
Fuzzing
Dan Fleck
CS 469: Security Engineering

1 1

Sources:
http://www.cse.msu.edu/~cse825//lectures/Fuzzing.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/lectures/lec5-fuzzing-

se.pdf
http://weis2007.econinfosec.org/papers/29.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/toorcon.pdf
http://www.immunityinc.com/downloads/DaveAitel_TheHackerStrategy.pdf
http://www.uninformed.org/?v=5&a=5&t=pdf
http://msdn.microsoft.com/en-us/library/cc162782.aspx

Acknowledgments: Lecture slides are from the Security
Engineering thought by Dan Fleck at George Mason University.
When slides are obtained from other sources, a a reference will
be noted on the bottom of that slide. A full list of references is
provided on the last slide.

http://www.cse.msu.edu/~cse825//lectures/Fuzzing.pdf
http://www.cse.msu.edu/~cse825//lectures/Fuzzing.pdf
http://weis2007.econinfosec.org/papers/29.pdf
http://weis2007.econinfosec.org/papers/29.pdf
http://www.immunityinc.com/downloads/DaveAitel_TheHackerStrategy.pdf
http://www.immunityinc.com/downloads/DaveAitel_TheHackerStrategy.pdf
http://www.uninformed.org/?v=5&a=5&t=pdf
http://www.uninformed.org/?v=5&a=5&t=pdf

What is Fuzzing?
• A form of vulnerability analysis
• Process:
• Many slightly anomalous test cases are input into the

application
• Application is monitored for any sign of error

2 2

Example

Standard HTTP GET request
• § GET /index.html HTTP/1.1

Anomalous requests
• § AAAAAA...AAAA /index.html HTTP/1.1
• § GET ///////index.html HTTP/1.1
• § GET %n%n%n%n%n%n.html HTTP/1.1
• § GET /AAAAAAAAAAAAA.html HTTP/1.1
• § GET /index.html HTTTTTTTTTTTTTP/1.1
• § GET /index.html HTTP/1.1.1.1.1.1.1.1
• § etc... 3 3

User Testing vs Fuzzing

• User testing
• Run program on many normal inputs, look for bad things to

happen
• Goal: Prevent normal users from encountering errors

• Fuzzing
• Run program on many abnormal inputs, look for bad things

to happen
• Goal: Prevent attackers from encountering exploitable

errors

4 4

Types of Fuzzers

• Mutation Based – “Dumb Fuzzing”
• mutate existing data samples to create test data 

• Generation Based – “Smart Fuzzing”
• define new tests based on models of the input  

• Evolutionary
• Generate inputs based on response from program

5 5

Fuzzing

• Automatically generate random test cases
• Application is monitored for errors
• Inputs are generally either
• files (.pdf, png, .wav, .mpg)
• network based (http, SOAP, SNMP)

6 6

Mutation Based Fuzzing

• Little or no knowledge of the structure of the inputs is
assumed

• Anomalies are added to existing valid inputs
• Anomalies may be completely random or follow some

heuristics
• Requires little to no set up time
• Dependent on the inputs being modified
• May fail for protocols with checksums, those which

depend on challenge response, etc.

• Example Tools:
• Taof, GPF, ProxyFuzz,  

Peach Fuzzer, etc. 7 7

Mutation Based Example: PDF Fuzzing
• Google .pdf (lots of results)
• Crawl the results and download lots of PDFs  

• Use a mutation fuzzer:
1. Grab the PDF file
2. Mutate the file
3. Send the file to the PDF viewer
4. Record if it crashed (and the input that crashed it)

Mutation-
based

Super easy to
setup and
automate

Little to no
protocol
knowledge
required

Limited by
initial corpus

May fail for
protocols with
checksums, or
other
complexity

8 8

Generation Based Fuzzing

• Test cases are generated from some description of the
format: RFC, documentation, etc.

• Anomalies are added to each possible spot in the inputs
• Knowledge of protocol should give better results than

random fuzzing
• Can take significant time to set up

• Examples
• SPIKE, Sulley, Mu-4000,  

Codenomicon,  
Peach Fuzzer, etc…

9 9

Example Specification for ZIP file

Src: http://www.flinkd.org/2011/07/fuzzing-with-peach-part-1/

10 10

Mutation vs Generation

Mutation-
based

Super easy to
setup and
automate

Little to no
protocol
knowledge
required

Limited by
initial corpus

May fail for
protocols with
checksums, or
other
complexity

Generation-
based

Writing
generator is
labor intesive
for complex
protocols

have to have
spec of
protocol
(frequently
not a problem
for common
ones http,
snmp, etc…)

Completeness Can deal with
complex
checksums
and
dependencies

11 11

White box vs. black box fuzzing
• Black box fuzzing: sending the malformed input without

any verification of the code paths traversed

• White box fuzzing: sending the malformed input and
verifying the code paths traversed. Modifying the inputs
to attempt to cover all code paths.

Technique Effort Code coverage Defects Found

black box + mutation 10 min 50% 25%

black box + generation 30 min 80% 50%

white box + mutation 2 hours 80% 50%

white box + generation 2.5 hours 99% 100%

Source: http://msdn.microsoft.com/en-us/library/cc162782.aspx

12 12

Evolutionary Fuzzing

• Attempts to generate inputs based on the response  
of the program

• Autodafe
• Prioritizes test cases based on which inputs have reached

dangerous API functions 

• EFS
• Generates test cases based on code coverage metrics

• This technique is still in the alpha stage :)
13 13

Challenges

• Mutation based – can run forever. When do
we stop?
• Generation based – stop eventually. Is it

enough?
• How to determine if the program did

something “bad”?

• These are the standard problems we face in
most automated testing.

14 14

Code Coverage

• Some of the answers to our problems are found in code
coverage

• To determine how well your code was tested, code
coverage can give you a metric.

• But it’s not perfect (is anything?)

• Code coverage types:
• Statement coverage – which statements have been

executed
• Branch coverage – which branches have been taken
• Path coverage – which paths were taken. 15 15

Code Coverage - Example

if (a > 2)
 a = 2;
if (b > 2)
 b = 2

How many test cases for 100% line coverage?
How many test cases for 100% branch coverage?
How many test cases for 100% paths?

16 16

Code Coverage Tools

• If you have source: gcov, Bullseye, Emma

• If you don’t:
• Binary instrumentation: PIN, DynamoRIO 

• Valgrind : instrumentation framework for building dynamic
analysis tools  

• Pai Mei : a reverse engineering framework consisting of
multiple extensible components.

Lots more to discuss on Code Coverage in a
Software Engineering class.. but lets move on.

17 17

Why does Code Coverage help?

• Lets jump to an example on Page 27 of :
• http://www.cs.berkeley.edu/~dawnsong/teaching/f12-

cs161/readings/toorcon.pdf

18 18

http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/toorcon.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/toorcon.pdf
http://www.cs.berkeley.edu/~dawnsong/teaching/f12-cs161/readings/toorcon.pdf

IPhone Security Flaw: July 2007

Shortly after the iPhone
was released, a group of
security researchers at
Independent Security
Evaluators decided to
investigate how hard it
would be for a remote
adversary to compromise
the private information
stored on the device

 19

[CSE484]

Success

• Within two weeks of part
time work, we had
successfully

• discovered a vulnerability
• developed a toolchain for

working with the iPhone's
architecture

• created a proof-of-
concept exploit capable of
delivering files from the
user's iPhone to a remote
attacker

 20

[CSE484]

• Notified apple of the
vulnerability and proposed a
patch.

• Apple subsequently resolved
the issue and release and
released a patch.

CVE-2007-3944 Issued and Patched

 21

[CSE484]

iPhone Attack

• iPhone Safari downloads malicious web page
• Arbitrary code is run with administrative privileges
• Can read SMS log, address book, call history, etc.
• Can transmit collected data to attacker
• Can perform physical actions on the phone

• system sound and vibrate the phone for a second
• could dial phone numbers, send text messages,

or record audio (as a bugging device)
 22

[CSE484]

How Was This Discovered?

• WebKit is open source
• “WebKit is an open source web browser engine.

WebKit is also the name of the Mac OS X system
framework version of the engine that's used by
Safari, Dashboard, Mail, and many other OS X
applications.”

• So we know what they use for code testing
• Use code coverage to see which portions of code is

not well tested
• Tools gcov, icov, etc., measure test coverage 23

[CSE484]

Collect Coverage for the Test Suite

 24

[CSE484]

What to Focus on?

• 59.3% of 13,622 lines in JavaScriptCore were covered
• 79.3% of main engine covered

• 54.7%ofPerlCompatibleRegularExpression(PCRE)covered

• Next step: focus on PCRE
• Wrote a PCRE fuzzer (20 lines of perl)
• Ran it on standalone PCRE parser (pcredemo from

PCRE library)
• Started getting errors: PCRE compilation failed at

offset 6: internal error: code overflow
• Evil regular expressions crash mobile Safari

 25

[CSE484]

The Attacker Plan

Obtain product Protocol Analysis

Manual Network
Vulnerability

analysis
Fuzzing

Source/Binary
Analysis

Weaponization
(exploit

development)

Open source
research

Closed source
research

But… why do it?
19 26

Last step…Sell it!

• Market for 0-Days ~$10K-100K

20 27

Lessons about Fuzzing

• Protocol knowledge is helpful
• Generational beats random, better specification make

better fuzzers

• Using more fuzzers is better
• Each one will vary and find different bugs 

• The longer you run (typically) the more bugs you’ll find 

• Guide the process, fix it when it break or fails to reach
where you need it to go 

• Code coverage can serve as a useful guide
2122 28

Acknowledgments

[CSE484] CSE484/CSE584, BLACK BOX TESTING AND FUZZING, Dr. Benjamin Livshits

 29

