
Dan Boneh

Web Security: Session Management

CS155

Acknowledgments: Lecture slides are from the Computer Security course
thought by Dan Boneh and John Mitchell at Stanford University. When
slides are obtained from other sources, a a reference will be noted on the
bottom of that slide. A full list of references is provided on the last slide.

Dan Boneh

Same origin policy: review

Review: Same Origin Policy (SOP) for DOM:

– Origin A can access origin B’s DOM if match on 
 (scheme, domain, port)

This lecture: Same Original Policy (SOP) for cookies:

– Based on: ([scheme], domain, path)

optional

scheme://domain:port/path?params

Dan Boneh

scope

Setting/deleting cookies by server

Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header:
 Set-cookie: NAME=VALUE ;

 domain = (when to send) ;
 path = (when to send)
 secure = (only send over SSL);
 expires = (when expires) ;
 HttpOnly
 SameSite = [lax | strict]

if expires=NULL:
 this session only

if expires=past date:
 browser deletes cookie

weak XSS defense

weak CSRF defense

Dan Boneh

Scope setting rules (write SOP)

domain: any domain-suffix of URL-hostname, except TLD

example:
 host = “login.site.com”

• login.site.com can set cookies  
 for all of .site.com but not for another site or TLD

 Problematic for sites like .stanford.edu (and some hosting
centers)

path: can be set to anything

allowed domains
login.site.com

.site.com

disallowed domains
other.site.com
othersite.com

.com

Dan Boneh

Cookies are identified by (name,domain,path)

Both cookies stored in browser’s cookie jar
 both are in scope of login.site.com

cookie 1
name = userid
value = test
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = test123
domain = .site.com
path = /
secure

distinct cookies

Dan Boneh

Reading cookies on server (read SOP)

Browser sends all cookies in URL scope:

• cookie-domain is domain-suffix of URL-domain, and

• cookie-path is prefix of URL-path, and

• [protocol=HTTPS if cookie is “secure”]

Goal: server only sees cookies in its scope

Browser
ServerGET //URL-domain/URL-path

Cookie: NAME = VALUE

Dan Boneh

Examples

http://checkout.site.com/
http://login.site.com/
https://login.site.com/

cookie 1
name = userid
value = u1
domain = login.site.com
path = /
secure

cookie 2
name = userid
value = u2
domain = .site.com
path = /
non-secure

both set by login.site.com

cookie: userid=u2

cookie: userid=u2

cookie: userid=u1; userid=u2

Dan Boneh

Client side read/write: document.cookie

Setting a cookie in Javascript:
 document.cookie = “name=value; expires=…; ”

Reading a cookie: alert(document.cookie)
 prints string containing all cookies available for

 document (based on [protocol], domain, path)

Deleting a cookie:
 document.cookie = “name=; expires= Thu, 01-

Jan-70”

HttpOnly cookies: not included in document.cookie

Dan Boneh

javascript: alert(document.cookie)

Javascript URL

Displays all cookies for current document

Dan Boneh

Cookie protocol problems

Dan Boneh

Cookie protocol problems
Server is blind:

– Does not see cookie attributes (e.g. secure,
HttpOnly)

– Does not see which domain set the cookie

Server only sees: Cookie: NAME=VALUE

Dan Boneh

Example 1: login server problems
1.Alice logs in at login.site.com
 login.site.com sets session-id cookie for .site.com

2. Alice visits evil.site.com
 overwrites .site.com session-id cookie  
 with session-id of user “badguy”

3. Alice visits course.site.com to submit homework
 course.site.com thinks it is talking to “badguy”

Problem: course.site.com expects session-id from
login.site.com;

 cannot tell that session-id cookie was overwritten

Dan Boneh

Example 2: “secure” cookies are not secure

Alice logs in at https://accounts.google.com

Alice visits http://www.google.com (cleartext)
• Network attacker can inject into response

 Set-Cookie: SSID=badguy; secure
 and overwrite secure cookie

Problem: network attacker can re-write HTTPS cookies !
• HTTPS cookie value cannot be trusted

set-cookie: SSID=A7_ESAgDpKYk5TGnf; Domain=.google.com; Path=/ ; 
 Expires=Wed, 09-Mar-2026 18:35:11 GMT; Secure; HttpOnly
set-cookie: SAPISID=wj1gYKLFy-RmWybP/ANtKMtPIHNambvdI4; Domain=.google.com;Path=/ ;  
 Expires=Wed, 09-Mar-2026 18:35:11 GMT; Secure

Dan Boneh

Interaction with the DOM SOP
Cookie SOP path separation:
 x.com/A does not see cookies of x.com/B

Not a security measure: x.com/A has access to DOM of
x.com/B

 <iframe src=“x.com/B"></iframe>

 alert(frames[0].document.cookie);

Path separation is done for efficiency not security:
 x.com/A is only sent the cookies it needs

Dan Boneh

Cookies have no integrity
User can change and delete cookie values

• Edit cookie database (FF: cookies.sqlite)
• Modify Cookie header (FF: TamperData extension)

Silly example: shopping cart software
 Set-cookie: shopping-cart-total = 150 ($)

 User edits cookie file (cookie poisoning):
 Cookie: shopping-cart-total = 15 ($)

Similar problem with hidden fields
 <INPUT TYPE=“hidden” NAME=price VALUE=“150”>

15

Dan Boneh16

Not so silly … (old)

• D3.COM Pty Ltd: ShopFactory 5.8
• @Retail Corporation: @Retail
• Adgrafix: Check It Out
• Baron Consulting Group: WebSite Tool
• ComCity Corporation: SalesCart
• Crested Butte Software: EasyCart
• Dansie.net: Dansie Shopping Cart
• Intelligent Vending Systems: Intellivend
• Make-a-Store: Make-a-Store OrderPage
• McMurtrey/Whitaker & Associates: Cart32 3.0
• pknutsen@nethut.no: CartMan 1.04
• Rich Media Technologies: JustAddCommerce 5.0
• SmartCart: SmartCart
• Web Express: Shoptron 1.2

Source: http://xforce.iss.net/xforce/xfdb/4621

Dan Boneh

Solution: cryptographic checksums

 Binding to session-id (SID) makes it harder to replay old cookies

Goal: data integrity

 Requires server-side secret key k unknown to browser

Browser
Server kSet-Cookie: NAME = value T

Cookie: NAME = value T

Generate tag: T ⟵ MACsign(k, SID ll name ll value)

 Verify tag: MACverify(k, SID ll name ll value, T)

Dan Boneh18

Example: ASP.NET

System.Web.Configuration.MachineKey
– Secret web server key intended for cookie protection

Creating an encrypted cookie with integrity:
 HttpCookie cookie = new HttpCookie(name, val);  
 HttpCookie encodedCookie =  
 HttpSecureCookie.Encode (cookie);

Decrypting and validating an encrypted cookie:
 HttpSecureCookie.Decode (cookie);

Dan Boneh

Session Management

Dan Boneh

Sessions
A sequence of requests and responses from one browser  
to one (or more) sites

– Session can be long (e.g. Gmail) or short
– without session mgmt: 

 users would have to constantly re-
authenticate

Session mgmt: authorize user once;
– All subsequent requests are tied to user

Dan Boneh

Pre-history: HTTP auth
HTTP request: GET /index.html

HTTP response contains:
 WWW-Authenticate: Basic realm="Password Required“

Browsers sends hashed password on all subsequent HTTP requests:
 Authorization: Basic ZGFddfibzsdfgkjheczI1NXRleHQ=

Dan Boneh

HTTP auth problems
Hardly used in commercial sites:

• User cannot log out other than by closing browser
– What if user has multiple accounts?  

multiple users on same machine?

• Site cannot customize password dialog

• Confusing dialog to users

• Easily spoofed

Dan Boneh

Session tokens
Browser

GET /index.html

set anonymous session token

GET /books.html
anonymous session token

POST /do-login
Username & password

elevate to a logged-in session token

POST /checkout
logged-in session token

check  
credentials

(crypto)

Validate
token

web site

Dan Boneh

Storing session tokens:  
 Lots of options (but none are perfect)

Browser cookie:
 Set-Cookie: SessionToken=fduhye63sfdb

Embed in all URL links:
 https://site.com/checkout ? SessionToken=kh7y3b

In a hidden form field:
 <input type=“hidden” name=“sessionid”

value=“kh7y3b”>

Dan Boneh

Storing session tokens: problems
Browser cookie: browser sends cookie with every request, 
 even when it should not (CSRF)

Embed in all URL links: token leaks via HTTP Referer header

In a hidden form field: does not work for long-lived sessions

Best answer: a combination of all of the above.

(or if user posts URL in a public blog)

Dan Boneh

The HTTP referer header

Referer leaks URL session token to 3rd parties

Referer supression:
• not sent when HTTPS site refers to an HTTP site
• in HTML5:

Dan Boneh

The Logout Process
Web sites must provide a logout function:
• Functionality: let user to login as different user
• Security: prevent others from abusing account

What happens during logout:
1. Delete SessionToken from client
2. Mark session token as expired on server

Problem: many web sites do (1) but not (2) !!
 ⇒ Especially risky for sites who fall back to HTTP after login

Dan Boneh

Session hijacking

Dan Boneh

Session hijacking
Attacker waits for user to login

 then attacker steals user’s Session Token  
 and “hijacks” session

⇒ attacker can issue arbitrary requests on behalf of user

Example: FireSheep [2010]

 Firefox extension that hijacks Facebook  
 session tokens over WiFi. Solution: HTTPS after login

Dan Boneh

Beware: Predictable tokens
Example 1: counter
 ⇒ user logs in, gets counter value,  

 can view sessions of other users

Example 2: weak MAC. token = { userid, MACk(userid) }

• Weak MAC exposes k from few cookies.

Apache Tomcat: generateSessionId()
• Returns random session ID [server retrieves client state based on sess-id]

Dan Boneh

Session tokens must be unpredictable to attacker

To generate: use underlying framework (e.g. ASP, Tomcat, Rails)

 Rails: token = MD5(current time, random nonce)

Dan Boneh

Beware: Session token theft
Example 1: login over HTTPS, but subsequent HTTP
• Enables cookie theft at wireless Café (e.g. Firesheep)
• Other ways network attacker can steal token:

– Site has mixed HTTPS/HTTP pages ⇒ token sent over HTTP

– Man-in-the-middle attacks on SSL

Example 2: Cross Site Scripting (XSS) exploits

Amplified by poor logout procedures:
– Logout must invalidate token on server

Dan Boneh

Mitigating SessionToken theft by binding  
 SessionToken to client’s computer

Client IP addr: makes it harder to use token at another
machine

– But honest client may change IP addr during session
• client will be logged out for no reason.

SSL session id: same problem as IP address (and even worse)

A common idea: embed machine specific data in SID

Dan Boneh

Session fixation attacks
Suppose attacker can set the user’s session token:
• For URL tokens, trick user into clicking on URL
• For cookie tokens, set using XSS exploits

Attack: (say, using URL tokens)

1. Attacker gets anonymous session token for site.com

2. Sends URL to user with attacker’s session token

3. User clicks on URL and logs into site.com
– this elevates attacker’s token to logged-in token

4. Attacker uses elevated token to hijack user’s session.

Dan Boneh

Session fixation: lesson

When elevating user from anonymous to logged-in:

 always issue a new session token

After login, token changes to value unknown to attacker

 ⇒ Attacker’s token is not elevated.

Dan Boneh

Summary

• Always assume cookie data retrieved from client is adversarial

• Session tokens are split across multiple client state
mechanisms:
– Cookies, hidden form fields, URL parameters
– Cookies by themselves are insecure (CSRF, cookie overwrite)

– Session tokens must be unpredictable and resist theft by
network attacker

• Ensure logout invalidates session on server

Dan Boneh

THE END

