
#In the name of Allah

Socket
Programming

1

Computer Engineering Department
Sharif University of Technology

CE443- Computer Networks

Acknowledgments: Lecture slides are from Computer networks course thought
by Jennifer Rexford at Princeton University. When slides are obtained from other
sources, a reference will be noted on the bottom of that slide.

#Typical Client-Server

2

Client Server

request

response

socket()

bind()

listen()

accept()

socket()

connect()

send()

close()

Connection establishment

recv()
Data Request

send()
recv()

Data Response

close()

recv()
End the connection

#Client Programming

3

• Create stream socket (socket())
• Connect to server (connect())
• While still connected:

• send message to server (send())
• receive (recv()) data from server and process it

• Close TCP connection and Socket (close())

#Client Creating a Socket: socket()

4

int socket(int domain, int type, int protocol)

Operation to create a socket
✓ Returns a descriptor (or handle) for the socket
✓ Originally designed to support any protocol suite

Domain: protocol family
✓ PF_INET for the Internet

Type: semantics of the communication
✓ SOCK_STREAM: reliable byte stream
✓ SOCK_DGRAM: message-oriented service

Protocol: specific protocol
✓ UNSPEC: unspecified
✓ (PF_INET and SOCK_STREAM already implies TCP)

#Client: Send/Rcv Data and Close

5

int connect(int sockfd, struct sockaddr
*server_address,socketlen_t addrlen)

Client contacts the server to establish connection
✓Associate the socket with the server address/port
✓Acquire a local port number (assigned by the OS)
✓Request connection to server, who will hopefully accept

Establishing the connection
✓Arguments: socket descriptor, server address, and address
✓size
✓Returns 0 on success, and -1 if an error occurs

#Programming in Python: Client

6

#!/usr/bin/python
client.py
import socket
s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
host = socket.gethostname()
port = 9999
connection to hostname on the port.
s.connect((host, port))
Receive data no more than 1024 bytes
data = s.recv(1024)
s.close()
print("The time got from the server is %s" % tm)

#Server Programming:
Servers Differ From Clients

7

• Passive open
• Prepare to accept connections
• … but don’t actually establish
• … until hearing from a client

• Hearing from multiple clients
• Allowing a backlog of waiting clients
• ... in case several try to communicate at once

• Create a socket for each client
• Upon accepting a new client
• … create a new socket for the communication

#Typical Client-Server

8

Client Server

request

response

socket()

bind()

listen()

accept()

socket()

connect()

send()

close()

Connection establishment

recv()
Data Request

send()
recv()

Data Response

close()

recv()
End the connection

#Server Programming: Preparing its Socket

9

• Create stream socket (socket())
• Bind port to socket (bind()) # local host and port
• Listen for new client (listen()) # How many clients?

#Server Programming: Handle No. of Clients

10

Many client requests may arrive
• Server cannot handle them all at the same time
• Server could reject the requests, or let them wait
• Define how many connections can be pending: backlog

Wait for clients
• int listen(int sockfd, int backlog)
• Arguments: socket descriptor and acceptable backlog
• Returns a 0 on success, and -1 on error

What if too many clients arrive?
• Some requests don’t get through
• The Internet makes no promises…
• And the client can always try again

#Server Programming: Accepting Client
Connection

11

Now all the server can do is wait…
• Waits for connection request to arrive
• Blocking until the request arrives
• And then accepting the new request

Accept a new connection from a client
• int accept(int sockfd, struct sockaddr *addr, socketlen_t
• *addrlen)
•Arguments: socket descriptor, structure that will provide
• client address and port, and length of the structure
•Returns descriptor for a new socket for this connection

#Server Programming: Accepting Client
Connection

12

Serializing requests is inefficient
• Server can process just one request at a time
• All other clients must wait until previous one is done
• May need to time share the server machine

Alternate between servicing different requests
• E.g. use multi-threading
• Or, start a new process to handle each request
• Allow the operating system to share the CPU across
processes

• Or, some hybrid of these two approaches

#Client and Server: Cleaning House

13

Once the connection is open
•Both sides and read and write
•Two unidirectional streams of data
• In practice, client writes first, and server reads
•… then server writes, and client reads, and so on

Closing down the connection
• Either side can close the connection
• … using the close() system call

What about the data still “in flight”
•Data in flight still reaches the other end
• So, server can close() before client finishing reading

#Programming in Python: Server

14

#!/usr/bin/python
#server.py
import socket
server_socket = socket.socket(socket.AF_INET,
socket.SOCK_STREAM)
get local machine name
host = socket.gethostname()
port = 9999
bind to the port
server_socket.bind((host, port))
queue up to 5 requests
server_socket.listen(5)
while True:
 client_socket,addr = server_socket.accept()
 print "Got a connection from %s" % str(addr)
 my_response = “Hi we are connected!”
 client_socket.send(my_response)
 client_socket.close()

socket_family

socket_type

15

