

Acknowledgments: Lecture slides are from Computer networks course thought by Jennifer Rexford at Princeton University. When slides are obtained from other sources, a a reference will be noted on the bottom of that slide. A full list of references is provided on the last slide.

Goals of Today's Lecture

- IP addresses
 - Dotted-quad notation
 - IP prefixes for aggregation
- Address allocation
 - Classful addresses
 - Classless InterDomain Routing (CIDR)
 - Growth in the number of prefixes over time
- Packet forwarding
 - Forwarding tables
 - Longest-prefix match forwarding
 - -Where forwarding tables come from

IP Address (IPv4)

- A unique 32-bit number
- Identifies an interface (on a host, on a router, ...)
- Represented in dotted-quad notation

Grouping Related Hosts

- The Internet is an "inter-network"
 - Used to connect networks together, not hosts
 - -Needs a way to address a network (i.e., group of hosts)

LAN = Local Area Network WAN = Wide Area Network

Scalability Challenge

Suppose hosts had arbitrary addresses

 Then every router would need a lot of information
 ...to know how to direct packets toward every host

Standard CS Trick

Have a scalability problem? Introduce hierarchy...

Hierarchical Addressing in U.S. Mail

- Addressing in the U.S. mail
 - -Zip code: 08540
 - Street: Olden Street
 - Building on street: 35
 - Room in building: 306
 - Name of occupant: Jennifer Rexford
- Forwarding the U.S. mail
 - Deliver letter to the post office in the zip code
 - -Assign letter to mailman covering the street
 - Drop letter into mailbox for the building/room
 - Give letter to the appropriate person

Hierarchical Addressing: IP Prefixes

- Divided into network & host portions (left and right)
- 12.34.158.0/24 is a 24-bit prefix with 2⁸ addresses

IP Address and a 24-bit Subnet Mask

Scalability Improved

 Number related hosts from a common subnet -1.2.3.0/24 on the left LAN -5.6.7.0/24 on the right LAN

Easy to Add New Hosts

- No need to update the routers
 - -E.g., adding a new host 5.6.7.213 on the right
 - Doesn't require adding a new forwarding-table entry

Address Allocation

Classful Addressing

- In the olden days, only fixed allocation sizes –Class A: 0*
 - Very large /8 blocks (e.g., MIT has 18.0.0.0/8)
 - -Class B: 10*
 - Large /16 blocks (e.g,. Princeton has 128.112.0.0/16) -Class C: 110*
 - Small /24 blocks (e.g., AT&T Labs has 192.20.225.0/24)
 - -Class D: 1110*
 - Multicast groups
 - -Class E: 11110*
 - Reserved for future use

• This is why folks use dotted-quad notation!

CIDR: Hierarchal Address Allocation

- Prefixes are key to Internet scalability
 - Address allocated in contiguous chunks (prefixes)
 - Routing protocols and packet forwarding based on prefixes
 - Today, routing tables contain ~200,000 prefixes

Scalability: Address Aggregation

Routers in the rest of the Internet just need to know how to reach 201.10.0.0/21. The provider can direct the IP packets to the appropriate customer.

But, Aggregation Not Always Possible 201.10.0.0/21 **Provider 1** Provider 2 201.10.0.0/22 201.10.4.0/24 201.10.5.0/24 **201.10.6.0/23**

Multi-homed customer with 201.10.6.0/23 has two providers. Other parts of the Internet need to know how to reach these destinations through *both* providers.

Scalability Through Hierarchy

- Hierarchical addressing
 - Critical for scalable system
 - Don't require everyone to know everyone else
 - Reduces amount of updating when something changes
- Non-uniform hierarchy
 - Useful for heterogeneous networks of different sizes
 - Initial class-based addressing was far too coarse
 - Classless InterDomain Routing (CIDR) helps
- Next few slides
 - History of the number of globally-visible prefixes
 - Plots of # of prefixes vs. time

Pre-CIDR (1988-1994): Steep Growth

Growth faster than improvements in equipment capability

CIDR Deployed (1994-1996): Much Flatter

Efforts to aggregate (even decreases after IETF meetings!)

CIDR Growth (1996-1998): Roughly Linear 👮

Boom Period (1998-2001): Steep Growth

Long-Term View (1989-2005): Post-Boom

Obtaining a Block of Addresses

- Separation of control
 - Prefix: assigned to an institution
 - -Addresses: assigned by the institution to their nodes
- Who assigns prefixes?
 - Internet Corporation for Assigned Names and Numbers
 - Allocates large address blocks to Regional Internet Registries
 - Regional Internet Registries (RIRs)
 - E.g., ARIN (American Registry for Internet Numbers)
 - Allocates address blocks within their regions
 - Allocated to Internet Service Providers and large institutions
 - Internet Service Providers (ISPs)
 - Allocate address blocks to their customers
 - Who may, in turn, allocate to their customers...

Figuring Out Who Owns an Address

- Address registries
 - -Public record of address allocations
 - Internet Service Providers (ISPs) should update when giving addresses to customers
 - -However, records are notoriously out-of-date

Ways to query

- -UNIX: "whois -- h whois.arin.net 128.112.136.35"
- -http://www.arin.net/whois/
- -http://www.geektools.com/whois.php

Example Output for 213.233.168.1

- inetnum: 213.233.168.0 213.233.175.255
- netname: SCHOOLNET-TEH-IR
- descr: Sharif University Of Technology
- country: IR
- person: Yahya Tabesh
- address: Computer Center, Sharif University of Technology
- address: Azadi Ave., Tehran, Iran.
- phone: +98 21 6005319
- fax-no: +98 21 6019568
- e-mail: <u>tabesh@sharif.ac.ir</u>
- mnt-by: SHARIF-EDU-MNT

Are 32-bit Addresses Enough?

- Not all that many unique addresses
 - $-2^{32} = 4,294,967,296$ (just over four billion)
 - Plus, some are reserved for special purposes
 - -And, addresses are allocated in larger blocks
- And, many devices need IP addresses

 Computers, PDAs, routers, tanks, toasters, …
- Long-term solution: a larger address space – IPv6 has 128-bit addresses (2¹²⁸ = 3.403 × 10³⁸)
- Short-term solutions: limping along with IPv4
 - Private addresses
 - Network address translation (NAT)
 - Dynamically-assigned addresses (DHCP)

Hard Policy Questions

- How much address space per geographic region?
 - Equal amount per country?
 - Proportional to the population?
 - What about addresses already allocated?
- Address space portability?
 - Keep your address block when you change providers?
 - Pro: avoid having to renumber your equipment
 - Con: reduces the effectiveness of address aggregation
- Keeping the address registries up to date?
 - What about mergers and acquisitions?
 - Delegation of address blocks to customers?
 - -As a result, the registries are horribly out of date

Packet Forwarding

Hop-by-Hop Packet Forwarding

- Each router has a forwarding table
 - Maps destination addresses...
 - -... to outgoing interfaces
- Upon receiving a packet
 - Inspect the destination IP address in the header
 - Index into the table
 - Determine the outgoing interface
 - Forward the packet out that interface
- Then, the next router in the path repeats — And the packet travels along the path to the destination

Separate Table Entries Per Address

- If a router had a forwarding entry per IP address
 - Match destination address of incoming packet
 - -... to the forwarding-table entry
 - -... to determine the outgoing interface

Separate Entry Per 24-bit Prefix

 If the router had an entry per 24-bit prefix - Look only at the top 24 bits of the destination address - Index into the table to determine the next-hop interface

Separate Entry Classful Address

- If the router had an entry per classful prefix
 - Mixture of Class A, B, and C addresses
 - Depends on the first couple of bits of the destination
- Identify the mask automatically from the address – First bit of 0: class A address (/8)
 - First two bits of 10: class B address (/16)
 - First three bits of 110: class C address (/24)
- Then, look in the forwarding table for the match
 - -E.g., 129.2.3.4 maps to 129.2.3.0/24
 - Then, look up the entry for 129.2.3.0/24
 - $-\ldots$ to identify the outgoing interface

CIDR Makes Packet Forwarding Harder

- There's no such thing as a free lunch

 CIDR allows efficient use of the limited address space
 - -But, CIDR makes packet forwarding much harder
- Forwarding table may have many matches – E.g., table entries for 201.10.0.0/21 and 201.10.6.0/23
 - The IP address 201.10.6.17 would match both!

Longest Prefix Match Forwarding

- Forwarding tables in IP routers

 Maps each IP prefix to next-hop link(s)
- Destination-based forwarding
 - Packet has a destination address
 - Router identifies longest-matching prefix
 - Cute algorithmic problem: very fast lookups

Simplest Algorithm is Too Slow

- Scan the forwarding table one entry at a time
 - See if the destination matches the entry
 - If so, check the size of the mask for the prefix
 - -Keep track of the entry with longest-matching prefix
- Overhead is linear in size of the forwarding table Today, that means 200,000 entries!
 - -And, the router may have just a few nanoseconds
 - -... before the next packet is arriving
- Need greater efficiency to keep up with *line rate* – Better algorithms
 - Hardware implementations

Patricia Tree

- Store the prefixes as a tree
 - One bit for each level of the tree
 - Some nodes correspond to valid prefixes
 - -... which have next-hop interfaces in a table
- When a packet arrives
 - Traverse the tree based on the destination address
 - Stop upon reaching the longest matching prefix

Even Faster Lookups

- Patricia tree is faster than linear scan

 Proportional to number of bits in the address
- Patricia tree can be made faster
 - Can make a k-ary tree
 - E.g., 4-ary tree with four children (00, 01, 10, and 11)
 - Faster lookup, though requires more space
- Can use special hardware
- Huge innovations in the mid-to-late 1990s
 After CIDR was introduced (in 1994)
 - ... and longest-prefix match was a major bottleneck

Where do Forwarding Tables Come From?

- Routers have forwarding tables
 Map prefix to outgoing link(s)
- Entries can be statically configured -E.g., "map 12.34.158.0/24 to Serial0/0.1"
- But, this doesn't adapt
 - To failures
 - To new equipment
 - To the need to balance load
 - . . .
- That is where other technologies come in... – Routing protocols, DHCP, and ARP (later in course)

How Do End Hosts Forward Packets?

- End host with single network interface – PC with an Ethernet link
 - Laptop with a wireless link
- Don't need to run a routing protocol
 - Packets to the host itself (e.g., 1.2.3.4/32)
 - Delivered locally
 - Packets to other hosts on the LAN (e.g., 1.2.3.0/24)
 - Sent out the interface
 - Packets to external hosts (e.g., 0.0.0/0)
 - Sent out interface to local gateway
- How this information is learned
 - Static setting of address, subnet mask, and gateway
 - Dynamic Host Configuration Protocol (DHCP)

What About Reaching the End Hosts?

• How does the last router reach the destination?

1.2.3.4 1.2.3.7 1.2.3.156

- Each interface has a persistent, global identifier
 - -MAC (Media Access Control) address
 - -Burned in to the adaptors Read-Only Memory (ROM)
 - Flat address structure (i.e., no hierarchy)
- Constructing an address resolution table – Mapping MAC address to/from IP address
 - -Address Resolution Protocol (ARP)

Conclusions

- IP address
 - -A 32-bit number
 - -Allocated in prefixes
 - Non-uniform hierarchy for scalability and flexibility
- Packet forwarding
 - -Based on IP prefixes
 - Longest-prefix-match forwarding
- Next lecture
 - Transmission Control Protocol (TCP)
- We'll cover some topics later – Routing protocols, DHCP, and ARP