#In the name of Allah

Computer Engineering Department
Sharif University of Technology

CE443- Computer Networks

Socket
Programming

Acknowledgments: Lecture slides are from Computer networks course thought
by Jennifer Rexford at Princeton University. When slides are obtained from other
sources, a reference will be noted on the bottom of that slide.

Socket: End Point of Net. Comm.’s

» Socket as an Application Programming Interface
— Supports the creation of network applications

* Two ends communicate through a “socket”
— Sending messages from one process to another

— The transportation details are transparent to the
programmer

User process User process

socket socket

Operating Operating
System < - System

Delivering the Data: Division of Labor ;4

* Application
—Read data from and write data to the socket
—Interpret the data (e.g., render a Web page)

* Operating system
—Deliver data to the destination socket @

—Based on the destination port number

* Network
—Deliver data packet to the destination host
—Based on the destination IP address

Identifying the Receiving Process

» Sending process must identify the receiver
— The receiving end host machine
— The specific socket in a process on that machine

* Receiving host
— Destination address that uniquely identifies the host
—An IPv4 address is a 32-bit quantity

* Receiving socket
—Host may be running many different processes
— Destination port that uniquely identifies the socket
— A port number is a 16-bit quantity

Identifying the Receiving Process

Server host 128.2.194.242

. Service request for
e st 128.2.194.242:80
: i (i.e., the Web server)

Service request for
, 128.2.194.242:7
i (i.e., the echo server)

Knowing What Port Number To Use ‘&

* Popular applications have well-known ports
—E.qg., port 80 for Web and port 25 for e-mail
— See http://www.iana.org/assignments/port-numbers

* Well-known vs. ephemeral ports

— Server has a well-known port (e.g., port 80)
 Between 0 and 1023

— Client picks an unused ephemeral (i.e., temporary) port
* Between 1024 and 65535

* Uniquely identifying the traffic between the hosts
— Two IP addresses and two port numbers
— Underlying transport protocol (e.g., TCP or UDP)

http://www.iana.org/assignments/port-numbers
http://www.iana.org/assignments/port-numbers

Port Numbers are Unique on Each Host @

R T

* Port number uniquely identifies the socket
— Cannot use same port number twice with same address
— Otherwise, the OS can’t demultiplex packets correctly

* Operating system enforces uniqueness
— OS keeps track of which port numbers are in use
—Doesn't let the second program use the port number

« Example: two Web servers running on a machine
— They cannot both use port “80", the standard port #
— 30, the second one might use a non-standard port #
—E.g., http://www.cnn.com:8080

http://www.cnn.com:8080/
http://www.cnn.com:8080/

UNIX Socket API

UNIX Socket API 91’

» Socket interface
—QOriginally provided in Berkeley UNIX
—Later adopted by all popular operating systems

—Simplifies porting applications to different OSes
(even to the Windows!)

* In UNIX, everything is like a file
—All input is like reading a file
—All output is like writing a file
—File is represented by an integer file descriptor

* APl implemented as system calls
—E.g., connect, read, write, close, ...

Typical Client Program

* Prepare to communicate
—Create a socket
—Determine server address and port number
—Initiate the connection to the server

* Exchange data with the server
—Write data to the socket
—Read data from the socket
—Do stuff with the data (e.g., render a Web page)

* Close the socket

Typical Server Program

* Prepare to communicate
— Create a socket
— Associate local address and port with the socket

» Wait to hear from a client (passive open)
— Indicate how many clients-in-waiting to permit
— Accept an incoming connection from a client

« Exchange data with the client over new socket
— Receive data from the socket
— Do stuff to handle the request (e.g., get a file)
— Send data to the socket
— Close the socket

* Repeat with the next connection request

Putting it All Together

Server

socket ()

v

bind()

v

listen ()

v

accept ()

Client

socket ()
establish *

nection
con _» connect ()

process
request

write ()

send request .*
write ()

Send response

—p read()

Wanna See Real Clients and Servers? @
* Apache Web server
— Open source server first released in 1995
—Name derives from “a patchy server” ;-)
— Software available online at http://www.apache.org

* Mozilla Web browser
— http://lwww.mozilla.org/developer/

« Sendmaill
— http://www.sendmail.org/

* BIND Domain Name System (Datagram)
— Client resolver and DNS server
— http://www.isc.org/index.pl?/sw/bind/

http://www.apache.org/
http://www.apache.org/
http://www.isc.org/index.pl?/sw/bind/
http://www.isc.org/index.pl?/sw/bind/

Wanna to have fun? Okay...

Client Programming

Client Creating a Socket: socket() 91’

'T“

int socket(int domain, int type, int protocol)

« Operation to create a socket
— Returns a descriptor (or handle) for the socket
— Originally designed to support any protocol suite

* Domain: protocol family
—PF _INET for the Internet

* Type: semantics of the communication

—SOCK_STREAM: reliable byte stream
—SOCK_DGRAM: message-oriented service

 Protocol: specific protocol
— UNSPEC: unspecified
—(PF_INET and SOCK_STREAM already implies TCP)

Client: Learning Server Address/Port ;4

» Server typically known by name and service
—“www.google.com” and “http”

* Which must be translated into IP address and port #

 Translating the server’'s name to an address

—int getaddrinfo(const char *node, const char *service,
const struct addrinfo *hints, struct addrinfo **res);

—void freeaddrinfo(struct addrinfo *res);

—int getnameinfo(const struct sockaddr *sa, socklen_t
salen,char *host, size t hostlen, char *serv, size t
servilen, int flags);

* Check Linux Man pages for details

http://www.google.com
http://www.google.com

Client: Learning Server Address/Port @

* struct addrinfo {
int ai_flags;
int ai_family;
Int ai_socktype;
Int al_protocol,;
socklen_t ai_addrlen;
struct sockaddr *ai_addr;

char *ai_canonname;
struct addrinfo *ai_next;

IP Address Data Structures

include <netinet/in. h>

// All pointers to socket address structures are often cast to pointers
// to this type before use in various functions and system calls:

struct sockaddr {

unsigned short sa family; // address family, AF xxx

char sa data[l14]; // 14 bytes of protocol address
)i

// IPv4 AF_INET sockets:

struct sockaddr_in {

short sin family; // e.g. AF_INET, AF_ INET6
unsigned short sin port; // e.g. htons(3490)

struct in_addr sin addr; // see struct in_addr, below
char sin zero[8); // zero this if you want to

struct in_addr {
unsigned long s addr; // load with inet pton()
)i

e

Client: Connecting Socket to the Server 4

|

]

int connect(int sockfd, struct sockaddr *server_address,
socketlen_t addrlen)

* Client contacts the server to establish connection
— Associate the socket with the server address/port

— Acquire a local port number (assigned by the OS)
—Request connection to server, who will hopefully accept

 Establishing the connection

— Arguments: socket descriptor, server address, and address
size

— Returns 0 on success, and -1 if an error occurs

: : . . =
Client: Sending and Receiving Data :%:

» Sending data
ssize t write(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer of data to
send, and length of the buffer

— Returns the number of characters written, and -1 on
error

* Receiving data
ssize t read(int sockfd, void *buf, size t len)

— Arguments: socket descriptor, pointer to buffer to place
the data, size of the buffer

— Returns the number of characters read (where 0 implies
“end of file”), and -1 on error

* Closing the socket
int close(int sockfd)

Not enough fun? Okay... face a headache!

Server Programming

Servers Differ From Clients

* Passive open
—Prepare to accept connections
—... but don’t actually establish
—... until hearing from a client

* Hearing from multiple clients
—Allowing a backlog of waiting clients
—... In case several try to communicate at once

* Create a socket for each client
—Upon accepting a new client
—... create a new socket for the communication

Remember: Typical Server Program 3

* Prepare to communicate
— Create a socket
— Associate local address and port with the socket

» Wait to hear from a client (passive open)
— Indicate how many clients-in-waiting to permit
— Accept an incoming connection from a client

« Exchange data with the client over new socket
— Receive data from the socket
— Do stuff to handle the request (e.g., get a file)
— Send data to the socket
— Close the socket

* Repeat with the next connection request

Remember: The Big Picture

Server

socket ()

v

bind()

v

listen ()

v

accept ()

Client

socket ()
establish *

nection
con _» connect ()

process
request

write ()

send request .*
write ()

seénd response

—p read()

Server: Server Preparing its Socket 9\'

» Server creates a socket and binds address/port
— Server creates a socket, just like the client does

— Server associates the socket with the port number
(and hopefully no other process is already using it!)

 Create a socket
int socket(int domain, int type, int protocol)

* Bind socket to the local address and port number

int bind(int sockfd, struct sockaddr *my_addr, socklen _t
addrien)

— Arguments: socket descriptor, server address, address
length

—Returns 0 on success, and -1 if an error occurs

L]

~

Server: Allowing Clients to Wait

»: i

* Many client requests may arrive
— Server cannot handle them all at the same time
— Server could reject the requests, or let them wait
— Define how many connections can be pending: backlog

» Wait for clients
int listen(int sockfd, int backlog)
— Arguments: socket descriptor and acceptable backlog
—Returns a 0 on success, and -1 on error

* What if too many clients arrive?
—Some requests don’t get through
— The Internet makes no promises...
— And the client can always try again

Server: Accepting Client Connection

* Now all the server can do is walit...
— Waits for connection request to arrive
— Blocking until the request arrives
— And then accepting the new request

» Accept a new connection from a client

int accept(int sockfd, struct sockaddr *addr, socketlen _t
*addrlen)

— Arguments: socket descriptor, structure that will provide
client address and port, and length of the structure

— Returns descriptor for a new socket for this connection

Server: One Request at a Time?

 Serializing requests is inefficient
— Server can process just one request at a time
— All other clients must wait until previous one is done

* May need to time share the server machine
— Alternate between servicing different requests
* E.g. use multi-threading

— Orr, start a new process to handle each request
* Allow the operating system to share the CPU across processes

— Or, some hybrid of these two approaches

Client and Server: Cleaning House

* Once the connection is open
— Both sides and read and write
— Two unidirectional streams of data
—In practice, client writes first, and server reads
— ... then server writes, and client reads, and so on

* Closing down the connection
— Either side can close the connection
— ... using the close() system call

* What about the data still “in flight”

— Data in flight still reaches the other end
— S0, server can close() before client finishing reading

The Problem of Interoperability

Byte Order

* Hosts differ in how they store data
—E.qg., four-byte number (byte3, byte2, byte1, byte0)

e Little endian (“little end comes first”) < Intel PCs!!!
— Low-order byte stored at the lowest memory location
—ByteO, byte1, byte2, byte3d

» Big endian ("big end comes first”)

— High-order byte stored at lowest memory location
—Byte3, byte2, byte1, byte O

* Makes it more difficult to write portable code
— Client may be big or little endian machine
— Server may be big or little endian machine

IP is Big Endian

* But, what byte order is used “on the wire”
—That is, what do the network protocol use?

* The Internet Protocols picked one convention
—IP is big endian (aka “network byte order”)

» Writing portable code require conversion
— Use htons() and htonl() to convert to network byte order
— Use ntohs() and ntohl() to convert to host order

* Hides details of what kind of machine you're on

— Use the system calls when sending/receiving data
structures longer than one byte

Why Can’t Sockets Hide These Details? 91’

e,

* Dealing with endian differences is tedious
— Couldn’t the socket implementation deal with this
— ... by swapping the bytes as needed?

* No, swapping depends on the data type
— Two-byte short int: (byte 1, byte 0) vs. (byte 0, byte 1)
— Four-byte long int: (byte 3, byte 2, byte 1, byte 0) vs.
(byte O, byte 1, byte 2, byte 3)
— String of one-byte charters: (char O, char 1, char 2, ...) in
both cases

» Socket layer doesn’t know the data types
— Sees the data as simply a buffer pointer and a length
—Doesn’t have enough information to do the swapping

41

The Web as an Example
Application

The Web: URL, HTML, and HTTP

» Uniform Resource Locator (URL)
— A pointer to a “black box” that accepts request methods

— Formatted string with protocol (e.g., http), server name
(e.g., www.cnn.com), and resource name (coolpic.jpg)

* HyperText Markup Language (HTML)

— Representation of hyptertext documents in ASCII format
— Format text, reference images, embed hyperlinks
— Interpreted by Web browsers when rendering a page

» HyperText Transfer Protocol (HTTP)

— Client-server protocol for transferring resources
— Client sends request and server sends response

wu
Example: HyperText Transfer Protocol :4:

GET /courses/archive/spring08/cos461/ HTTP/1.1
Host: www.cs.princeton.edu

User-Agent: Mozilla/4.03 Request
<CRLF>

HTTP/1.1 200 OK

Date: Mon, 4 Feb 2008 13:09:03 GMT

Server: Netscape-Enterprise/3.5.1
Content-Type: text/plain

Response | | ast-Modified: Mon, 4 Feb 2008 11:12:23 GMT
Content-Length: 21

<CRLF>

Site under construction

e
In Fact, Try This at a UNIX Prompt... :%:

labpc: telnet www.cnn.com 80
GET /index.html HTTP/1l.1
Host: www.cnn.com

<CRLF>

And you’ll see the response...

Web Server =

~ ‘-a —-“ - '!.

* Web site vs. Web server

—Web site: collections of Web pages associated
with a particular host name

—Web server: program that satisfies client
requests for Web resources

* Handling a client request
—Accept the socket
—Read and parse the HT TP request message
—Translate the URL to a filename
—Determine whether the request is authorized
—Generate and transmit the response

Example - Echo

m A client communicates with an “echo” server

= The server simply echoes whatever it receives back to the client

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 33

Example - Echo using stream socket

The server starts by getting ready to receive client connections...

Client Server
Create a TCP socket Create a TCP socket
Establish connection Assign a port to socket
Communicate Set socket to listen
Close the connection Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 34

‘ Example - Echo using stream socket

/* Create socket for incoming connections */

if ((servSock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
DieWithError ("socket () failed");

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 35

Example - Echo using stream socket

.sin_family = AF INET; /* Internet address family */
.sin_addr.s_addr = htonl (INADDR ANY); /*Any incoming interface */
.sin _port = htons (echoServPort) ; /* Local port */

if (bind(servSock, (struct sockaddr *) & , sizeof ()) < 0)

DieWithError ("bind () failed");

Client Server
Create a TCP socket Create a TCP socket
Establish connection Assign a port to socket
Communicate Set socket to listen
Close the connection Repeatedly:

a. Accept new connection

b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 36

Example - Echo using stream socket

/* Mark the socket so it will listen for incoming connections */
if (listen(servSock, MAXPENDING) < 0)
DieWithError ("listen() failed");

Client Server
Create a TCP socket Create a TCP socket
Establish connection Assign a port to socket
Communicate Set socket to listen
Close the connection Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 37

‘ Example - Echo using stream socket

for (;;) /* Run forever */

{
clntlLen = sizeof (echoClntAddr) ;

if ((clientSock=accept (servSock, (struct sockaddr *)&echoClntAddr, &clntLen))<0)
DieWithError ("accept () failed");

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 38

‘ Example - Echo using stream socket

Server is now blocked waiting for connection from a client

A client decides to talk to the server

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 39

‘ Example - Echo using stream socket

/* Create a reliable, stream socket using TCP */

if ((clientSock = socket(PF_INET, SOCK_STREAM, IPPROTO_TCP)) < 0)
DieWithError ("socket () failed");

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 40

‘ Example - Echo using stream socket

.sin_family = AF INET; /* Internet address family */
.sin_addr.s_addr = inet_addr (echoservIP); /*Server IP address®/
.sin_port = htons (echoServPort) ; /* Server port */

if (connect(clientSock, (struct sockaddr *) & ,
sizeof ()) < 0)
DieWithError ("connect() failed");

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 41

‘ Example - Echo using stream socket

Server’s accept procedure in now unblocked and returns client’s socket

for (;;) /* Run forever */

{
clntlLen = sizeof (echoClntAddr) ;

if ((clientSock=accept (servSock, (struct sockaddr *)&echoClntAddr, &clntLen))<0)
DieWithError ("accept() failed") ;

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 42

‘ Example - Echo using stream socket

echoStringLen = strlen(echoString) ; /* Determine input length */

/* Send the string to the server */
if (send(clientSock, echoString, echoStringLen, 0) != echoStringLen)
DieWithError ("send() sent a different number of bytes than expected");

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 43

Example - Echo using stream socket

/* Receive message from client */
if ((recvMsgSize = recv(clntSocket, echoBuffer, RCVBUFSIZE, 0)) < 0)
DieWithError ("recv () failed");
/* Send received string and receive again until end of transmission */
while (recvMsgSize > 0) { /*zero indicates end of transmission */
if (send(clientSocket, echobuffer, recvMsgSize, 0) != recvMsgSize)
DieWithError (“send() failed”);

if ((recvMsgSize = recv(clientSocket, echoBuffer, RECVBUFSIZE, 0)) < 0)
DieWithError (“recv () failed”);

Client Server
Create a TCP socket Create a TCP socket
Establish connection Assign a port to socket
Communicate Set socket to listen
Close the connection Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 44

‘ Example - Echo using stream socket

Similarly, the client receives the data from the server

Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4. Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 45

‘ Example - Echo using stream socket

close (clientSock) ; close (clientSock) ;
Client Server
Create a TCP socket 1. Create a TCP socket
Establish connection 2. Assign a port to socket
Communicate 3. Set socket to listen
Close the connection 4 Repeatedly:

a. Accept new connection
b. Communicate
c. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 46

Example - Echo using stream socket

Server is now blocked waiting for connection from a client

Client Server
Create a TCP socket Create a TCP socket
Establish connection Assign a port to socket
Communicate Set socket to listen
Close the connection Repeatedly:

a. Accept new connection
b. Communicate
.. Close the connection

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 47

‘ Example - Echo using datagram socket

/* Create socket for sending/receiving datagrams */
if ((servSock = socket(PF_INET, SOCK DGRAM, IPPROTO UDP)) < 0)
DieWithError ("socket () failed");

/* Create a datagram/UDP socket */
if ((clientSock = socket(PF_INET, SOCK DGRAM, IPPROTO UDP)) < 0)
DieWithError ("socket () failed");

Client Server
1. Create a UDP socket 1. Create a UDP socket
2. Assign a port to socket 2. Assign a port to socket
3. Communicate 3. Repeatedly
4. Close the socket - Communicate

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 48

‘ Example - Echo using datagram socket

.sin_family = AF INET; /* Internet address family */
.sin_addr.s_addr = htonl (INADDR ANY); /*Any incoming interface */
.sin _port = htons (echoServPort) ; /* Local port */

if (bind(servSock, (struct sockaddr *) & , sizeof()) < 0)

DieWithError ("bind() failed");

.sin family = AF INET; /* Internet address family */

.sin_addr.s_addr = htonl (INADDR ANY); /*Any incoming interface */

.sin port = htons(echoClientPort); /* Local port */
if(bind(clientSock, (struct sockaddr *) & ,sizeof ())<0)

DieWithError ("connect() failed");

Client Server
1. Create a UDP socket 1. Create a UDP socket
2. Assign a port to socket 2. Assign a port to socket
3. Communicate 3. Repeatedly
4. Close the socket - Communicate

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 49

‘ Example - Echo using datagram socket

.sin_family = AF_INET; /* Internet address family */

.sin_addr.s_addr = inet_addr (echoservIP); /*Server IP address®/

.sin port = htons (echoServPort) ; /* Server port */
echoStringlLen = strlen(echoString) ; /* Determine input length */

/* Send the string to the server */
if (sendto(clientSock, echoString, echoStringlLen, O,
(struct sockaddr *) & , sizeof())
!= echoStringLen)
DieWithError ("send() sent a different number of bytes than expected");

Client Server
1. Create a UDP socket 1. Create a UDP socket
2. Assign a port to socket 2. Assign a port to socket
3. Communicate 3. Repeatedly
4. Close the socket - Communicate

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 50

‘ Example - Echo using datagram socket

for (;;) /*Run forever*/

{

clientAddrLen = sizeof (echoClientAddr) /* Set the size of the in-out parameter */
/*Block until receive message from client*/

if ((recvMsgSize = recvfrom(servSock, echoBuffer, ECHOMAX, 0),
(struct sockaddr *) & , sizeof())) < 0)
DieWithError (“recvfrom() failed");

if (sendto(servSock, echobuffer, recvMsgSize, O,
(struct sockaddr *) & , sizeof())
!= recvMsgSize)
DieWithError (“send() failed”);

Client Server
1. Create a UDP socket 1. Create a UDP socket
2. Assign a port to socket 2. Assign a port to socket
3. Communicate 3. Repeatedly
4. Close the socket - Communicate

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 51

‘ Example - Echo using datagram socket

Similarly, the client receives the data from the server

Client Server
1. Create a UDP socket 1. Create a UDP socket
2. Assign a port to socket 2. Assign a port to socket
3. Communicate 3. Repeatedly
4. Close the socket - Communicate

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 52

‘ Example - Echo using datagram

socket
close(clientSock) ;
Client Server
1. Create a UDP socket 1. Create a UDP socket
2. Assign a port to socket 2. Assign a port to socket
3. Communicate 3. Repeatedly
4. Close the socket - Communicate

CS556 - Distributed Systems Tutorial by Eleftherios Kosmas 53

