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Same origin policy:   review

Review:   Same Origin Policy (SOP) for DOM: 

– Origin A can access origin B’s DOM if match on 
  (scheme,   domain,  port) 

This lecture:  Same Original Policy (SOP) for cookies:  

–  Based on:      ([scheme],  domain,  path)

optional

scheme://domain:port/path?params
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scope

Setting/deleting cookies by server

Default scope is domain and path of setting URL

Browser
Server

GET …

HTTP Header: 
   Set-cookie: NAME=VALUE ; 

  domain = (when to send) ; 
  path = (when to send) 
  secure = (only send over SSL); 
  expires = (when expires) ; 
  HttpOnly  
  SameSite = [lax | strict]

if expires=NULL: 
    this session only

if expires=past date: 
    browser deletes cookie

weak XSS defense

weak CSRF defense
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Scope setting rules   (write SOP)

domain:   any domain-suffix of URL-hostname, except TLD 

example:      
   host = “login.site.com” 

•  login.site.com can set cookies  
 for all of .site.com   but not for another site  or  TLD    

    Problematic for sites like   .stanford.edu    (and some hosting 
centers) 

path:  can be set to anything

allowed domains 
login.site.com 

.site.com

disallowed domains 
other.site.com 
othersite.com 

.com
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Cookies are identified by  (name,domain,path)

Both cookies stored in browser’s cookie jar 
  both are in scope of    login.site.com

cookie 1 
name = userid 
value = test 
domain = login.site.com 
path = / 
secure

cookie 2 
name = userid 
value = test123 
domain = .site.com 
path = / 
secure

distinct cookies
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Reading cookies on server   (read SOP)

Browser sends all cookies in URL scope: 

• cookie-domain is domain-suffix of URL-domain, and 

• cookie-path is prefix of URL-path, and 

• [protocol=HTTPS  if cookie is “secure”] 

Goal:   server only sees cookies in its scope

Browser
ServerGET  //URL-domain/URL-path 

Cookie:  NAME = VALUE
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Examples

http://checkout.site.com/ 
http://login.site.com/ 
https://login.site.com/

cookie 1 
name = userid 
value = u1 
domain = login.site.com 
path = / 
secure

cookie 2 
name = userid 
value = u2 
domain = .site.com 
path = / 
non-secure

both set by   login.site.com

cookie: userid=u2 

cookie: userid=u2 

cookie: userid=u1; userid=u2
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Client side read/write:     document.cookie

Setting a cookie in Javascript: 
   document.cookie = “name=value;  expires=…; ” 

Reading a cookie:    alert(document.cookie) 
  prints string containing all cookies available for 

 document    (based on [protocol], domain, path) 

Deleting a cookie: 
  document.cookie =  “name=;  expires= Thu, 01-

Jan-70”

HttpOnly cookies:   not included in document.cookie
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javascript:  alert(document.cookie)

Javascript URL

Displays all cookies for current document
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Cookie protocol problems
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Cookie protocol problems
Server is blind: 

– Does not see cookie attributes  (e.g. secure, 
HttpOnly) 

– Does not see which domain set the cookie

Server only sees:        Cookie:  NAME=VALUE
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Example 1:  login server problems
1.Alice logs in at    login.site.com     
       login.site.com  sets session-id cookie for  .site.com 

2.   Alice visits   evil.site.com 
       overwrites    .site.com    session-id cookie  
      with session-id of user “badguy” 

3.   Alice visits   course.site.com    to submit homework 
       course.site.com  thinks it is talking to “badguy” 

Problem:  course.site.com  expects session-id from  
login.site.com; 

    cannot tell that session-id cookie was overwritten



Dan Boneh

Example 2:   “secure” cookies are not secure

Alice logs in at    https://accounts.google.com 

Alice visits     http://www.google.com    (cleartext) 
• Network attacker can inject into response 

   Set-Cookie:  SSID=badguy; secure 
 and overwrite secure cookie 

Problem:   network attacker can re-write HTTPS cookies ! 
• HTTPS cookie value cannot be trusted

set-cookie: SSID=A7_ESAgDpKYk5TGnf;  Domain=.google.com;  Path=/  ; 
   Expires=Wed, 09-Mar-2026 18:35:11 GMT;  Secure;  HttpOnly 
set-cookie: SAPISID=wj1gYKLFy-RmWybP/ANtKMtPIHNambvdI4;  Domain=.google.com;Path=/  ;  
   Expires=Wed, 09-Mar-2026 18:35:11 GMT;  Secure
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Interaction with the DOM SOP
Cookie SOP path separation: 
  x.com/A      does not see cookies of     x.com/B 

Not a security measure:   x.com/A  has access to DOM of  
x.com/B 

  <iframe src=“x.com/B"></iframe> 

  alert(frames[0].document.cookie); 

Path separation is done for efficiency not security: 
   x.com/A    is only sent the cookies it needs



Dan Boneh

Cookies have no integrity
User can change and delete cookie values 

• Edit cookie database (FF:   cookies.sqlite) 
• Modify Cookie header   (FF:   TamperData extension) 

Silly example: shopping cart software 
    Set-cookie: shopping-cart-total = 150   ($) 

 User edits cookie file  (cookie poisoning): 
     Cookie: shopping-cart-total = 15     ($) 

Similar problem with hidden fields 
 <INPUT TYPE=“hidden” NAME=price VALUE=“150”>

15
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Not so silly …   (old)

• D3.COM Pty Ltd: ShopFactory 5.8  
• @Retail Corporation: @Retail  
• Adgrafix: Check It Out  
• Baron Consulting Group: WebSite Tool   
• ComCity Corporation: SalesCart  
• Crested Butte Software: EasyCart  
• Dansie.net: Dansie Shopping Cart  
• Intelligent Vending Systems: Intellivend  
• Make-a-Store: Make-a-Store OrderPage  
• McMurtrey/Whitaker & Associates: Cart32 3.0  
• pknutsen@nethut.no: CartMan 1.04  
• Rich Media Technologies: JustAddCommerce 5.0  
• SmartCart: SmartCart 
• Web Express: Shoptron 1.2 

Source:    http://xforce.iss.net/xforce/xfdb/4621
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Solution:   cryptographic checksums

 Binding to session-id (SID) makes it harder to replay old cookies

Goal:    data integrity 

     Requires server-side secret key  k  unknown to browser

Browser
Server kSet-Cookie:  NAME = value T

Cookie:   NAME = value T

Generate tag:   T ⟵   MACsign(k,   SID ll name ll value )

 Verify tag:   MACverify(k,   SID ll name ll value,   T)
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Example:    ASP.NET

System.Web.Configuration.MachineKey  
– Secret web server key intended for cookie protection 

Creating an encrypted cookie with integrity: 
 HttpCookie   cookie = new HttpCookie(name, val);  
 HttpCookie   encodedCookie =  
   HttpSecureCookie.Encode (cookie);  

Decrypting and validating an encrypted cookie: 
 HttpSecureCookie.Decode (cookie);
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Session Management



Dan Boneh

Sessions
A sequence of requests and responses from one browser  
to one (or more) sites 

– Session can be long  (e.g. Gmail) or short 
– without session mgmt: 

   users would have to constantly re-
authenticate 

Session mgmt:    authorize user once; 
– All subsequent requests are tied to user
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Pre-history:   HTTP auth
HTTP request: GET   /index.html 

HTTP response contains: 
       WWW-Authenticate:  Basic realm="Password Required“ 

Browsers sends hashed password on all subsequent HTTP requests: 
       Authorization:  Basic ZGFddfibzsdfgkjheczI1NXRleHQ=
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HTTP auth problems
Hardly used in commercial sites: 

• User cannot log out other than by closing browser 
– What if user has multiple accounts?   

multiple users on same machine? 

• Site cannot customize password dialog 

• Confusing dialog to users  

• Easily spoofed
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Session tokens
Browser

GET /index.html

set anonymous session token

GET /books.html 
anonymous session token

POST /do-login 
Username & password

elevate to a logged-in session token

POST /checkout 
logged-in session token

check  
credentials 

(crypto)

Validate 
token

web site
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Storing session tokens:   
 Lots of options   (but none are perfect)

Browser cookie: 
  Set-Cookie:    SessionToken=fduhye63sfdb 

Embed in all URL links: 
  https://site.com/checkout ? SessionToken=kh7y3b 

In a hidden form field: 
  <input type=“hidden” name=“sessionid” 

value=“kh7y3b”>
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Storing session tokens:   problems
Browser cookie:   browser sends cookie with every request, 
 even when it should not   (CSRF) 

Embed in all URL links:  token leaks via HTTP  Referer  header 

In a hidden form field:     does not work for long-lived sessions 

Best answer:   a combination of all of the above.

(or if user posts URL in a public blog)



Dan Boneh

The HTTP referer header

Referer leaks URL session token to 3rd parties 

Referer supression: 
• not sent when HTTPS site refers to an HTTP site 
• in HTML5:     <a  rel=”noreferrer” href=www.example.com>
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The Logout Process
Web sites must provide a logout function: 
• Functionality:  let user to login as different user 
• Security:   prevent others from abusing account 

What happens during logout: 
1.  Delete SessionToken from client 
2.  Mark session token as expired on server 

Problem:   many web sites do (1) but not (2)   !! 
 ⇒   Especially risky for sites who fall back to HTTP after login 
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Session hijacking
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Session hijacking
Attacker waits for user to login 

 then attacker steals user’s Session Token  
 and “hijacks” session 

⇒   attacker can issue arbitrary requests on behalf of user 

Example:   FireSheep  [2010]     

 Firefox extension that hijacks Facebook  
 session tokens over WiFi.        Solution:   HTTPS after login
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Beware:    Predictable tokens
Example 1:     counter    
  ⇒  user logs in, gets counter value,  

              can view sessions of other users 

Example 2:    weak MAC.       token = { userid,  MACk(userid) } 

• Weak MAC exposes   k    from few cookies. 

Apache Tomcat:   generateSessionId() 
• Returns random session ID   [server retrieves client state based on sess-id]



Dan Boneh

Session tokens must be unpredictable to attacker 

To generate:  use underlying framework  (e.g. ASP, Tomcat, Rails) 

     Rails:     token = MD5( current time, random nonce )



Dan Boneh

Beware:  Session token theft
Example 1:    login over HTTPS,  but subsequent HTTP 
• Enables cookie theft at wireless Café       (e.g. Firesheep) 
• Other ways network attacker can steal token: 

– Site has mixed HTTPS/HTTP pages  ⇒  token sent over HTTP 

– Man-in-the-middle attacks on SSL  

Example 2:    Cross Site Scripting (XSS) exploits 

Amplified by poor logout procedures: 
– Logout must invalidate token on server
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Mitigating SessionToken theft by binding  
  SessionToken to client’s computer

Client IP addr:  makes it harder to use token at another 
machine 

– But honest client may change IP addr during session 
• client will be logged out for no reason. 

SSL session id:  same problem as IP address   (and even worse)

A common idea:  embed machine specific data in SID
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Session fixation attacks
Suppose attacker can set the user’s session token: 
• For URL tokens, trick user into clicking on URL 
• For cookie tokens, set using XSS exploits 

Attack:     (say, using URL tokens) 

1. Attacker gets anonymous session token for site.com 

2. Sends URL to user with attacker’s session token 

3. User clicks on URL and logs into  site.com 
– this elevates attacker’s token to logged-in token 

4. Attacker uses elevated token to hijack user’s session.
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Session fixation:  lesson

When elevating user from anonymous to logged-in: 

 always issue a new session token 

After login,  token changes to value unknown to attacker     

 ⇒   Attacker’s token is not elevated.
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Summary

• Always assume cookie data retrieved from client is adversarial 

• Session tokens are split across multiple client state 
mechanisms: 
– Cookies,  hidden form fields,   URL parameters 
– Cookies by themselves are insecure  (CSRF, cookie overwrite) 

– Session tokens must be unpredictable and resist theft by 
network attacker 

• Ensure logout invalidates session on server
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THE  END


