I CEG93: Adv. Computer Networking I

L-15 P2P

Acknowledgments: Lecture slides are from the graduate level Computer
Networks course thought by Srinivasan Seshan at CMU. When slides are
obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

Overview
. I I

* P2P Lookup Overview
» Centralized/Flooded Lookups

* Routed Lookups — Chord

« Comparison of DHTs

Peer-to-Peer Networks

— s s s

« Typically each member stores/provides access to
content

« Basically a replication system for files

« Always a tradeoff between possible location of files and
searching difficulty

» Peer-to-peer allow files to be anywhere - searching is
the challenge

* Dynamic member list makes it more difficult

* What other systems have similar goals?
* Routing, DNS

The Lookup Problem "}”%%{

N, N3
Key="title"”
VaIge;II_VIII:B data... Client
ublisher Lookup(“title”)

Centralized Lookup (Napster) v
e e e .
SetLoc("title”, N4) N, N, \
3 .
| /\DB - Clent
Publisher@N , Lookup(“title”)
Key="title"”
Value=MP3 data... N
Ng . 8
N /

Simple, but O() state and a single point of failure

. AR
Flooded Queries (Gnutella) Y i{‘
- s s s |
N, Ny Lookup(“title”)
/ \/N3 Client
Publisher@N 4

Key="title"”
Value=MP3 data...

Ns N, Ng

T

Robust, but worst case O(/NV) messages per lookup

Routed Queries (Chord, etc.) ”;i%{

N N,
I\
N3\ Client

Publisher——— Ny Lookup("title”)
Key="title” \
Value=MP3 data...

Ne

Ng

N Ng

Overview

« P2P Lookup Overview
» Centralized/Flooded Lookups

* Routed Lookups — Chord

« Comparison of DHTs

Centralized: Napster
» Simple centralized scheme -
motivated by ability to sell/control

 How to find a file:

* On startup, client contacts central server
and reports list of files

* Query the index system - return a
machine that stores the required file

* |deally this is the closest/least-loaded
machine

 Fetch the file directly from peer

Centralized: Napster

— s s
* Advantages:
« Simple
« Easy to implement sophisticated search
engines on top of the index system

» Disadvantages:
* Robustness, scalability
« Easy to sue!

Flooding: Old Gnutella
— N . N . I
* On startup, client contacts any servent
(server + client) in network
« Servent interconnection used to forward control
(queries, hits, etc)

 |dea: broadcast the request

* How to find a file:
« Send request to all neighbors
* Neighbors recursively forward the request

« Eventually a machine that has the file receives
the request, and it sends back the answer

* Transfers are done with HT TP between peers

Flooding: Old Gnutella

I s s
* Advantages:
 Totally decentralized, highly robust

* Disadvantages:
* Not scalable; the entire network can be

swamped with request (to alleviate this
problem, each request has a TTL)

» Especially hard on slow clients

« At some point broadcast traffic on Gnutella
exceeded 56kbps — what happened?

 Modem users were effectively cut off!

Flooding: Old Gnutella Details
. s s s
« Basic message header
* Unique ID, TTL, Hops
 Message types
Ping — probes network for other servents

Pong — response to ping, contains IP addr, # of files, #
of Kbytes shared

Query — search criteria + speed requirement of servent

QueryHit — successful response to Query, contains
addr + %ort to transfer from, speed of servent, number

of hits, hit results, servent ID

Push — request to servent ID to initiate connection,
used to traverse firewalls

* Ping, Queries are flooded

* QueryHit, Pong, Push reverse path of previous
message

Flooding: Old Gnutella Example

Assume: m1’s neighbors are m2 and m3;
m3’s neighbors are m4 and m5;...

14

Flooding: Gnutella, Kazaa
] S . .
* Modifies the Gnutella protocol into two-level hierarchy
» Hybrid of Gnutella and Napster

Supernodes
* Nodes that have better connection to Internet
» Act as temporary indexing servers for other nodes
» Help improve the stability of the network

Standard nodes
« Connect to supernodes and report list of files
« Allows slower nodes to participate

Search
» Broadcast (Gnutella-style) search across supernodes

Disadvantages
« Kept a centralized registration - allowed for law suits ®

Overview
. I I

« P2P Lookup Overview
» Centralized/Flooded Lookups

* Routed Lookups — Chord

« Comparison of DHTs

16

Routing: Structured Approaches

« Goal: make sure that an item (file) identified is always
found in a reasonable # of steps
« Abstraction: a distributed hash-table (DHT) data structure
* insert(id, item);
* item = query(id);

* Note: item can be anything: a data object, document, file, pointer
to a file...
* Proposals
« CAN (ICIR/Berkeley)
« Chord (MIT/Berkeley)
» Pastry (Rice)
» Tapestry (Berkeley)

Routing: Chord

— s s s
* Associate to each node and item a unique
id In an uni-dimensional space

* Properties
* Routing table size O(log(N)) , where N is the

total number of nodes

« Guarantees that a file is found in O(log(N))
steps

Aside: Hashing
— S S
« Advantages
* Let nodes be numbered 1..m
Client uses a good hash function to map a URL to 1..m

Say hash (url) = x, so, client fetches content from node
X

No duplication — not being fault tolerant.
One hop access

Any problems?
« What happens if a node goes down?
« What happens if a node comes back up?
« What if different nodes have different views?

Robust hashing

. s s s
* Let 90 documents, node 1..9, node 10 which was
dead is alive again
* % of documents in the wrong node?
* 10, 19-20, 28-30, 37-40, 46-50, 55-60, 64-70, 73-80,
82-90

 Disruption coefficient = >
« Unacceptable, use consistent hashing — idea behind
Akamai!

Consistent Hash

— N . N . N .

* “view” = subset of all hash buckets that are
visible

* Desired features
« Balanced — in any one view, load is equal

across buckets

« Smoothness — little impact on hash bucket
contents when buckets are added/removed

« Spread — small set of hash buckets that may
nold an object regardless of views

_oad — across all views # of objects assigned to
nash bucket is small

Consistent Hash — Example

— =1 =1
« Construction

» Assign each of C hash buckets to
random points on mod 2" circle,
where, hash key size = n.

- Map object to random position on
circle

- Hash of object = closest
clockwise bucket

Smoothness = addition of bucket does not cause much
movement between existing buckets

Spread & Load - small set of buckets that lie near object

Balance - no bucket is responsible for large number of
objects

Routing: Chord Basic Lookup ?%{

"N10

“Where is key 80?"

N105

“N90 has K80” N32

K801 N9O

N60

23

Routing: Finger table - Faster Lookup%

24

Routing: Chord Summary
. s s
* Assume identifier space is O...

« Each node maintains

* Finger table

« Entry /in the finger table of n is the first node that
succeeds or equals n + 2

 Predecessor node

* An item identified by id is stored on the
successor node of id

Routing: Chord Example

Succ. Table

« Assume an

id+2'|succ

identifier space o 2]
0..8 2 5

* Node n1:(1)
joins—=>all entries
In its finger table
are initialized to
itself

Routing: Chord Example ”;i%{

* Node n2:(2) joins

Succ. Table

i lid+2' succ

Succ. Table

id+2'|succ

N-—-~O ™
N
—

27

Routing: Chord Example ”;i%{

Succ. Table

i lid+2' succ

I
0
1 2 | 2
2 410

* Nodes n3:(0), n4:(6)
join

Succ. Table

i lid+2'|succ
2
6
6
Succ. Table
i lid+2' succ
o0 7 0
1 0 | O
2l 2| 2
Succ. Table

i lid+2'|succ
0 3 6
1 4 6
2 6 6

28

Routing: Chord Examples

* Nodes: n1:(1), n2(2),
n3(0), n4(6)
 ltems: f1:(7), f2:(1)

Succ. Table

id+2'|succ

NAO\-
(@)
o

Succ. Table ltems

7

i lid+2'|succ
0 1 1
1 2 2
2 4 0

Succ. Table ltems

i ligd+2' | succ| |1
2 2
3 6
5 6
Succ. Table
i lid+2'succ
0 3 6
1 4 6
2/ 6 6

29

Routing: Query
I N
 Upon receiving a

query for item id, a
node

* Check whether
stores the item locally

 If not, forwards the
query to the largest
node in its successor
table that does not

exceed id
Succ. Table 7
i lid+2' succ

N -~ O™
o
o

Succ. Table

id+2

SuccC

N - O™

ltems

7

Succ. Table ltems

i lid+2!

SuccC

i
0
1
2

1

Succ. Table

i lid+2!

SuccC

i

0 3
1 4
2 6

6
6
6

30

What Can DHTs do for us?

. Dlstrlbuted object Iookup
« Based on object ID

* De-centralized file systems
 CFS, PAST, lvy

* Application Layer Multicast
« Scribe, Bayeux, Splitstream

 Databases
e PIER

Overview
. I I

« P2P Lookup Overview
» Centralized/Flooded Lookups

* Routed Lookups — Chord

 Comparison of DHTs

32

Comparison

. Many proposals for DHTs
Tapestry (UCB) -- Symphony (Stanford) -- 1Thop (MIT)

Pastry (MSR, Rice) -- Tangle (UCB) -- conChord (MIT)
Chord (MIT, UCB) -- SkipNet (MSR,UW) -- Apocrypha (Stanford)
CAN (UCB, ICSI) -- Bamboo (UCB) -- LAND (Hebrew Univ.)
Viceroy (Technion) -- Hieras (U.Cinn) -- ODRI (TexasA&M)
Kademlia (NYU) -- Sprout (Stanford)

Kelips (Cornell) -- Calot (Rochester)

Koorde (MIT) -- JXTA's (Sun)

« What are the right design choices? Effect on
performance?

Deconstructing DHTs
— s s
Two observations:

1. Common approach
. N nodes; each labeled with a virtual identifier (128 bits)

« define “distance” function on the identifiers
routing works to reduce the distance to the destination

2. DHTs differ primarily in their definition of “distance”
« typically derived from (loose) notion of a routing geometry

DHT Routing Geometries
. s s s
« Geometries:
* Tree (Plaxton, Tapestry)
Ring (Chord)
Hypercube (CAN)
XOR (Kademlia)
Hybrid (Pastry)
* What is the impact of geometry on routing?

35

3 *

L4 (3

)

Tree (Plaxton, Tapestry) S

- N N N]
000 001 010 011 100 101 110 111

Y [3e
.

‘e

o
. .*
‘‘‘‘‘‘
L] .
L] -
gy e
"y .
e ws

Geometry
* nodes are leaves in a binary tree
 distance = height of the smallest common subtree
* logN neighbors in subtrees at distance 1,2,...,logN

36

Hypercube (CAN)

I I I
110 111
100/T -10/1.
9,1/0'./.011
000 &=
001
Geometry

* nodes are the corners of a hypercube
 distance = #matching bits in the IDs of two nodes
* logN neighbors per node; each at distance=1 away

37

Rlng (Chord) P
N N N |
000
001
110 010
011

100

Geometry
* nodes are points on a ring
« distance = numeric distance between two node IDs
* logN neighbors exponentially spaced over O...N

38

Hybrld (Pastry) ?%*f

Geometry:
« combination of a tree and ring
* two distance metrics

« default routing uses tree; fallback to ring under failures
* neighbors picked as on the tree

39

XOR (Kademlia)

0l «—00 «——11 «—— 10

Geometry:
 distance(A,B) =AXORB
* logN neighbors per node spaced exponentially

* not a ring because there is no single consistent
ordering of all the nodes

7

S NS
Ny

40

Geometry’s Impact on Routing
I I I I
* Routing
* Neighbor selection: how a node picks its routing entries
* Route selection: how a node picks the next hop

* Proposed metric: flexibility
« amount of freedom to choose neighbors and next-hop paths
« FNS: flexibility in neighbor selection
* FRS: flexibility in route selection

* intuition: captures ability to “tune” DHT performance

 single predictor metric dependent only on routing issues

FNS for Ring Geometry v
. s s s .
000
111 001
110 010
101 011

100

- Chord algorithm picks ith neighbor at 2i distance

- A different algorithm picks ith neighbor from [2!,
;ﬁ+1)

43

FRS for Ring Geometry

110

100

- Chord algorithm picks neighbor closest to
destination

- A different algorithm picks the best of alternate
paths

42

oN A
ity L 757 %
Flexibility: at a Glance P
1 I I I =
Flexibility Ordering of Geometries
Neighbors Hypercube << Tree, XOR, Ring, Hybrid
(FNS) (1) (2-1)
Routes Tree << XOR, Hybrid < Hypercube < Ring
(FRS) (1) (logN/2) (logN/2) (logN)

44

Geometry - Flexibility - Performance?
— s s s
Validate over three performance metrics:

1. resilience

2. path latency

3. path convergence

Metrics address two typical concerns:
« ability to handle node failure

« ability to incorporate proximity into overlay
routing

7

Does flexibility affect static resilience? WAy

SN d b
I I] — e
100 ! :';';'j':;'—“: """""" _ _ _‘_:;_,..
80)
S
2 60 [)
E 40 - - < s XOR —+— -
- — ,’ ‘/ 5 B N ___X___
L(E /EI e o -7 -
20 Butterfly & -
_oleXT Hypercube --m--
f B Hybrid --o--
0 : | | I

0 10 20 30 40 50 60 70 80 90
Failed nodes (%)

Tree << XOR = Hybrid < Hypercube < Ring

Flexibility in Route Selection matters for Static Resilience

48

WhICh Is more effective, FNS or FRS? w*ﬁ "

CDF

100
90
80
70
60
50
40
30
20
10

0

Plain << FRS

"4 E g b
N N N R
' T L
— //_,r—' - —
_ /
B /
;.-'
B :!
f‘rlr
- ;.'!F
f
- _..'{
i ;’I Plain Ring
-/ PNSRing ------- -
|/ PRS Ring -------- -
/ | IPI\IS+PHS F{Iing
0 400 800 1200 1600 2000
Latency

<< FNS = FNS+FRS

Neighbor Selection is much better than Route

Selection

49

Understanding DHT Routing: Conclusion %77

* What makes for a “good” DHT?

* one answer: a flexible routing geometry

* Result: Ring is most flexible

51

Next Lecture
= I I I
« DNS, Web and P2P
* Required readings
* Peer-to-Peer Systems
* Do incentives build robustness in BitTorrent?

52

