

« Key challenge - rendezvous

* Need to support requesting ability to
request content that has not yet been
published

* E.g., route request to potential publishers,
and have them create the desired content Iin
response
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Unstated Internet Assumptions
= . . .
« Some path exists between endpoints

* Routing finds (single) “best” existing route
« E2E RTT is not very large

* Max of few seconds

« Window-based flow/cong ctl. work well
« E2E reliability works well

* Requires low loss rates

» Packets are the right abstraction

* Routers don’'t modify packets much
» Basic IP processing




New Challenges
I N N
* Very large E2E delay
* Propagation delay = seconds to minutes

* Disconnected situations can make delay worse
* Intermittent and scheduled links

« Disconnection may not be due to failure (e.qg.
LEO satellite)

* Retransmission may be expensive

* Many specialized networks won’t/can’t run
IP




IP Not Always a Good Fit

I N N N
* Networks with very small frames, that are connection-

oriented, or have very poor reliability do not match IP
very well

« Sensor nets, ATM, ISDN, wireless, etc

» |P Basic header — 20 bytes
* Bigger with IPv6

* Fragmentation function:
 Round to nearest 8 byte boundary
* Whole datagram lost if any fragment lost
* Fragments time-out if not delivered (sort of) quickly




|IP Routing May Not Work
— S S S
* End-to-end path may not exist
« Lack of many redundant links [there are exceptions]
« Path may not be discoverable [e.g. fast oscillations]

» Traditional routing assumes at least one path exists,
fails otherwise

* |nsufficient resources

* Routing table size in sensor networks
« Topology discovery dominates capacity

* Routing algorithm solves wrong problem
« Wireless broadcast media is not an edge in a graph

« Obijective function does not match requirements
+ Different traffic types wish to optimize different criteria
» Physical properties may be relevant (e.g. power)




What about TCP?

s s s
. Rehable iIn-order delivery streams

* Delay sensitive [0 timers]:

« connection establishment, retransmit, persist,
delayed-ACK, FIN-WAIT, (keep-alive)

* Three control loops:
* Flow and congestion control, loss recovery

* Requires duplex-capable environment
« Connection establishment and tear-down




Performance Enhancing Proxies
. s s s

* Perhaps the bad links can be ‘patched up’
* If so, then TCP/IP might run ok

» Use a specialized middle-box (PEP)

Q
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TCP PEPs

. s s

* Modify the ACK stream
« Smooth/pace ACKS - avoids TCP bursts
* Drop ACKs - avoids congesting return channel
* Local ACKs - go faster, goodbye eZ2e reliability
 Local retransmission (snoop)

» Fabricate zero-window during short-term
disruption

* Manipulate the data stream
« Compression, tunneling, prioritization




Architecture Implications of PEPs
-End-to—e_nd “ness’ o o

 Many PEPs move the ‘final decision’ to the PEP
rather than the endpoint

* May break e2e argument [may be ok]
« Security

* Tunneling may render PEP useless
« Can give PEP your key, but do you really want to?

» Fate Sharing
* Now the PEP is a critical component

 Failure diagnostics are difficult to interpret




Architecture Implications of PEPs [2] ¢

I N N N
* Routing asymmetry

« Stateful PEPs generally require symmetry
« Spacers and ACK Kkillers don't
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Delay-Tolerant Networking Architecturg’
-Goals o o o

« Support interoperability across ‘radically
heterogeneous’ networks

* Tolerate delay and disruption

* Acceptable performance in high loss/delay/error/
disconnected environments

« Decent performance for low loss/delay/errors

 Components
* Flexible naming scheme
* Message abstraction and API
» Extensible Store-and-Forward Overlay Routing
* Per-(overlay)-hop reliability and authentication




“.'“ - .' | .,
prad
Layers Source Destination
Application | (D4 Custodian Custodian poa
,".-'-,"."t.'_-,' potontial potential ,“-';f-"I."
Bund le dl'?p y 8 * delay @‘b '8 e deiry @“ 8 delay 8
—t—t—]CT |-+ e CT | o L cT
Transport . . . . . .
. - - —- - :
Network . . : : : .
+_ H- - .—- *—
Link s : : : : :
T | B ! _! : M
phySlca' :.IIITI.I. I-:" ﬁllIrI... .’.. .\IIT..ITII:
Key: 3 Persistent storage " -. Custody transfer of bundle

CT Custody transfer capability 4= Custody-transfer acknowledgement




47




DTN Routing

— I I

DTN Routers form an overlay network
 only selected/configured nodes participate
* nodes have persistent storage

DTN routing topology is a time-varying multigraph
* Links come and go, sometimes predictably
« Use any/all links that can possibly help (multi)

« Scheduled, Predicted, or Unscheduled Links
« May be direction specific [e.g. ISP dialup]
« May learn from history to predict schedule

Messages fragmented based on dynamics
» Proactive fragmentation: optimize contact volume
« Reactive fragmentation: resume where you failed




Example Routing Problem ;%}%
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Example Graph Abstraction
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Routing Solutions - Replication
I N N N
* “Intelligently” distribute identical data copies to
contacts to increase chances of delivery

* Flooding (unlimited contacts)

» Heuristics: random forwarding, history-based forwarding,
predication-based forwarding, etc. (limited contacts)

* Given “replication budget”, this is difficult

« Using simple replication, only finite number of copies in the
network [Juang02, Grossglauser02, Jain04, Chaintreau05]

« Routing performance (delivery rate, latency, etc.) heavily
dependent on “deliverability” of these contacts (or

predictability of heuristics)
* No single heuristic works for all scenarios!




Using Erasure Codes

. s s .

« Rather than seeking particular “good” contacts,
“split” messages and distribute to more contacts
to increase chance of delivery

« Same number of bytes flowing in the network, now in
the form of coded blocks

 Partial data arrival can be used to reconstruct the

original message

« Given a replication factor of r, (in theory) any 1/r code blocks
received can be used to reconstruct original data

» Potentially leverage more contacts opportunity that
result in lowest worse-case latency

e Intuition:

 Reduces “risk” due to outlier bad contacts




Erasure Codes ';:%{

Message n blocks

‘ Encoding

SS Opportunistic Forwarding

‘ Decoding

Message n blocks
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