
A

Analyzing and Defending Against Web-based Malware

JIAN CHANG, University of Pennsylvania

KRISHNA K. VENKATASUBRAMANIAN, University of Pennsylvania

ANDREW G. WEST, University of Pennsylvania

INSUP LEE, University of Pennsylvania

Web-based malware is a growing threat to today’s Internet security. Attacks of this type are prevalent

and lead to serious security consequences. Millions of malicious URLs are used as distribution channels to
propagate malware all over the Web. After being infected, victim systems fall in the control of attackers, who

can utilize them for various cyber crimes such as stealing credentials, spamming, and distributed denial-of-

service attacks. Moreover, it has been observed that traditional security technologies such as firewalls and
intrusion detection systems have only limited capability to mitigate this new problem.

In this paper, we survey the state-of-the-art research regarding the analysis of — and defense against —

web-based malware attacks. First, we study the attack model, the root-cause, and the vulnerabilities that
enable these attacks. Second, we analyze the status quo of the web-based malware problem. Third, three

categories of defense mechanisms are discussed in detail: (1) building honeypots with virtual machines or

signature-based detection system to discover existing threats; (2) using code analysis and testing techniques
to identify the vulnerabilities of web applications; and (3) constructing reputation-based blacklists or smart

sandbox systems to protect end users from attacks. We show that these three categories of approaches form
an extensive solution space to the web-based malware problem. Finally, we compare the surveyed approaches

and discuss possible future research directions.

Categories and Subject Descriptors: D.4.6 [Security and Protection]: Invasive software (e.g., viruses,
worms, Trojan horses); C.2.0 [Computer-Communication Networks]: General—Security and protection

(e.g., firewalls)

General Terms: Security, Verification, Design

Additional Key Words and Phrases: Web-based malware

1. INTRODUCTION

The Web has become the core of our daily computing experience. Web applications and
services have been developed and deployed with unprecedented speed, providing various
important functionalities to the end user such as office applications, social networking,
content sharing, education, and entertainment. From 2005 to 2008, the number of indexable
webpages has grown from a few billion to a trillion [Gulli and Signorini 2005; Google Web
Index 2008]. In 2010, the population of Internet users was about two billion [Internet Stats
2010]. Moreover, these numbers are rapidly increasing.

Given its popularity and ubiquity, the Web also attracts the attention of malicious entities.
Indeed, the Web and its global user community have observed various forms of attack in the
past [Rubin and Geer 1998; Garfinkel and Spafford 2001]. Among these attacks, using the
Web as a channel to distribute malware (i.e., malicious software) has become a prominent

This work was supported in part by ONR MURI N00014-07-1-0907. POC: Insup Lee, lee@cis.upenn.edu
Author’s address: J. Chang, K. K. Venkatasubramanian, A. G. West and I. Lee, Department of Computer
and Information Science, University of Pennsylvania, 3330 Walnut Street, Philadelphia, PA 19104.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or commercial advantage
and that copies show this notice on the first page or initial screen of a display along with the full citation.
Copyrights for components of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any
component of this work in other works requires prior specific permission and/or a fee. Permissions may be
requested from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA,
fax +1 (212) 869-0481, or permissions@acm.org.
c© YYYY ACM 0360-0300/YYYY/01-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:2 Jian Chang et al.

issue. This issue has generated a great deal of attention from both the security research
community and the general public. Web-based malware is disseminated when victim users
visit malicious websites. This malware is designed to conduct various cyber crimes, such
as gaining control of the victim system, stealing private information, launching denial-of-
service attacks, and spamming. According to the latest report from Dasient, a web security
solutions vendor, the number of websites that deliver malware has doubled in one year,
between 2009 and 2010 [Dasient Report 2010].

The arms race between attackers and defenders has led to the adoption of increasingly
sophisticated malware distribution tactics. The traditional malware distribution model is
push-based — attackers actively search for and infect the victim systems. However, secu-
rity technologies such as firewalls have been widely deployed in enterprise networks, which
provide good defense against techniques that were commonly used for push-based propaga-
tion. As a result, the malware distribution has evolved to a pull-based model, where victims
unknowingly visit malicious websites. Under the pull-based model (i.e., web-based malware
distribution), the channel for attack is initiated and established by potential victims, which
significantly lowers the defense barrier for attackers to cross.

Defending against web-based malware is a difficult task. First of all, as the web browser
becomes the battlefield, the defense boundary is very long — not only billions of active
personal computers, but also portable devices with web browsing functionality can become
the target of the attack [Schmidt et al. 2009; Fleizach et al. 2007]. Second, typical web
users may not have enough knowledge and expertise to protect themselves, making them
potentially the weakest link in the entire defense chain. Third, since the Web is a huge
distributed system, there is no single trust authority, making the defense strategy inherently
collaborative. A global defense is infeasible in practice given that certain parts of the Web
have been known to be miscreant-friendly [RBN Study 2007]. Finally, the bar for conducting
effective web attacks is rather low; key techniques and vulnerabilities of victim devices are
well-documented [Daniel et al. 2008]. Automatic tools for facilitating the attacks are also
easily obtainable [Binsalleeh et al. 2010; Ormerod et al. 2010].

Recent trends in web application development further complicate the problem. The cur-
rent generation of Web applications (i.e., Web 2.0) concentrates on presenting user gener-
ated content. Although the openness of these applications provides useful functionalities to
the end user, at the same time, it opens holes for attacks [Lawton 2007]. Moreover, a popu-
lar web programming paradigm known as the mashup has been adopted to quickly develop
new applications by reusing existing content [Sabbouh et al. 2007]. However, this trust of
external data and code is blind and creates new vulnerabilities [Tipton 2009; Magazinius
et al. 2010]. For instance, a huge number of existing web sites depend on the income from ad-
vertisements, which are provided by third-party ad syndications. It has been observed that
many legitimate websites are involved in delivering malware due to unsafe advertisements
[Provos et al. 2008].

1.1. Outline

Considering all of the challenges discussed above, it is clear that understanding the web-
based malware problem and developing effective solutions are urgent tasks for the security of
the Internet. Indeed, great effort has been made by security researchers, who are attempting
to shed light on this issue. This work analyzes many different aspects of the problem and
provides insights for designing systematic defense strategies. In this paper, we present a
survey of the literature, which is organized into four main topics:

(1) The Status Quo of Web-based Malware: Section 3 presents an analysis of the
current status of web-based malware problems that are measured by Internet-scale
monitoring; this analysis illustrates the scope of this issue.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:3

Fig. 1: Screen-shots of Social Engineering Tactics

(2) Attack Detection: Section 4 surveys the approaches that detect existing web-based
malware attacks. These approaches help researchers have a better understanding of the
problem in order to design effective countermeasures.

(3) Vulnerability Identification: Section 5 surveys code analysis techniques that are
designed to minimize the number of vulnerabilities that exist in web applications. These
vulnerabilities are often used by attackers to turn legitimate websites into a part of the
malware distribution infrastructure.

(4) Attack Protection: Section 6 surveys the defense techniques that protect victim
systems from being infected. These approaches are effective for mitigating the impact
of existing attacks.

Representative approaches surveyed in this paper are shown in Table II. Section 7 presents
a detailed discussion of the surveyed work regarding its ideal deployment scale, compara-
tive effectiveness, degree of autonomy, adaptiveness, and gamesmanship. In Section 8, we
conclude the paper with possible future research directions. Before delving into the techni-
cal details, the background and the attack model of web-based malware are presented and
analyzed in Section 2.

2. BACKGROUND

In this section, we first formulate the attack model of web-based malware. Then, we discuss
the root causes and vulnerabilities that enable web-based malware attacks. Approaches
proposed in the literature to address the problem from various aspects are highlighted.
Finally, related survey studies are presented and briefly discussed.

2.1. Terminology

To understand web-based malware, it is important to carefully define the terms that we
use throughout this paper. Malware, which is short for “malicious software”, is software
designed to access the resources of a computer system without the owner’s informed consent
[Christodorescu et al. 2007]. Malware includes computer viruses, worms, spyware, and other
malicious and unwanted software. A web-based malware attack is defined as the process of
malware downloading and installing on a victim computer system through visiting infected
landing web sites. In this paper, we use the terms “web-based malware attack”, “web-based
malware”, and “attack” interchangeably. Similar to the definition in Provos et al. [2008],
the term landing web site or landing site is defined as the website that initiates web-based
malware attacks, when victim users visit it. On the other hand, websites that host malicious
shellcode or malware used in the attack, are termed malware distribution sites or distribution

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:4 Jian Chang et al.

landing.site/ie.html

<iframe> <script>

Vulnerable Components

(Browser, ActiveX, Flash, etc.)

shellcode distribution.site

(1’) Point to

(2) Exploit

Victim System

(0)Visit

Malware

(1) Redirect

(3) Download & Install

Fig. 2: Drive-by Download Attack Scenario

sites. Detailed discussion on the relationship between landing sites and distribution sites is
presented in Section 3.2.

According to IETF RFC 2828, a vulnerability of a computer system is defined as a flaw or
weakness in a system’s design, implementation, or operation and management that could be
exploited to violate the system’s security policy [RFC-2828 2000]. A zero-day vulnerability is
defined as a vulnerability without an effective patch. Shellcode (also known as an exploit) is a
small piece of computer software that takes advantage of a vulnerability to cause unintended
behavior of a computer system, which is commonly used to distribute malware.

2.2. Attack Model

There are two types of techniques used by attackers to perform web-based malware attacks,
namely: (1) Social Engineering: using psychological manipulations and decoys to trick the
victims into authorizing the downloading and installation of malware; and (2) Drive-by
Download: designing a web page that contains malicious code to trigger the downloading
and installation of malware automatically.

The social engineering technique often involves using alluring descriptions and enticing a
victim to make decisions that compromise his computer-security. Screen-shots of real social
engineering attacks are illustrated in Figure 1. Social engineering tricks are designed to
exploit the cognitive biases of the human decision-making process rather than exploiting
the vulnerabilities of the victim computer systems. For example, the malicious webpage can
alert the victims with fake virus detection messages and ask them to download rogue anti-
virus software [Cova et al. 2010], or display fake award notifications for victims to collect
by clicking URLs linked to malware [Sidiroglou et al. 2005].

On the other hand, the drive-by download attack may form a larger threat to victims
given its automated nature. Therefore, it also requires more careful study to understand the
attack mechanism. In general, the drive-by download malware attack involves three major
steps as shown in Figure 2:

(1) Fetch and Prepare Malicious Shellcode: In this step, shellcode used for exploiting a
victim system is fetched from the distribution site through a visit to the landing site.
This is usually achieved in two ways: (1) by placing script or iframe tags on the

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:5

Attacker-Controlled Sites Webserver Vulnerability

Unsanitary User Input Insecure Mashups

Exploits or Malware URL
Placed on Landing Sites

Vulnerable Browsers
or Gullible End Users Access of Landing Sites

Exploits or Malware URLs
Placed on Landing Sites

Fig. 3: Necessary Conditions of Web-based Malware Attack

landing site with src attributes pointing to the distribution site or (2) by redirecting
the browser window through various mechanisms (e.g., HTTP 302 temporary redirect
or JavaScript APIs). The malicious code being fetched is often highly obfuscated to
complicate investigation and to escape signature-based security scanners [Feinstein and
Peck 2007]. In order to increase the probability of a successful attack, the malicious
code often checks the environment of the victim system, such as the browser type,
available plugins, or version information. This enables the attacker to find all available
vulnerabilities to exploit. As observed in Wang et al. [2006], attackers often target
multiple vulnerabilities during one attack in order to increase their chance of success.

(2) Exploit Vulnerability: The shellcode that attackers want to execute is injected by ex-
ploiting browser vulnerabilities. Various techniques (e.g., heap overflow [Daniel et al.
2008; Ratanaworabhan et al. 2009]) can be used to hijack the execution flow of the
browser or its components (e.g., ActiveX control, Flash player, PDF helper object).
Most of the techniques are based on the idea of conducting clever memory allocations
through the manipulation of a number of JavaScript strings [Sotirov 2007; Sotirov and
Dowd 2008]. Regardless of the technique used by the attackers, the shell code is designed
to initiate the download and installation of binaries on the victim system to achieve a
larger attack goal.

(3) Download and Install Malware: The last step of the attack is to download malicious
binaries from a remote malware distribution site and install them on the victim system.
A plethora of malware types have been observed in past attack instances, including
viruses, backdoors, Trojan downloaders, and spyware [Wang et al. 2006]. Typically,
victim machines will become parts of a botnet and used as resources to perform other
types of cyber crime, such as distributed denial-of-service attacks (DDoS), or spamming
[Polychronakis et al. 2008].

2.3. Root Causes and Vulnerabilities

As we discussed above, there are three necessary conditions for a successful web-based
malware attack, as illustrated in Figure 3: (1) the presence of vulnerable web browsers
or end users who are gullible to social engineering tricks, (2) effective exploits or URLs
pointing to malware present on landing sites, and (3) the access of landing websites. The
first condition regarding software vulnerability and human decision-making weakness has
been studied extensively in computer security research. The third condition is the pull-based
malware propagation model, which is straightforward. In this section, we primarily focus on
studying the second necessary condition. The following question can be reasonably raised:
How are exploits or malware URLs placed on a landing site?

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:6 Jian Chang et al.

One possible answer is that all the landing sites are operated by the attackers themselves.
Then it would be trivial for attackers to place the necessary exploits or URLs. However, a
recent study has shown that it is not the case for most of the real-world attacks, since a
large portion of the landing sites are in fact legitimate sites being infected [Provos et al.
2008]. Here, we identify and discuss three main causes that lead to infections:

(1) Webserver Vulnerability: If an attacker is able to gain control of a webserver, he can
modify the web content hosted on the server for his own benefit. A sophisticated web-
server usually has a large set of software installed, and the webserver is only as secure as
its weakest component. Operating systems and application software used by webservers
are often found to contain vulnerabilities. This makes attacks on webservers feasible
and dangerous. For example, BIND vulnerabilities [1998] would allow attackers to gain
root privileges on a webserver system. This type of attack is particularly damaging to
large virtual hosting farms. As observed in Provos et al. [2007], it can turn the whole
web hosting infrastructure into a large malware distribution center.

(2) Unsanitary User Input: Many web applications allow users to contribute content [Lin
2007]. Apart from being an important functionality to normal users, it may also open
doors for attackers to place malicious content. Without a careful sanity check, content
provided by attackers might be presented directly to other users of the same web ap-
plication (e.g., cross-site scripting attacks), or be used by the web application itself in
security-critical operations (e.g., SQL injection attacks). Such security vulnerabilities
lie in the code of web applications. A typical web application often has code executing
at either the server side (e.g., ASP.NET, JSP, PHP) or the client side (e.g., JavaScript,
Flash). Efforts have been made to check vulnerabilities of the server-side code, and
thousands of such vulnerabilities are reported every year [Bau et al. 2010]. However, as
demonstrated in a recent study, insecure client-side coding practices are also prevalent
[Yue and Wang 2009]; these practices favor the attackers.

(3) Insecure Mashup: In web development, a mashup is a hybrid web application that com-
bines content from two or more sources to create new services [Crites et al. 2008]. Con-
crete examples of mashup often include using advertisements from third-party ad syn-
dication, widgets, and code libraries. As a popular web development paradigm, mashup
implies trust on external code or data. However, as the external content is usually
delivered to a user’s browser directly from the external source, mashup builders have
very limited control over it. Indeed, the current practice of web mashup has been prob-
lematic, and it has become a major channel to infect legitimate sites for conducting
web-based malware attacks [Provos et al. 2008; Cova et al. 2010].

2.4. Existing Defense Approaches

With the root causes of the web-based malware problem in mind, in this section, a overview
of existing defense approaches is presented with brief discussions on how these approaches
operate by addressing one or more of the root causes.

2.4.1. General Defense Approaches. A Web-based malware attack is not greatly different from
a traditional push-based malware attack, except for its distribution channel and propagation
model. Therefore, general defense mechanisms (see Table I) against traditional malware can
be adopted to mitigate the problem.

(1) Using the Most Updated Browser and Plugins: This approach attempts to eliminate the
first necessary condition (see Section 2.3) by minimizing the number of vulnerabilities
that can be exploited by an attacker. Specifically, this approach works by shortening
the lag between the time of patch release and the time of patch installation by the end
user. Most popular web browsers and their plugin components have built-in upgrade
mechanisms to facilitate this process. However, as demonstrated in Wang et al. [2006],

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:7

Approach Strength Weakness

Updated Browser
High availability; built-in
upgrade support; effective
for known vulnerabilities.

Ineffective for zero-day
vulnerabilities; significant lag
and risk.

Anti-Virus Software

Well maintained malware
definition databases are
available; low false positives
for known binaries.

High false negatives for
newly observed binaries;
system performance may be
slower due to scanning
overhead.

Sandbox
Adaptive to different attacks
by setting proper security
policies.

Learning curve to properly
configure the corresponding
policies is considerable.

Table I: Strengths and Weaknesses of General Defense Approaches

many landing sites actively use zero-day exploits to attack victim systems, and sophisti-
cated attackers keep discovering new exploits to improve their probability of success. It
sometimes takes a significant amount of time for the software vendors to release patches
for newly discovered vulnerabilities. Therefore, using the most updated software is not
enough to defend against web-based malware attack.

(2) Using Anti-virus Software: Since the main objective of the attack is to download and
install malware on the victim machine, anti-virus tools can be used to detect and remove
the binaries that are covertly fetched. If the anti-virus engine can correctly identify all
types of malware, this approach can form a powerful defense. Unfortunately, the state-
of-the-art anti-virus techniques still depend on certain forms of signature matching
and need to update the malware definition continuously to be effective. Arguably, the
malware definitions can never be complete, as malware keeps evolving over time. Indeed,
Provos et al. [2008] has shown that even the best anti-virus engine on the market (armed
with the latest definitions) can only achieve an average detection rate of 70%. Therefore,
this approach alone is not sufficient either.

(3) Using Sandbox for Untrusted Software: A sandbox is a well-studied security mechanism
for running untrusted programs. Typically, the sandbox provides an environment with
limited resources for untrusted programs to run in. Well-known examples of sandboxing
include virtual machines, capability systems, and the rule-based execution framework.
The main drawback of the sandbox mechanism is the difficulty of its policy configura-
tions, i.e., which programs should be executed inside the sandbox, and what privileges
should be given to the untrusted software. However, common computer users often lack
the expertise to set such security policies properly. For instance, malware delivered by
social engineering tricks may entice a user to make incorrect decisions that compromise
his own computer security.

2.4.2. Specific Defense Approaches. Realizing the insufficiency of the general defense mech-
anisms, many approaches have been proposed that focus on addressing the special charac-
teristics of the web-based malware problem. Such approaches can be classified into three
categories, and we survey representative approaches for each category as shown in Table II.
Table III describes the necessary conditions (see Section 2.3) that these approaches attempt
to break, and the corresponding deployment location:

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:8 Jian Chang et al.

Approach Other Work

Detect Attack
Vector Presence
on the Web (DA)
(See Section 4)

VM-based
Wang et al. 2006; Moshchuk et al. 2006; Provos et al.

2007; Provos et al. 2008; Polychronakis et al. 2008;

Signature-based

Roesch 1999; Toth and Kruegel 2002; Akritidis et al.
2005; Polychronakis et al. 2007; Nazario 2009;
Ratanaworabhan et al. 2009; Curtsinger et al. 2010;
Song et al. 2010; Cova et al. 2010

Identify the
Vulnerabilities of
Web Applications
(IV) (See Section
5)

Server-side

Huang et al. 2004; [Jovanovic et al. 2006a]; Xie and
Aiken 2006; Wassermann and Su 2007; Lam et al.
2008; Balzarotti et al. 2008; Bau et al. 2010; Balduzzi
et al. 2011

Client-side
Chugh et al. 2009; Guarnieri and Livshits 2009;

Saxena et al. 2010 (FLAX); Saxena et al. 2010
(Kudzu); Chang et al. 2011

Protect Victims
from Attacks
(PA) (See Section
6)

Blacklist Ma et al. 2009; Antonakakis et al. 2010

Sandbox
Cox et al. 2006; Jain et al. 2008; Grier et al. 2008;

Reis and Gribble 2009; Lu et al. 2010; Li et al. 2011

Table II: Taxonomy of Surveyed Work

(1) Detect Attack Vector Presence on the Web (DA): Approaches in this category attempt
to detect existing attacks to facilitate further study of the problem. By detecting existing
attack vector presence, researchers can discover new exploitation techniques and zero-
day vulnerabilities used by attackers. Two types of approaches are surveyed in this
regard: (1) building a high-interaction honeypot using a virtual machine (VM), and (2)
building signature-based attack detection systems.

(2) Identify the Vulnerabilities of Web Applications (IV): Approaches in this category ad-
dress the second necessary condition by conducting effective code analyses to discover
web application vulnerabilities. As a result, the chance of legitimate websites becoming
malicious landing sites decreases significantly. Two types of approaches are surveyed in
this paper: (1) using code analysis or testing to identify server-side component vulner-
abilities, and (2) using static analysis or hybrid techniques to discover client-side code
vulnerabilities.

(3) Protect Victims from Attacks (PA): Approaches in this category attempt to mitigate the
impact of existing attacks. This is achieved by countering the third necessary condition.
Two approaches1 are surveyed in this paper: (1) designing smart sandbox mechanisms
that nullify the functionality of the malware downloaded; and (2) calculating the repu-
tation of malware landing sites to construct dynamic blacklists, which can then be used
by end users to avoid visiting dangerous sites.

1The attack detection techniques can also be extended to act as protection mechanisms by dissuading the
end users from visiting the sites with known malware presence. Discussion is presented in Section 6.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:9

Approach Target Necessary Condition Deployment

DA
VM-based Condition 3: victim visiting the landing

sites to be infected.
Third party

Signature-based

IV
Server-side Condition 2: effective exploits or URLs

linked to malware being placed on the
landing sites.

Web Server

Client-side

PA

Blacklist
Condition 3: victim visiting the landing
sites to be infected.

Client System

Sandbox
Condition 1: vulnerable web browsers or
components being used by the victim.

Table III: Comprehensiveness of Surveyed Work

These three categories cover the cutting-edge research regarding the web-based malware
problem. Together, these approaches form an extensive solution space by addressing all
the necessary conditions of web-based malware attacks. Before delving into the details of
these approaches, we present the status quo of web-based malware based on Internet-scale
monitoring, which illustrates the severity of the issue and provides useful insight into the
problem.

2.5. Related Work

To our best knowledge, this paper is the first comprehensive survey focusing on web-based
malware analysis and defense. A summary comparison of this paper and related work is il-
lustrated in Figure 4. Christodorescu et al. [2007], Vinod et al. [2009] and Idika and Mathur
[2010] focus on understanding the state-of-the-art of malware detection techniques in gen-
eral. These studies compare three major classes of malware detection (i.e., behavior-based,
signature-based and specification-based) and malware code obfuscation techniques. Further,
Jacob et al. [2008] and You and Yim [2010] present a more detailed survey on behavior-
based malware detection and malware code obfuscation techniques, respectively. Siddiqui
et al. [2008] and Shabtai et al. [2009] survey the adoption of machine-learning approaches to
detect malware using file features. All these studies advance the understanding of building
accurate and robust malware detection tools, which are considered general defense mecha-
nisms against web-based malware as discussed in Section 2.4.1. Qing and Wen [2005] and Li
et al. [2008] studied the traditional push-based malware propagation model used by Inter-
net worms and the research efforts on the detection and containment of such cyber attacks.
Combining our work and the useful insights provided by these studies, one can form a better
view of how the malware propagation model evolved over time.

Considering the web-based malware attack as a generic threat to system security, studies
such as Lunt [1993], Mukherjee et al. [1994], Bai and Kobayashi [2003], Murali and Rao
[2005], Sadoddin and Ghorbani [2006], Marhusin et al. [2008], Sabahi and Movaghar [2008]
and Hosseinpour et al. [2010] shed light on the understanding of generic system intrusion
issues and the countermeasures. Focusing on the botnet threats and detection techniques,
studies Peng et al. [2007], Zhu et al. [2008], Li et al. [2009], Bailey et al. [2009], Feily
et al. [2009] and Zeidanloo et al. [2010] extend our discussion on the post malware infection

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:10 Jian Chang et al.

T
h
is

P
a
p
e
r

R
e
la
te
d

W
o
rk

C
h
risto

d
o
rescu

et
a
l.

2
0
0
7
;

P
.

et
a
l.

2
0
0
9
;

Id
ika

a
n
d

M
a
th

u
r

2
0
1
0

J
a
co

b
et

a
l.

2
0
0
8
;

S
id

d
iq

u
i

et
a
l.

2
0
0
8
;

S
h
a
b
ta

i
et

a
l.

2
0
0
9
;

Y
o
u

a
n
d

Y
im

2
0
1
0

Q
in

g
a
n
d

W
en

2
0
0
5
;

L
i

et
a
l.

2
0
0
8

L
u
n
t

1
9
9
3
;

M
u
k
h
erjee

et
a
l.

1
9
9
4
;

B
a
i

a
n
d

K
o
b
ay

a
sh

i
2
0
0
3
;

M
u
ra

li
a
n
d

R
a
o

2
0
0
5
;

S
a
d
o
d
d
in

a
n
d

G
h
o
rb

a
n
i

2
0
0
6
;

M
a
rh

u
sin

et
a
l.

2
0
0
8
;

S
a
b
a
h
i

a
n
d

M
ova

g
h
a
r

2
0
0
8
;

H
o
ssein

p
o
u
r

et
a
l.

2
0
1
0

P
en

g
et

a
l.

2
0
0
7
;

Z
h
u

et
a
l.

2
0
0
8
;

L
i

et
a
l.

2
0
0
9
;

B
a
iley

et
a
l.

2
0
0
9
;

F
eily

et
a
l.

2
0
0
9
;

Z
eid

a
n
lo

o
et

a
l.

2
0
1
0

S
c
o
p
e

W
eb

-b
a
sed

M
a
lw

a
re

X

G
en

era
l

M
a
lw

a
re

X
X

In
tern

et

W
o
rm

X

S
y
stem

In
tru

sio
n

X

B
o
tn

et
X

P
ro

p
a
g
a
tio

n
M

o
d
e
l

P
u
sh

-b
a
sed

X
X

X
X

X

P
u
ll-b

a
sed

X

S
u
rv

e
y
e
d

A
p
p
ro

a
ch

A
tta

ck

D
etectio

n
X

X
X

X
X

X

V
u
ln

era
b
ility

Id
en

tifi
ca

tio
n

X
X

A
tta

ck

P
ro

tectio
n

X
X

X
X

P
o
st-A

tta
ck

R
ecov

ery
X

Fig. 4: Summary Comparison of Related Work

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:11

consequences in Section 3.3. These two categories of studies complement our work and offer
different viewpoints for cogitating the entire network security ecosystem.

3. THE STATUS QUO OF WEB-BASED MALWARE

From Jan. 2007 to Oct. 2007, 66 millions URLs were examined in-depth to discover existing
web-based malware attacks [Provos et al. 2007; Provos et al. 2008; Polychronakis et al.
2008]. This Internet-scale measurement built a representative corpus to study the current
status of the web-based malware problem. An illustration of the studied web-based malware
infrastructure is shown in Figure 5. Techniques adopted by this study to detect web-based
malware are very similar to the approach proposed in Wang et al. [2006] (see Section 4.1).
Here, we first present the observations made in this study.

3.1. Attack Prevalence

— Drive-by download attacks are prevalent, and are becoming increasingly common. During
the study phase, over 3 million URLs were found pointing to webpages that conducted
effective drive-by download attacks. These malicious URLs correspond to 180,000 landing
sites, and 9,000 malware distribution sites.

— The risk of users being exposed to an attack is significant. The malicious URLs are uni-
formly distributed over different website functional categories (e.g., news, sports, arts).
Moreover, 1.3% of search queries to Google returned at least one malicious URL, and this
number increased linearly by 0.1% every month. Further, 0.6% of the top million URLs
that appear most frequently as Google’s search results were malicious.

3.2. Distribution Infrastructure Analysis

— Weak security practices are prevalent on landing site webservers. A large fraction of the
landing site servers were running outdated software with documented vulnerabilities. For
example, 38.1% of Apache web servers and 39.9% of servers with PHP scripting support
reported using an old version of software with known security vulnerabilities.

— Web advertisements are an significant channel to deliver attacks. On average, 2% of the
landing sites and 12% of landing pages were malicious due to unsafe advertisements. Ad-
delivered attacks have three special characteristics: (1) malware delivered via ads have
longer chains between landing sites and distribution sites due to multiple levels of ad
syndication; (2) certain ad syndications have been observed to deliver malware directly
(instead of being intermediate nodes); and (3) attacks appear in short-lived spikes —
many landing sites are affected simultaneously by the same infected ad syndication. But
once detected by the ad provider, the malicious content is removed very quickly.

— Strong locality has been observed. In terms of geography, a handful of countries were
hosting around 85% of all the landing and distribution sites. Moreover, the landing sites
and the corresponding distribution sites are highly localized within the same geographic
boundaries. In terms of network, a small IP range was found to host up to 210 distribution
sites. 70% of all the malicious sites have IP addresses belong to four /8 prefixes. Further,
98% of these sites were hosted by only 210 Autonomous Systems (out of 40,000 active
ASes).

— The topology of the malware distribution infrastructure has interesting properties. The
distribution-versus-landing site ratio is a long-tail distribution: a large percentage (around
45%) of the distribution sites had only one landing site; on the other end of the curve,
some distribution sites had more than 21,000 associated landing sites. This distribution
pattern can be explained by attackers making a trade-off between the ease of management
and the detection avoidance. Interestingly, 80% of the distribution sites share at least
one landing site with each other.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:12 Jian Chang et al.

Victim System

Victim System

Victim System

Victim System

… …

Email Address

Collection

Credential

Collection

Spam

C&C
… …

Web-based Malware Infrastructure Distribution Sites Landing Sites

Botnet Intermediate Redirection, Ads Syndication

Fig. 5: Example of Web-based Malware Infrastructure

3.3. Malware and Post Infection Analysis

— Web-based malware has great diversity and keeps evolving. 3% of the distribution sites
hosted more than 100 different binaries. Adware, Trojans and computer worms are the
top three malware types on the web. Moreover, these malware binaries keep changing
with a frequency ranging from once every few hours to once every several days. Some
malicious URLs have been observed changing the corresponding binaries almost every
hour. This dynamism could explain the insufficiency of the signature-based anti-virus
technique for detecting web-based malware.

— Web-based malware seriously threatens a victim’s system security. A successful attack
leads to on average 8 different malware binaries downloaded into the victim system. In
7% of the cases, victim machines had the new Browser Helper Object (BHO)2 installed,
23.5% had the browser home page or the name server changed, 36.2% had the firewall
and other security settings changed, and 51.3% had the system startup setting modified
in order to have malware persist across reboots.

— Web-based malware provides a cornerstone for large-scale electronic crime. After instal-
lation on the victim system, malware notifies attackers about the compromised system
and the sensitive exfiltrated information. Many common Windows protocols (e.g., NET-
BIOS, SMB, DCOM, MSSQL), are also probed by malware to scan for the vulnerabilities
of neighboring computers to propagate further. Moreover, various communication proto-
cols (e.g., HTTP, IRC) are used by malware to join botnets for conducting other cyber
crimes (e.g., Denial-of-Service, spamming).

3.4. Related Measurement Studies

Prior to this Internet-scale measurement study, several relatively small-scale studies were
conducted. A summary comparison of such studies is shown in Table IV. Wang et al. [2006]
examined 17,000 URLs and found about two hundred of them to be malicious in nature.
In this study, multiple zero-day vulnerabilities were also discovered and studied. In May
2005, 18 million URLs were crawled to study a specific type of malware — spyware — on the
web [Moshchuk et al. 2006]. Using a security scanner, 45,000 URLs were found to be linked
to spyware. Further, the author observed that different exploit mechanisms were used to

2BHO is a type of plugin for Internet Explorer browser to provide extra functionality.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:13

Paper

Provos et al.
2008;

Wang et al.
2006

Moshchuk
et al. 2006

Bailey et al.
2007

Study
Scope

Web-based
Malware

Web-based
Malware

Web-based
Spyware

Malware

Study
Scale

Billions of
URLs

17,000 URLs
18 million
URLs

3698 pieces
of binaries

Approach
VM-based
Detection

VM-based
Detection

VM-based
Detection

Anti-virus
Software

Table IV: Summary Comparison of Measurement Studies

target different browser platforms. It is important to note that the detection techniques
used by these papers can suffer from false negatives, which make their measurement result
a conservative estimate of the real situation. Therefore, all these works emphasize the trend
of web-based malware attacks as a rising threat for the Internet.

Bailey et al. [2007] focuses on achieving better understanding on the nature of malware
spreading over the Internet, which is orthogonal to the studies discussed above. Motivated
by the observations that host-based anti-virus software provides inconsistent information
about the underlying threats, the authors design a behavior-based classification technique
to automatically categorize malware. By evaluating the proposed scheme over 3698 pieces of
malware collected over 6 months, this behavior-based classification technique demonstrates
better completeness and accuracy than existing approaches. This work can benefit the post
infection analysis of web-based malware attacks.

4. WEB-BASED MALWARE DETECTION

As we saw in Section 3, to gain a better understanding of the web-based malware problem, it
is necessary to detect the instances of existing attacks. Given the huge number of webpages
on the Internet and their rapidly evolving nature, manual inspections are clearly insufficient.
Therefore, techniques have been proposed in the literature to automate this process. Such
approaches can be categorized into two types — virtual machine-based and signature-based
— which are effective for detecting web-based malware delivered through drive-by download
attacks. A brief summary of surveyed work in this section is shown in Table V.

4.1. Virtual Machine-Based Detection

In Wang et al. [2006], the authors proposed an automatic detection system named Honey-
Monkey, which follows a black-box approach and detects drive-by download attacks using
virtual machines (VMs). The system is given the name HoneyMonkey for two reasons: (1)
the system is a “honeypot”, which attracts attacks, and (2) a computer program (monkey)
is designed to simulate the web browsing activities of a human and to detect attacks.

The system design of HoneyMonkey is shown in Figure 6. Two types of VM are used in
the HoneyMonkey system. Type I: unpatched virtual machines with known vulnerabilities;
and Type II: fully patched virtual machines that are only vulnerable to zero-day exploits.
Both types are designed to run the Microsoft Windows operating system. Before running

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:14 Jian Chang et al.

Category Paper Contribution Summary

VM-Based

Wang et al. 2006
Using VM to effectively detect
web-based malware attacks and
zero-day vulnerabilities.

Moshchuk et al. 2006;
Provos et al. 2008

Enabling efficient VM-based
detection of web-based malware
attacks over large-scale dataset.

Signature-Based

Cova et al. 2010

Using an instrumented web
browser to extract effective
signatures to detect drive-by
download attacks.

Song et al. 2010
Extracting signature of browser
communication behavior to detect
drive-by download attacks.

Curtsinger et al. 2010
Extracting syntax signature of
malicious JavaScript to detect
drive-by download attacks.

Roesch 1999;
Nazario 2009

Matching data-flow signature at
network or application level to
detect potential system intrusions.

Toth and Kruegel 2002;
Akritidis et al. 2005;
Polychronakis et al. 2007;
Ratanaworabhan et al.
2009

Using memory overflow signatures
to detect buffer overflow attacks.

Table V: Summary of Web-based Malware Detection Techniques

HoneyMonkey for detection, a set of candidate URLs needs to be collected; these URLs are
then used as the input of the HoneyMonkey system. HoneyMonkey works in three stages:

(1) Stage-1 HoneyMonkey visits N number of URLs simultaneously by the monkey program
in a Type I VM instance. A time-out is set to properly load all the URLs in the VM. By
closely monitoring a group of persistent-state changes in the VM (e.g., executable file
creation, Windows registry modification, etc.), the program decides on whether further
investigations are needed. That is, if no persistent-state change is found (i.e., the VM
state is clean), then the system fetches the next N URLs from the candidate URL pool
and restarts Stage 1. Otherwise, the HoneyMonkey system will switch to Stage 2.

(2) Stage-2 HoneyMonkey pinpoints a subset of the N URLs that trigger the persistent-
state changes. To achieve this, only one URL is loaded in a Type I VM every time.
By combining Stage 1 and 2, the system can reuse a clean VM instance for a rather
large number of URLs without sacrificing accuracy. When a malicious URL that triggers
persistent-state changes is discovered in Stage 2, it is further examined in Stage 3.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:15

Detection System Output

Potential Malicious URLs

Topology of Malicious URLs

Zero-day Vulnerabilities

Stage-1: Scalable Type I VM

Stage-2: Basic Type I VM

Stage-3: Basic Type II VM

Interesting URL Set

HoneyMonkey Detection System Further Action Items

Fix compromised VM

Topology Data Analysis

Internet Safety Enforcement

Anti-virus Team

Security Response Team

Fig. 6: HoneyMonkey System Design

(3) Stage-3 HoneyMonkey reloads the malicious URL in a Type II VM to discover zero-day
exploits.

Five pieces of information are recorded during the detection using various techniques
[Wang et al. 2003; Beck et al. 2005; Joshi et al. 2005]: (1) file operations, (2) the process
creation log, (3) the Windows registry modification log, (4) exploited vulnerabilities, and
(5) browser redirection activities. Careful analyses of the recorded information are used to
understand the attack techniques and the malware distribution infrastructure. Within the
first month of system deployment, 752 malicious URLs and 1 zero-day exploit were discovered
by HoneyMonkey, proving its effectiveness.

Moshchuk et al. [2006] and Provos et al. [2008] improved the basic VM-based detection
system by adding a pre-processing phase. During the pre-processing, webpages are checked
using static code analysis techniques or various heuristics (e.g., whether the webpages con-
tain URLs linked to known attacking sites or heavily obfuscated JavaScript code) to filter
out a large portion of benign webpages and reduce the cost of launching VM instances. This
improvement enables the efficient examination of candidate webpages at large-scale (i.e.,
from millions to billions), using VM-based detection systems.

4.2. Signature-Based Detection

Using VMs as high-interaction honeypots has its own challenges. In particular, an attack
can be detected only if the vulnerabilities that are being exploited by the attackers are
present in the honeypot system. However, since there are so many different versions of web
browsers and hundreds of components (e.g., PDF plugins, Flash, and ActiveX controls) have
been targeted to launch web-based malware attacks, it would be very difficult to configure
any one system as being the most “vulnerable” to detect all possible attacks. Otherwise,
the false negative rate would be rather high as observed in Seifert et al. [2009].

In Cova et al. [2010], the authors proposed an alternative approach to build high-
interaction honeypots. Their approach is named JSAND, which combines the usage of an
instrumented browser, a set of effective signature features, and machine learning techniques
to detect drive-by download attacks. The instrumented browser is designed to facilitate three
tasks: (1) to simulate the personality of various browsers (e.g., Internet Explorer, Firefox,
Chrome) to expand the available attack surface; (2) to simulate arbitrary system environ-
ments and configurations. For example, requests for loading ActiveX controls or plugins
can be fully customized; and (3) to track all JavaScript function definitions and invocations
for implementing anti-cloaking mechanisms [Moser et al. 2007; Wilhelm and Chiueh 2007].

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:16 Jian Chang et al.

Simulate Different User Agents

Instrumented Browser

(HTMLUnit)

Redirection Analysis

Component Initialization API

landing.site/url/

JavaScript Code

Anomaly Detection

Feature 1

Feature 2

Feature 8

Feature 3-7,9,10

JavaScript Engine

(Mozilla Rhino)

Anti-Cloaking

A
nom

aly M
odel

(1)

(2)

(3)

(3)

(3)

(3)

Fig. 7: JSAND System Design

The overall design of the JSAND system is illustrated in Figure 7. Ten signature features
are identified and used in training the anomaly model of drive-by download attacks. The
authors argue that these ten signature features are effective to distinguish between benign
webpages and malicious ones:

— Feature 1: the length and target of the redirection chain — it has been observed that
malicious landing sites often have unusually long redirection chains toward malware dis-
tribution sites.

— Feature 2: the browser personality and history-based differences — as many attacks only
target a specific platform (e.g., Internet Explorer 6 running on Windows XP), the landing
websites might return different content accordingly.

— Feature 3 to 5: the ratio of string definitions and string uses, the number of dynamic code
executions, and the length of dynamically evaluated code — these features are included
to capture the characteristics of code obfuscation techniques, which are often used by
malicious sites to avoid signature-based detection.

— Feature 6 and 7: the number of bytes allocated through string operations, and the number
of likely shellcode strings — these features are included to capture the characteristics of
common attack techniques, such as heap overflow.

— Feature 8: the number of instantiated components — as we discussed in Section 2.2,
attackers often attempt to exploit a number of vulnerabilities to maximize their success
rate.

— Feature 9 and 10: the values of attributes and parameters in method calls, and the se-
quence of method calls — these features are included to encode the unique behavior of
the vulnerability exploit phase.

All the signature features are fed into a machine learning algorithm proposed in Kruegel
and Vigna [2003] to train an anomaly model. Then, the model is used to detect attacks by
assigning a score to the webpage of interest. The higher the score, the higher the probabil-
ity of its being anomalous (i.e., triggering drive-by download attacks). 150,000 URLs were
examined by JSAND. It has been shown that by selecting a proper training set, JSAND
can achieve both lower false positives and lower false negatives than other signature-based
[Nazario 2009] and VM-based [Provos et al. 2008] approaches.

Complementing the 10 signature features proposed in JSAND, Song et al. [2010] identi-
fies anomaly communication signatures between different web browser components under
drive-by download attack scenarios by modeling the common attack workflow (as discussed
in Section 2.2). The authors demonstrated that such communication behavior could offer
accurate and robust signatures for identifying real-world drive-by download attacks. Alter-

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:17

echo "Here is what you wrote: $_GET[′input′]"

$sql = "SELECT * FROM product WHERE pid = ′".$_GET[′pid′]."′"

http://example.com/?input=<script>alert();</script>

(1) Vulnerable PHP Code and XSS Attack Example

(2) Vulnerable PHP Code and SQLI Attack Example

http://example.com/?id=1′;DROP TABLE product;#

Fig. 8: Simple Vulnerable PHP Script and Attack Examples

natively, Zozzle [Curtsinger et al. 2010] explores the possibility of using JavaScript code
signatures to detect web-based malware attacks. Zozzle uses a semi-automated machine-
learning approach to extract a large set of code signatures from previously detected mali-
cious JavaScript code. It then uses this signature database to do fast string matching with
any new code observed. Zozzle can be implemented as a JavaScript engine extension, which
detects malicious JavaScript code and the potential web-based malware attacks on-the-fly.
Other early signature-based work includes Snort IDS [Roesch 1999], which performs data-
flow signature matching of attack patterns at the network level, and PhoneyC [Nazario
2009], which performs similar techniques at the application level.

It is worthwhile to note that Toth and Kruegel [2002], Akritidis et al. [2005], Polychronakis
et al. [2007] and Ratanaworabhan et al. [2009] investigate signature-based approaches for
detecting the stack or heap overflow techniques. Such memory overflow techniques are widely
used by attackers to inject malicious shellcode for conducting drive-by download attacks.
These studies use emulation approaches at either the network or application level to detect
memory overflow signatures. Various heuristics are proposed in these studies to improve the
detection accuracy and performance overhead.

5. IDENTIFICATION OF APPLICATION VULNERABILITY

As we discussed in Section 2.3, unvalidated user input is one of the principle causes that
allows attackers to use legitimate websites used by the attackers to propagate malware.
Indeed, the Top Ten Project [2011] of the Open Web Application Security Project (OWASP)
has listed injection attacks as the number one threat to web application security. One
example of this injection attack is commonly known as the cross-site scripting (XSS) attack
[Kirda et al. 2006; Jim et al. 2007; Wassermann and Su 2008]. In the case of XSS, the
attackers leverage vulnerable functions of a web application to send malicious JavaScript
code as the output of the web application to other users’ browsers for execution. Another
well-known problem is the SQL injection (SQLI) attack [Halfond et al. 2006; Geneiatakis
et al. 2006]. In the case of SQLI, the attackers supply carefully-crafted input into vulnerable
web applications, which leads to modifications or leakage of important information (e.g.,
administrator credential) stored in the back-end database system. Figure 8 shows examples
of vulnerable scripts and possible attacks.

The main functionalities of a web application have long been implemented by its server-
side components. Therefore, many of the previous research efforts have been devoted to
finding server-side code vulnerabilities. We survey this research branch in Section 5.1. As
the complexity of the client-side components keeps increasing, more recent attention has
been given to study the potential flaws. This research branch is discussed in detail in Section
5.2. A brief summary of the surveyed work in this section is shown in Table VI.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:18 Jian Chang et al.

Category Paper Contribution Summary

Vulnerability
Identification
of Server-side
Code

Jovanovic et al. 2006a
Using static analysis of PHP code
to identify XSS vulnerabilities.

Huang et al. 2004;
Xie and Aiken 2006;
Wassermann and Su 2007;
Lam et al. 2008

Improving existing static analysis
techniques of the server-side code
component by enhancing the
analysis precision, scalability, or
the policy specification process.

Balzarotti et al. 2008

Combining the use of static and
dynamic code analysis to improve
the vulnerability identification
capability.

Bau et al. 2010;
Balduzzi et al. 2011

Using black-box code testing
techniques to identify server-side
code vulnerabilities.

Vulnerability
Identification
of Client-side
Code

Saxena et al. 2010 (FLAX);
Saxena et al. 2010 (Kudzu)

Combining the use of tainting
analysis and black-box fuzzing
tests to identify client-side
validation vulnerabilities.

Chugh et al. 2009;
Guarnieri and Livshits 2009;
Chang et al. 2011

Using various static code analysis
techniques to identify potential
client-side code vulnerabilities.

Table VI: Summary of Vulnerability Identification Techniques

5.1. Server-side Code Vulnerability

A well-studied approach to discovering code vulnerabilities is tracking the information flow
within web applications [Sabelfeld and Myers 2003]. Three important terms are defined
within this context: (1) source: untrusted data or operations; (2) sink: critical data or
operations that are vulnerable and need to be protected; and (3) policy: the specification of
security requirements, for example, the confidentiality or the integrity of data. Using data
tainting and flow analysis techniques, the web application code is analyzed to identify the
information flow from sources to sinks, or vice versa. Depending on the policy, a flow from
sources to sinks may violate the integrity requirement (e.g., XSS attacks). At the same
time, a flow from sinks to sources may violate the confidentiality requirement (e.g., website
cookies that are leaked to the attackers). Such violations are then caught and reported as
vulnerabilities.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:19

Construct P-Tac Representation

start

$v = 0

$t = $_GET

If(*)

end

echo $t $v = 1

T F

$v = 0;

$t = $_GET[′input′];

If($v!=1){echo $t;}

else {$v = 1}

Source Code

($t,$_GET[′input′])

Alias Analysis

Source: $_GET

Sink: echo

Policy Configuration

start

$v = 0

$t = $_GET

If(*)

end

echo $t $v = 1

T F

Literal Analysis

v:Ω

v:0

v:0

v:1v:0

v:Ω

start

$v = 0

$t = $_GET

If(*)

end

echo $t $v = 1

T F

Tainting Analysis

v:Ω

v:0

v:0

v:1v:0

v:Ω

System Input Intermediate Steps System Output (Potential Vulnerabilities)

Fig. 9: Example of Pixy System Usage

5.1.1. Static Code Analysis. In Jovanovic et al. [2006a], Pixy, the first open source tool for
statically detecting XSS vulnerabilities in PHP code, was developed.3 An example of the
Pixy usage is illustrated in Figure 9. In Pixy, the sources include several types of program
entry points, such as GET, POST and COOKIE arrays. All the routines that return data to the
browser, such as echo, print and printf are considered to be the sensitive sinks. The notion
of a sanitation routine is defined as the functions that can destroy potentially malicious
characters contained in the sources. Several built-in PHP functions, such as htmlentities
and htmlspecialchars are considered to be proper sanitation functions. The goal of Pixy is
to identify the integrity vulnerabilities: any information flow from sources to sinks without
sanitation is considered to be problematic.

Static data flow analysis is used in Pixy to achieve the design goal. The Pixy system takes
PHP source code files as its input. First, parse trees are constructed by parsing the PHP
input files. These parse trees are then transformed into an intermediate representation that
is called P-Tac. The P-Tac representation is a form of the three-address code [Aho et al.
1986] enhanced with the control flow graph for every invoked function. The last and the most
important step is to conduct a flow analysis over the intermediate P-Tac representation.
This analysis identifies all of the sensitive sinks that can be reached by source data flows as
potential vulnerabilities.

Several important features are implemented in Pixy to achieve better analysis accuracy.
First, it performs an alias analysis to correctly propagate the taint value to both the variables
and all of their aliases. This alias analysis technique is proposed in Jovanovic et al. [2006b] for
reference-based scripting language. Second, a literal analysis is used to collect information
about the literal values that variables or constants may hold at every program point. The
literal information is then used by the flow analysis to evaluate branch conditions and to
ignore program paths that cannot be executed at run-time. Third, all the built-in PHP
functions except for the sanitation routines are thought to preserve data flow by default.
The same is true for user defined functions, unless a specification of the true behavior is
provided. This design choice is made to minimize the false negatives. False positives can
often be solved by manual inspections; however, there is no effective way to handle false
negatives. The authors used Pixy to scan six real-world PHP web applications and reported

3In this paper, we choose PHP as the representative server-side scripting language due to its popularity in
practice. However, the techniques being surveyed in this paper can have much broader applicability.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:20 Jian Chang et al.

about 50 vulnerabilities. The authors also found that Pixy suffered from both false positives
and false negatives that were caused by certain dynamic properties of the PHP language,
which the static analysis is incapable of handling.

Similar to Pixy, Huang et al. [2004], Xie and Aiken [2006], Wassermann and Su [2007] and
Lam et al. [2008] focus on the static information flow analysis to detect the vulnerabilities of
web applications. The differences among these studies varies, depending upon the analysis
capabilities or target language. Besides identifying the vulnerabilities, Huang et al. [2004]
also inserts runtime guard code to ease the vulnerability patching process. In Xie and Aiken
[2006], the authors improve the capabilities of static code analysis to handle many dynamic
features of the PHP language. Meanwhile, Wassermann and Su [2007] proposes a technique
to automate the policy specification process and the scalability of existing code analysis
systems. A declarative policy specification language is proposed in Lam et al. [2008], and
the authors demonstrate several examples to show that the proposed policy language is
expressive enough for encoding succinct descriptions of many real-world vulnerabilities.

5.1.2. Combining Static and Dynamic Analysis. False negatives could occur due to the assump-
tion that if a sanitation function was applied on the information flow path from source to
sink, then this path is safe. However, this assumption does not always hold. For example,
Su and Wassermann [2006] discussed the possibility of subtle SQL injection vulnerabilities
that can be exploited even when the input is processed by a built-in PHP sanitation routine.
This issue is more problematic when custom checking routines are used. The correctness of
these custom checking cannot be guaranteed due to the lack of systematic testing.

To address this problem, Balzarotti et al. [2008] extended Pixy with dynamic code analysis
capabilities to design a new tool called Saner. The capabilities of Pixy are preserved to
identify all the information flow from source to sink. By over-approximation of the values
that each string variable can hold for every point in the program, Saner then checks whether
these values contain any element that may pose a security risk. A dynamic analysis is then
performed by executing the code with a large set of different inputs that includes many
ways of encoding and hiding malicious characters. By doing this testing, Saner attempts
to confirm the existence of vulnerabilities by finding program input that can bypass the
sanitation routines and reach the sinks.

The dynamic testing phase of Saner is conducted in two steps. First, Saner constructs
a sanitization graph for each source and sink pair provided by the static analysis. In the
second step, a number of attack strings are used to confirm the potential vulnerabilities. If
the testing process confirms that there is no effective sanitation between a source and a sink,
it triggers an alert and provides the problematic program path along with sample attack
strings. This information can then be leveraged by the developers to fix the vulnerability.
The authors showed that Saner can identify many previously unknown vulnerabilities in
real-world web applications.

5.1.3. Black-box Code Testing. Another type of approach, black-box code testing, is also
widely used in practice to find software bugs. Instead of analyzing the program source
code, black-box testing feeds known malicious input into web applications as test cases
to identify potential vulnerabilities. In Bau et al. [2010], eight automated black-box testing
tools from leading vendors are compared. The comparison shows that these tools are effective
in identifying well-studied vulnerabilities, but they are insufficient for discovering more
complex and subtle flaws.

Focusing on the URL parameter as the sensitive source, Balduzzi et al. [2011] proposes
PAPAS — the first system that automatically discovers URL parameter pollution vulner-
abilities of web applications. The PAPAS system adopts a black-box testing approach to
inject URL parameter test cases into target web applications and uses a set of heuristics to
determine potential vulnerabilities. By using the proposed techinque to analyze about 5,000

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:21

popular websites, the authors observed that about 30% of these sites contain vulnerablities
that can be exploited to conduct various SQLI or XSS attacks.

5.2. Client-side Code Vulnerability

Similar to the server-side code, client-side components of web applications can also be
vulnerable. Such client-side components are usually written in interpreted script language
(e.g., JavaScript) to enhance interactivity and to provide functionalities. Client-side script
has the power to interact with webpages and the browser; however, it also opens doors for
many browser-based attacks. Several studies have been conducted to enhance the current
browser implementation of the same-origin policy [Jackson and Wang 2007; Crites et al.
2008]. Such work focuses on designing a secure interface for untrusted principals (e.g.,
webpages from different domains) to communicate with each other, but the secure interfaces
are not the solutions for addressing the emerging security challenges and vulnerabilities (e.g.,
unsanitary user input, and insecure mashup paradigm) related to the web-based malware
problem, as we discussed in Section 2.3.

5.2.1. The Status Quo of Insecure JavaScript Practices. A large-scale measurement study on
insecure JavaScript practices is presented in Yue and Wang [2009]. In this study, two types of
insecure practices were considered: (1) JavaScript inclusion: including JavaScript files from
external domains into the top-level document of a webpage; and (2) dynamic JavaScript
generation: using reflective functions, such as eval to generate new scripts at run-time.
Both types of insecure practices can lead to vulnerabilities and allow for the injection of
malicious scripts from the attackers.

As a part of Yue and Wang’s study, the homepages of 6,805 popular websites in 15
different genres were visited. It has been observed that 66.4% of the measured websites
have the insecure JavaScript inclusion problem. More than 74.9% of the measured websites
use dynamic script generation techniques. In other words, insecure JavaScript practices are
prevalent on the Web. These results warn both website developers and administrators to
pay serious attention to these issues and to use safe alternatives to avoid them.

5.2.2. Discovering Client-side Code Vulnerability. In Saxena et al. [2010], a class of validation
vulnerabilities is formally analyzed for client-side code. This client-side validation (CSV)
vulnerability is defined as a programming flaw that results from using untrusted source
data in a critical sink without sufficient validation. Data from the external web principal
or end users are defined as untrusted sources. In fact, the sources could be messages from
remote servers, cross-window communications (e.g., HTML-5 postMessage) or user input
(e.g., form fields on a webpage). The sinks are defined to include various critical data
structures (e.g., document.cookie and document.forms[*].action), functions (e.g., eval
and document.write), which might be vulnerable to attacks (e.g., code injection, parameter
injection). Similar to Saner, the authors propose a code analysis technique named FLAX,
which employs taint-enhanced black-box testing.

FLAX is inspired by Ganesh et al. [2009], and it uses a two-step process to identify CSV
vulnerabilities. This two-step process is designed to reduce program size and the correspond-
ing search space for the black-box test. In the first step, the web application is executed
with the initial input I to conduct a dynamic taint analysis at the character level. The
taint analysis identifies all the potential uses of untrusted source data in critical sinks. It
then extracts an input set IS , on which the arguments of a sink operation S depend. All the
program statements that are directly dependent on IS are then extracted into an executable
stand-alone sub-program, termed an acceptor slice. In the second step, each extracted ac-
ceptor slice is fed with test cases to find vulnerabilities. This process is sink-aware as the
test input is specifically designed for different types of sinks. For example, a large corpus of
XSS attack vectors is used to test the sinks that are vulnerable to code injection attacks.
The system design of FLAX is illustrated in Figure 10.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:22 Jian Chang et al.

Web Application

BrowserWeb Server
HTTP or XMLHTTP

Request/Response
JASIL Tracer

Tainting

Analysis

Acceptor

Sink-Aware

Fuzzing Test
Verification Candidate Input

Step I

Step II

Fig. 10: FLAX System Design

Important design choices were made to handle various technical challenges of implement-
ing FLAX. First, a simplified version of JavaScript named JASIL has been designed to
facilitate the analysis process. Second, when tainted data is sent to external servers, FLAX
performs the longest common substring matching over the returned data. Finally, implicit
sinks are also considered to reduce false negatives. By running FLAX over 40 web applica-
tions, 11 previously unknown vulnerabilities were discovered. After manual verification of
the application code, the authors argue that FLAX has a low false positive and a low false
negative rate. Using these identified vulnerabilities, four proof-of-concept attack scenar-
ios were illustrated, including origin mis-attribution, code injection, application command
injection and cookie corruption.

In Saxena et al. [2010], the authors enhance the design of FLAX and propose a new
system called Kudzu for identifying CSV vulnerabilities. Test cases are supplied as input
to the FLAX system for conducting blackbox fuzzing test. Unlike FLAX, Kudzu generates
high-quality test cases automatically. Further, Kudzu uses a new language to express string
constraints and adopts a novel constraint solver to explore the symbolic execution space
of JavaScript code. By identifying code injection vulnerabilities in real-world applications,
Kudzu demonstrates its effectiveness without suffering from false positives.

Unlike FLAX, Chugh et al. [2009], Guarnieri and Livshits [2009] and Chang et al. [2011]
adopt different static code analysis techniques to identify insecure JavaScript program be-
havior that leads to potential client-side code vulnerabilities. GateKeeper [Guarnieri and
Livshits 2009] is a code validation tool that is useful for web widget portals (e.g., iGoogle)
to enforce customized security policies before allowing new widgets to be published. By
disallowing dynamic code generation features of the JavaScript language, GateKeeper uses
mostly static code analysis (e.g., pointer analysis, static call graph) to enforce security poli-
cies. The satisfaction of the corresponding policies by a widget is considered as a certification
process of the widget portal. Chugh et al. [2009] is a staged information flow approach to
enforce data-flow policies for JavaScript code. The proposed scheme identifies syntactically
enforceable rules during an off-line analysis stage and enforces them during the execution of
JavaScript code to achieve minimal performance overhead. ToMaTo [Chang et al. 2011] is a
development tool that combines a novel trust policy language and a static code analysis en-
gine to examine vulnerabilities introduced due to the usage of external JavaScript libraries
in mashup web applications. ToMaTo enables the mashup developers with three essential
capabilities for identifying potential vulnerabilities to build trustworthy JavaScript code
mashups: trust policy specification, policy adherence evaluation, and vulnerability (i.e.,

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:23

Fig. 11: Screen-shot of Google Safe Browsing

policy violation) handling. Overall, these static analysis approaches are sound but suffer
from false positives due to the nature of the techniques.

6. PROTECTION AGAINST WEB-BASED MALWARE

The last line of defense against web-based malware is to protect the end users from being
infected. As we saw in Section 2.4.1, instead of focusing specifically on web-based malware,
traditional protection mechanisms, such as anti-virus software, sandbox techniques and
security patches, are generally effective against a larger range of threats. Notably, alternative
patching schemes have been explored in Wang et al. [2004] and Reis et al. [2006]. Their
studies provide techniques for patching known vulnerabilities of client machines at network
level to ease the patch application process. Despite the usability advantage, the accurate
specification of network-level patches for the corresponding host vulnerabilities is still a
challenging task.

The detection techniques discussed in Section 4 can often be extended to act as protection
mechanisms as well. The idea is that if malice can be effectively detected, and the end users
are notified about the risk, then they can avoid visiting those websites that expose them
to danger. For instance, the VM-based detection technique adopted in Provos et al. [2008]
has been used in the Google Safe Browsing Project [2011], which constructs a blacklist
of detected landing sites. Browsers, such as Firefox and Chrome, which incorporate the
blacklist, can dissuade end users from visiting high risk websites (see Figure 11). Moreover,
the detection mechanisms can also be encapsulated as proxy services, which perform on-line
detection of attacks before sending unsafe content to end users [Moshchuk et al. 2007; Rieck
et al. 2010].

In this section, we discuss two categories of approaches: (1) sandbox systems, which are
specially designed to prevent web-based malware infection; and (2) URL reputation schemes,
which improve the dynamics and the predictability of static malware blacklists. A brief
summary of surveyed work in this section is shown in Table VII.

6.1. Building Attack-Agnostic Sandbox

Sandboxing is a well-studied and widely-used security mechanism to execute untrusted code
by restricting its privileges in a trusted system. In Lu et al. [2010], the authors propose a
smart sandbox mechanism, called BLADE, to protect end users from all forms of drive-by
download malware attacks. In BLADE, the end user is the root of trust. All downloaded
content with explicit user consent is considered trustworthy. It is important to note that
BLADE will not work for web-based malware delivered through social engineering tricks.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:24 Jian Chang et al.

Category Paper Contribution Summary

Attack-Agnostic

Sandbox

Lu et al. 2010
Using sandbox mechanism to isolate
untrustworthy downloads created by
web-browsers.

Cox et al. 2006;
Li et al. 2011

Providing strong isolations between
the execution of untrustworthy web
applications and the host operating
system.

Jain et al. 2008

Providing a sandbox system that
both limits the effects of attacks
and simplifies the post-intrusion
recovery process.

Grier et al. 2008;
Reis and Gribble 2009;

Using sandbox mechanism for
secure web browser designs.

URL Reputation

Ma et al. 2009
Building a dynamic and predictive
blacklist using URL reputation.

Antonakakis et al. 2010
Building a dynamic reputation
system for domain names.

Table VII: Summary of Web-based Malware Protection Techniques

The goal of BLADE is to put content downloaded without a user’s consent into an iso-
lated sandbox environment to prevent any damages it might cause. The authors argue that
BLADE is attack-agnostic, as it does not require any understanding of the exploit techniques
or vulnerabilities. In contrast, it needs to correctly capture user’s consent.

The system design of BLADE is shown in Figure 12. By default, BLADE puts all files
downloaded from the browser process into a non-executable secure zone. Once BLADE
can correlate a downloaded file with a user’s permission, the file will be moved out of the
sandbox. Therefore, the key challenge of BLADE is to build a robust, user-transparent,
and browser-independent correlation mechanism between the user authorization and the
downloaded content. BLADE achieves this goal in four steps: (1) BLADE monitors kernel
window events to look for the appearance of a download consent dialog triggered by the
browser. A handful of user interface (UI) signatures are used to identify these consent dialog
windows and to extract (URL, file path) information from them. (2) Once such a dialog is
discovered, BLADE begins to sense user-invoked hardware signals (e.g., mouse clicks or
keystrokes), which may indicate the user’s consent. Once such a signal has been observed, the
correlation process starts. (3) The correlation process establishes proper mappings between
user download authorizations and downloaded files. The (URL, file path) pair extracted in
step 1 is used to provide information for the correlation process. File path information
is used as the ID to find the candidate file from the sandbox zone. Meanwhile, the URL
is used to double check against a log of TCP sessions to increase the robustness of the

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:25

Screen Parser Supervisor HW Event Tracer Correlator I/O Redirector

(1)
(2) (3)

(4)

(5) (6)

(7)

WindowingInput Device Transport Driver File Sys. View

Secure Zone

OS File Sys.

User Browser

BLADE System

Kernel Space

File System

(1) Download consent UI appeared; (2) Start tracing HW event;

(3) Start stream recording; (4) User consent captured;

(5) Notify download authorization; (6) File correlation;

(7) Release correlated download.

Fig. 12: BLADE System Design

correlation result. (4) Once a correlation is established, the downloaded content with a
user’s permission will be redirected from the sandbox to the OS file system. Security policies
are enforced by BLADE to enable a complete containment of disk footprints affected by
the downloaded content. The authors evaluate BLADE against 4,000 malicious webpages
that contain drive-by download exploits. The experiment showed that BLADE is effective
against all these attacks and only introduces a time delay of 4% compared with benign
content downloading.

Cox et al. [2006] and Li et al. [2011] propose alternative sandbox schemes for isolating the
execution of untrustworthy web applications. Cox et al. [2006] propose a new trusted soft-
ware layer, the Tahoma Web browsing system, to provide strong isolations between different
web applications and the host operating system. Having the same security management ca-
pabilities of native applications on current operating systems, web applications are explicitly
controlled and managed by the Tahoma system. By utilizing a carefully designed virtual
machine system, the Tahoma system achieves strong isolation and safety without compro-
mising the application performance. WebShield [Li et al. 2011] is a sandbox system that
implements the principle of program isolation at the network level. The WebShield system
treats all the JavaScript code of web applications as untrustworthy and executes it inside a
sandbox. Serving as a proxy server, WebShield only forwards the consequences of JavaScript
code execution (e.g., DOM modifications) to the client-side browsers for rendering. The in-
teractivity of web applications is also preserved by implementing special event handlers
and communication protocol between the client-side browser and the sandbox proxy. The
authors argue that WebShield has more general capabilities than existing network-level iso-
lation schemes such as Reis et al. [2006] and Moshchuk et al. [2007]. Solitude is a sandbox
system that is designed to both limit the effects of attacks and simplify the post-intrusion
recovery process [Jain et al. 2008]. Instead of focusing on any specific type of attack, Soli-
tude provides a transparent and isolated environment for running all types of untrusted
applications. Moreover, Solitude supports a more fine-grain privilege model than BLADE.

The Chromium web browser also provides a sandbox mechanism to isolate different web
programs by taking advantage of existing OS-level isolation between different processes

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:26 Jian Chang et al.

[Reis and Gribble 2009]. However, it is designed to enhance the current same-origin-policy
implementation to defend against XSS attacks. Indeed, malware delivered through client-
side exploits against Chrome has already been observed [Chrome Malware 2010]. Similarly,
in Grier et al. [2008] the authors also address the principle of secure web browser design.
Grier et al. [2008] advocates a scheme that uses formal methods to drive the application of
the security design principles of modern operating systems. The overall idea is to design a
web browser that consists of function modules and a small browser kernel, where the browser
kernel controls and interposes communications between all the subsystems and components.
The authors argue that the proposed scheme will be less error-prone and ease the task of
pinpointing attack scenarios and potential vulnerabilities.

6.2. Calculating URL Reputation

Current ways to build a URL blacklist depend on explicit feedback; malice is observed by
either manual inspections or automatic detections. Inevitably, these blacklists are not com-
plete — many malicious URLs are not blacklisted. There are two main reasons for this defect:
(1) the URL is “new”, meaning that it has not yet been evaluated; or (2) the evaluation result
is incorrect due to the false negative exhibited by the detection approach.

Motivated by the insufficiency of a static blacklist, Ma et al. [2009] proposed an approach
to build a dynamic and predictive blacklist using URL reputation. Note that this technique
is not limited to detecting web-based malware problems. It is also effective for other web
threats, such as phishing and spamming, as demonstrated by Ma et al. [2009]. The proposed
reputation scheme assigns a binary reputation value to the URL, indicating whether it is
malicious or not. In Ma et al. [2009], various features and classification models were studied
to gain a better understanding of the problem.

Instead of analyzing the content pointed at by the URL, two sets of light-weight features are
considered when building the URL reputation. The first is a lexical feature set, which is the
textual properties of the URL itself. Lexical features include the length of the hostname, the
length of the entire URL, the number of dots in the URL and a “bag-of-words” representation
of tokens (a string delimited by ’.’, ’?’, ’/’, ’=’, ’-’, etc.) in the URL. The second feature set,
the host-based feature set, contains information about the host of a website. IP address
properties (e.g., AS and prefix information, whether the IP address appears in any other
blacklists), WHOIS properties (e.g., domain registration data, registrar information), DNS
properties (e.g., time-to-live value), and geographic properties (e.g., the country to which
the host IP belongs, the speed of the uplink connection) are included as the host-based
features. A feature comparison study showed that the following four features are the most
relevant for correct classifications: the number of dots in a URL, whether the hostname
contains an IP address, the WHOIS registration date, and the membership in six static
blacklists.

Three basic machine learning models were studied by the authors: the naive Bayes (NB),
the support vector machine (SVM), and the logistic regression (LR). A comparative study
between the three models shows that SVM and LR produce similar results, and both out-
perform NB model. Moreover, SVM has smaller training and testing overhead, making
it more desirable when the performance is a concern. In contrast, LR often needs more
computation power to train, but the resulting model is easier to interpret in terms of relevant
and irrelevant features. 30,000 benign URLs and 10,000 malicious URLs were collected as the
data set to validate the reputation scheme. The data set is grouped into four subsets,
and 95% predication accuracy was observed for the training and testing reputation model
within each subset. However, the accuracy decreased significantly when the training data
and testing data are from different subsets. The authors argue that a comprehensive and
representative training dataset is critical to make the proposed reputation scheme effective
in the real world. How to obtain such a training dataset is still an open challenge.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:27

Comparator IV DA PA

Deployment
Global web applica-
tion deployment

Partial, third-party
deployment

Global user system
deployment

Effectiveness
Both false positives
and false negatives

Both false positives
and false negatives

Mainly false nega-
tives

Autonomy
High human in-
volvement

Limited human in-
volvement

Almost no human
involvement

Adaptiveness &
Gamesmanship

Attack-dependent Attack-dependent Attack-independent

Table VIII: Approach Comparison Summary (IV: Identification of Web Appli-
cation Vulnerability; DA: Detection of Web-based Malware Attacks; PA: Protection
against Web-based Malware Attacks)

There is little related work in the literature focusing on building dynamic reputations for
web-based malware distribution sites. Instead of focusing on the URL, Notos [Antonakakis
et al. 2010] is a dynamic reputation system for domain names. Notos uses reputation to
quantify the probabilities of domain names being used to participate in botnet or spamming
activities by adopting a hierarchical machine learning model. Notos does not use any lexical
features to calculate reputation, but focuses only network features. With the same design
goal as Notos, EXPOSURE [Bilge et al. 2011] is another system for identifying malicous
domains used in cyber attacks. Adopting a different feature set and learning algorithm
than Notos, the authors argue that the EXPOSURE system achieves better accuracy and
requires less training data for building an accurate classifier. However, it is still unclear how
to apply the schemes proposed by Notos and EXPOSURE for the effective classification of
domain names used by malware landing or distribution sites.

7. DISCUSSION

In the previous sections, we introduced different techniques for defending against web-based
malware. Now, we examine these methods comparatively. Our dimensions for comparison are
not intended to be exhaustive. Instead, we choose attributes which highlight the strengths
and weaknesses of each approach and help to design a comprehensive defense strategy. Table
VIII summarizes the comparison of the surveyed approaches.

7.1. Deployment Scale

To defend against a rising security threat is a complicated issue in the real world. Even
if one makes the assumption that the proposed approaches can work perfectly, there are
still many other factors that can reduce the desired impact in practice. One aspect is the
deployment scale: how widely one approach needs to be deployed in order to achieve the
global defense goal.

Ideally, every web application on the Internet should be properly checked for potential
vulnerabilities, in order to minimize the risk of becoming a landing website. However, there
are two important factors that can be taken into consideration to relax this requirement.
First, a small percentage of top websites attracts a large percentage of the global web traffic.
These popular websites should be given the highest priority to check for vulnerabilities. If
these top sites could always keep themselves safe, their users would also be safe. Secondly,
many web applications are built upon popular web application platforms. For example,

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:28 Jian Chang et al.

many on-line forums are powered by open source web applications, such as Phorum and
phpBB. These platforms serve as the “template” with customization capabilities to produce
new applications. Since the code of these platform is highly reused, it is important to make
sure that they contain as few vulnerabilities as possible. The same is true for client-side
code, as many web applications are dependent on a handful of popular JavaScript code
libraries, such as jQuery and YUI. Moreover, it is reasonable to assume that both top
website administrators and popular web platform developers have more resources and better
expertise for this task. As a result, it is also their responsibility to contribute more towards
building a safe web ecosystem.

Attack detection mechanisms can be deployed on a much smaller scale and remain ef-
fective. Indeed, Google checks a large portion of existing webpages continuously in its Safe
Browsing project, with only local deployments [Provos et al. 2008]. If we can reduce the per-
formance cost of detection techniques and add more computing resources, it is still possible
to expect real-time and rather complete detection of attacks in the wild. Further, detection
systems can also focus more on the top popular websites to be more cost-effective. However,
the impact of a successful detection mechanism would be limited without reaching out to
the end users.

On the other hand, the protection mechanisms surveyed in this paper require a complete
coverage of all end hosts to achieve the best results. From the attacker’s perspective, there
is almost no difference between different victim machines, i.e., “every machine counts”.
However, looking at the history of defending against other computer security threats, it
is reasonable to argue that achieving a full deployment is not likely to happen in reality.
Therefore, designing better techniques to ease the deployment process and to achieve a
better coverage percentage might be a very desirable next step.

7.2. Comparative Effectiveness

Another comparison can be made by assuming a full deployment of all proposed approaches
and focusing on their comparative effectiveness. Given the different nature of proposed
approaches, we want to understand their mitigation limitations.

Vulnerability identification mechanisms cannot identify all potential vulnerabilities. The
code analysis techniques often try to identify the necessary conditions of successful exploits
to minimize false negatives by increasing false positives. However, without the formal spec-
ifications of correct program behavior, many alerts triggered by the vulnerability scanners
might simply be ignored by developers to preserve functionality. On the other hand, black-
box testing only uses known attacks as test cases. Presumably, this testing process will suffer
from both false positives and false negatives. Further, the code of web applications is often
quickly evolving to meet new user requirements. The vulnerability checking process needs
to be performed every time the code changes. Otherwise, new vulnerabilities introduced by
the code modification cannot be detected. In other words, none of the existing vulnerability
identification mechanisms can remove all the bugs and flaws from web applications. The
risk of buggy software will always be present.

As discussed in Section 4.2, VM-based detection mechanisms suffer from false negatives
given the complexity of configuring the most vulnerable honeypot to detect all attacks.
Meanwhile, signature-based detection mechanisms use either pattern matching or machine
learning techniques for detection. Both methods depend on detected attacks to build a sig-
nature database or an anomaly model. However, there are still no known ways to build a
complete or at least a representative attack vector set. Moreover, both the attack signature
and the anomaly model often capture the necessary conditions of successful attacks. There-
fore, signature-based detection mechanisms will have both false positives and false negatives.
It is highly possible that new attack types cannot be detected by these approaches until a
large scale outbreak is observed.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:29

A URL reputation mechanism has the same types of problems as signature-based detection.
In contrast, the sandbox technique seems to be very promising, if it can be fully deployed.
The only drawback is that it assumes that end users are the root of trust. However, end users
may often make incorrect security decisions due to their lack of necessary knowledge or their
victimization by social engineering tricks. Regardless, for attacks that are fully automated
(e.g., drive-by download), the smart sandbox system forms very effective protection.

7.3. Degree of Autonomy

We next examine the degree of autonomy from which each of the proposed approaches
operates. That is, what role do humans play in the operation of these approaches? This is
an important issue to understand since humans can sometimes be the most unreliable link
of the entire defense chain.

Vulnerability identification mechanisms need a great deal of human participation. The
alerts triggered by the scanning tools need to be examined by the developers one by one
to decide whether true vulnerabilities are present. Sometimes, using the scanning tools
requires deep knowledge of potential attacks. Further, developers are required to develop
correct patches for the identified vulnerabilities without introducing new flaws.

Signature-based detection mechanisms also require humans to determine the correctness
of detected attacks with further investigations. VM-based detection requires less human in-
put. However, when it is used for detecting zero-day vulnerabilities, it still needs researchers
to study the details in order to have a good understanding of the problem.

Two protection mechanisms surveyed in this paper are almost fully automated and require
almost no human participation. A static or dynamic URL blacklist can be embedded in the
browser itself and be shipped to end users. For instance, the Firefox browser implements the
Google Safe Browsing API and blocks any visits to the malicious sites automatically. The
BLADE sandbox systems are also designed to be transparent to end users once installed on
the system. It extracts information from normal browsing behavior and uses it to reason
about user authorizations without the need for extra input.

7.4. Adaptiveness and Gamesmanship

Finally, we discuss how proposed approaches need to be modified to adapt to new attacks,
and how existing attacks might change themselves to evade these approaches.

To detect new types of vulnerability, the vulnerability identification mechanisms based on
code analysis need to take new sources or sinks into considerations, or change the checking
policies to include new security violations. However, some vulnerabilities will require signif-
icant improvement of the code analysis capability, e.g., to support more dynamic language
features. Black-box testing requires adding new attacks into their test cases to be adaptive.
To evade these mechanisms, the attackers need to use more advanced and subtle techniques
as demonstrated in Bau et al. [2010].

If new attacks are designed to target new vulnerabilities, the VM-based detection mecha-
nism needs to include these vulnerabilities into the VM image to still be effective. Otherwise,
no modifications are needed. For the signature-based detection mechanism, it requires in-
cluding new attacks in the training dataset to learn special characteristics from these attack
instances. To evade both of the detection mechanisms, malicious landing sites can perform
a reverse Turing test (e.g., CAPTCHA) to judge whether the end user is a human or a ma-
chine. Then they can deliver only benign content, if no human user is involved. Moreover,
if the attackers have knowledge of the detection infrastructure, for example, IP addresses,
then the landing sites can simply block detections by using an IP blacklist.

The URL reputation calculation also needs to include new malicious links to be adaptive,
similar to the signature-based detection mechanism. In contrast, the sandbox approach is
attack-agnostic, and it requires almost no changes for new attacks. Also, it is difficult to
game the sandbox system under reasonable trust assumptions [Lu et al. 2010].

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:30 Jian Chang et al.

8. CONCLUSION

In this paper, we survey three categories of approaches to analyze, identify, and defend
against the web-based malware problem. Each category of approach has its relative ad-
vantages and disadvantages, and each has been demonstrated to be effective via empirical
evaluations. Further, we discuss how these approaches complement each other and how
they can work together to form a comprehensive solution space. In order to advance the
state-of-the-art, we have identified five promising directions for future research:

(1) Building Benchmark Platforms: Almost all the approaches suffer from either false pos-
itives or false negatives; however, there is no commonly accepted data set or testing
framework to comparatively evaluate their effectiveness. Therefore, a well designed
benchmark framework is clearly needed to scientifically study and compare different
proposed approaches.

(2) Securing Code Mashup: The client-side code of web applications can be reused and
dynamically loaded from external sources. This code mashup requires a different security
model than any traditional programming paradigms. Given the prevalence of client-side
code mashups, it is imperative to design a sound approach to enhance the flexibility of
the current mashup programming practice with guaranteed security.

(3) Studying Social Engineering Tricks: Current detection approaches mainly focus on
the web-based malware delivered through drive-by download attacks. The studies on
malware delivered through social engineering tricks is very limited. However, as the
technologies for mitigating drive-by download attacks become more mature and more
broadly deployed, it is reasonable to assume that the attackers will focus more on using
social engineering tricks to improve their chance of success.

(4) Studying the Economy: Understanding the incentives and the economic chains of the
web-based malware is still an open area. Similar studies have been done for other
network security problems such as e-mail spam [Kanich et al. 2008; Motoyama et al.
2010]. This type of study is critically important for security researchers to understand
the landscape better and to design more effective defense strategies.

(5) Studying the Epidemiology: Existing detection mechanisms can be used to build the
topology of the malware distribution infrastructure. However, there is no study on the
liveness property of this topology: understanding how the connections between landing
sites and distribution sites evolve over time. Similar studies have been done for tradi-
tional push-based malware propagation in Garetto et al. [2003]. An accurate epidemic
model is therefore useful to evaluate how fast and prevalent a defense mechanism needs
to be deployed to effectively fight against a web-based malware outbreak.

Given the scale and complexity of the web-based malware problem space, building a safe
web browsing environment is the responsibility of every Web participant. On the whole, for
a healthy and secure Internet ecosystem, a challenging road is still ahead for everyone in
the foreseeable future.

REFERENCES

Aho, A. V., Sethi, R., and Ullman, J. D. 1986. Compilers: principles, techniques, and tools. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA.

Akritidis, P., Markatos, E., Polychronakis, M., and Anagnostakis, K. 2005. Stride: Polymorphic
sled detection through instruction sequence analysis. In Security and Privacy in the Age of Ubiquitous
Computing, R. Sasaki, S. Qing, E. Okamoto, and H. Yoshiura, Eds. IFIP Advances in Information and
Communication Technology Series, vol. 181. Springer Boston, 375–391.

Antonakakis, M., Perdisci, R., Dagon, D., Lee, W., and Feamster, N. 2010. Building a dynamic
reputation system for dns. In Proceedings of 19th USENIX Security Symposium on USENIX Security
Symposium.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:31

Bai, Y. and Kobayashi, H. 2003. Intrusion detection systems: technology and development. In 17th Inter-
national Conference on Advanced Information Networking and Applications, 2003. AINA 2003. 710 –
715.

Bailey, M., Cooke, E., Jahanian, F., Xu, Y., and Karir, M. 2009. A survey of botnet technology
and defenses. In Conference For Homeland Security, 2009. CATCH ’09. Cybersecurity Applications
Technology. 299 –304.

Bailey, M., Oberheide, J., Andersen, J., Mao, Z. M., Jahanian, F., and Nazario, J. 2007. Automated
classification and analysis of internet malware. In Proceedings of the 10th international conference on
Recent advances in intrusion detection. RAID’07. Springer-Verlag, Berlin, Heidelberg, 178–197.

Balduzzi, M., Gimenez, C. T., Balzarotti, D., and Kirda, E. 2011. Automated discovery of parameter
pollution vulnerabilities in web applications. In Proceedings of the 18th Annual Network and Distributed
System Security Symposium (NDSS).

Balzarotti, D., Cova, M., Felmetsger, V., Jovanovic, N., Kirda, E., Kruegel, C., and Vigna, G.
2008. Saner: Composing static and dynamic analysis to validate sanitization in web applications. In Pro-
ceedings of the 2008 IEEE Symposium on Security and Privacy. IEEE Computer Society, Washington,
DC, USA, 387–401.

Bau, J., Bursztein, E., Gupta, D., and Mitchell, J. 2010. State of the art: Automated black-box web
application vulnerability testing. In Proceedings of the 2010 IEEE Symposium on Security and Privacy.
SP ’10. IEEE Computer Society, Washington, DC, USA, 332–345.

Beck, D., Vo, B., and Verbowski, C. 2005. Detecting stealth software with strider ghostbuster. In Pro-
ceedings of the 2005 International Conference on Dependable Systems and Networks. DSN ’05. IEEE
Computer Society, Washington, DC, USA, 368–377.

Bilge, L., Kirda, E., Kruegel, C., and Balduzzi, M. 2011. Exposure: Finding malicious domains using
passive dns analysis. In Proceedings of the 18th Annual Network and Distributed System Security
Symposium (NDSS).

BIND vulnerabilities 1998. Multiple Vulnerabilities in BIND. ftp://info.cert.org/pub/cert advisories/CA-
98.05.bind problems.

Binsalleeh, H., Ormerod, T., Boukhtouta, A., Sinha, P., Youssef, A., Debbabi, M., and Wang, L.
2010. On the analysis of the zeus botnet crimeware toolkit. In Privacy Security and Trust (PST), 2010
Eighth Annual International Conference on. 31 –38.

Chang, J., Venkatasubramanian, K., West, A. G., Kannan, S., Sokolsky, O., Kim, M. J., and Lee, I.
2011. Tomato: A trustworthy code mashup development tool. In 5th International Workshop on Web
APIs and Service Mashups, 2011. MASHUPS ’11.

Christodorescu, M., Jha, S., Maughan, D., Song, D., and Wang, C. 2007. Malware Detection. Springer.

Chrome Malware 2010. New Drive-by Attack Targets Google Chrome Users .
http://downloadsquad.switched.com/2010/04/20/new-drive-by-attack-targets-google-chrome-users/.

Chugh, R., Meister, J. A., Jhala, R., and Lerner, S. 2009. Staged information flow for javascript. In
Proceedings of the 2009 ACM SIGPLAN conference on Programming language design and implemen-
tation. PLDI ’09. ACM, New York, NY, USA, 50–62.

Cova, M., Kruegel, C., and Vigna, G. 2010. Detection and analysis of drive-by-download attacks and
malicious javascript code. In Proceedings of the 19th international conference on World wide web.
WWW ’10. ACM, New York, NY, USA, 281–290.

Cova, M., Leita, C., Thonnard, O., Keromytis, A., and Dacier, M. 2010. An analysis of rogue av
campaigns. In Recent Advances in Intrusion Detection, S. Jha, R. Sommer, and C. Kreibich, Eds.
Lecture Notes in Computer Science Series, vol. 6307. Springer Berlin / Heidelberg, 442–463.

Cox, R. S., Gribble, S. D., Levy, H. M., and Hansen, J. G. 2006. A safety-oriented platform for web
applications. In Proceedings of the 2006 IEEE Symposium on Security and Privacy. IEEE Computer
Society, Washington, DC, USA, 350–364.

Crites, S., Hsu, F., and Chen, H. 2008. Omash: enabling secure web mashups via object abstractions. In
Proceedings of the 15th ACM conference on Computer and communications security. CCS ’08. ACM,
New York, NY, USA, 99–108.

Curtsinger, C., Livshits, B., Zorn, B., and Seifert, C. 2010. Zozzle: Low-overhead mostly static
javascript malware detection. Tech. Rep. MSR-TR-2010-156, Microsoft Research.

Daniel, M., Honoroff, J., and Miller, C. 2008. Engineering heap overflow exploits with javascript. In
Proceedings of the 2nd conference on USENIX Workshop on offensive technologies. USENIX Associa-
tion, Berkeley, CA, USA, 1:1–1:6.

Dasient Report 2010. Dasient Q3 Malware Update: Web-Based Malware Infections Double Since Last Year,
Malvertising Attacks Continue Over Summer. http://blog.dasient.com/2010/11/normal.html.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:32 Jian Chang et al.

Feily, M., Shahrestani, A., and Ramadass, S. 2009. A survey of botnet and botnet detection. In Third
International Conference on Emerging Security Information, Systems and Technologies, 2009. SE-
CURWARE ’09. 268 –273.

Feinstein, B. and Peck, D. 2007. Caffeine monkey: Automated collection, detection and analysis of mali-
cious javascript. In Proceedings of BlackHat USA.

Fleizach, C., Liljenstam, M., Johansson, P., Voelker, G. M., and Mehes, A. 2007. Can you infect me
now?: malware propagation in mobile phone networks. In Proceedings of the 2007 ACM workshop on
Recurring malcode. WORM ’07. ACM, New York, NY, USA, 61–68.

Ganesh, V., Leek, T., and Rinard, M. 2009. Taint-based directed whitebox fuzzing. In Proceedings of the
31st International Conference on Software Engineering. ICSE ’09. IEEE Computer Society, Washing-
ton, DC, USA, 474–484.

Garetto, M., Gong, W., and Towsley, D. 2003. Modeling malware spreading dynamics. In INFOCOM
2003. Twenty-Second Annual Joint Conference of the IEEE Computer and Communications. IEEE
Societies. Vol. 3. 1869 – 1879 vol.3.

Garfinkel, S. and Spafford, G. 2001. Web Security, Privacy and Commerce 2nd Ed. O’Reilly & Asso-
ciates, Inc., Sebastopol, CA, USA.

Geneiatakis, D., Dagiuklas, T., Kambourakis, G., Lambrinoudakis, C., Gritzalis, S., Ehlert, S., and
Sisalem, D. 2006. Survey of security vulnerabilities in session initiation protocol. IEEE Communica-
tions Surveys and Tutorials 8, 68–81.

Google Safe Browsing Project 2011. Google Safe Browsing API Homepage.
http://code.google.com/apis/safebrowsing/.

Google Web Index 2008. We Knew the Web was Big. http://googleblog.blogspot.com/2008/07/we-knew-
web-was-big.html.

Grier, C., Tang, S., and King, S. T. 2008. Secure web browsing with the op web browser. In Proceedings
of the 2008 IEEE Symposium on Security and Privacy. IEEE Computer Society, Washington, DC,
USA, 402–416.

Guarnieri, S. and Livshits, B. 2009. Gatekeeper: mostly static enforcement of security and reliability
policies for javascript code. In Proceedings of the 18th conference on USENIX security symposium.
SSYM’09. USENIX Association, Berkeley, CA, USA, 151–168.

Gulli, A. and Signorini, A. 2005. The indexable web is more than 11.5 billion pages. In Special interest
tracks and posters of the 14th international conference on World Wide Web. WWW ’05. ACM, New
York, NY, USA, 902–903.

Halfond, W. G., Viegas, J., and Orso, A. 2006. A classification of SQL-Injection attacks and coun-
termeasures. In Proceedings of the IEEE International Symposium on Secure Software Engineering.
Arlington, VA, USA.

Hosseinpour, F., Bakar, K., Hardoroudi, A., and Kazazi, N. 2010. Survey on artificial immune system
as a bio-inspired technique for anomaly based intrusion detection systems. In Intelligent Networking
and Collaborative Systems (INCOS), 2010 2nd International Conference on. 323 –324.

Huang, Y.-W., Yu, F., Hang, C., Tsai, C.-H., Lee, D.-T., and Kuo, S.-Y. 2004. Securing web application
code by static analysis and runtime protection. In Proceedings of the 13th international conference on
World Wide Web. WWW ’04. ACM, New York, NY, USA, 40–52.

Idika, N. and Mathur, A. P. 2010. A survey of malware detection techniques. Tech. Rep. Tech Report
286, Purdue University, Department of Computer Science.

Internet Stats 2010. Internet World Stats. http://www.internetworldstats.com/stats.htm.

Jackson, C. and Wang, H. J. 2007. Subspace: secure cross-domain communication for web mashups. In
Proceedings of the 16th international conference on World Wide Web. WWW ’07. ACM, New York,
NY, USA, 611–620.

Jacob, G., Debar, H., and Filiol, E. 2008. Behavioral detection of malware: from a survey towards an
established taxonomy. Journal in Computer Virology 4, 251–266. 10.1007/s11416-008-0086-0.

Jain, S., Shafique, F., Djeric, V., and Goel, A. 2008. Application-level isolation and recovery with
solitude. In Proceedings of the 3rd ACM SIGOPS/EuroSys European Conference on Computer Systems
2008. Eurosys ’08. ACM, New York, NY, USA, 95–107.

Jim, T., Swamy, N., and Hicks, M. 2007. Defeating script injection attacks with browser-enforced embedded
policies. In Proceedings of the 16th international conference on World Wide Web. WWW ’07. ACM,
New York, NY, USA, 601–610.

Joshi, A., King, S. T., Dunlap, G. W., and Chen, P. M. 2005. Detecting past and present intrusions
through vulnerability-specific predicates. In Proceedings of the twentieth ACM symposium on Operating
systems principles. SOSP ’05. ACM, New York, NY, USA, 91–104.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:33

Jovanovic, N., Kruegel, C., and Kirda, E. 2006a. Pixy: A static analysis tool for detecting web application
vulnerabilities (short paper). In Proceedings of the 2006 IEEE Symposium on Security and Privacy.
IEEE Computer Society, Washington, DC, USA, 258–263.

Jovanovic, N., Kruegel, C., and Kirda, E. 2006b. Precise alias analysis for static detection of web
application vulnerabilities. In Proceedings of the 2006 workshop on Programming languages and analysis
for security. PLAS ’06. ACM, New York, NY, USA, 27–36.

Kanich, C., Kreibich, C., Levchenko, K., Enright, B., Voelker, G. M., Paxson, V., and Savage, S.
2008. Spamalytics: an empirical analysis of spam marketing conversion. In Proceedings of the 15th ACM
conference on Computer and communications security. CCS ’08. 3–14.

Kirda, E., Kruegel, C., Vigna, G., and Jovanovic, N. 2006. Noxes: a client-side solution for mitigating
cross-site scripting attacks. In Proceedings of the 2006 ACM symposium on Applied computing. SAC
’06. ACM, New York, NY, USA, 330–337.

Kruegel, C. and Vigna, G. 2003. Anomaly detection of web-based attacks. In Proceedings of the 10th
ACM conference on Computer and communications security. CCS ’03. ACM, New York, NY, USA,
251–261.

Lam, M. S., Martin, M., Livshits, B., and Whaley, J. 2008. Securing web applications with static and
dynamic information flow tracking. In Proceedings of the 2008 ACM SIGPLAN symposium on Partial
evaluation and semantics-based program manipulation. PEPM ’08. ACM, New York, NY, USA, 3–12.

Lawton, G. 2007. Web 2.0 creates security challenges. Computer 40, 10, 13 –16.

Li, C., Jiang, W., and Zou, X. 2009. Botnet: Survey and case study. In Innovative Computing, Information
and Control (ICICIC), 2009 Fourth International Conference on. 1184 –1187.

Li, P., Salour, M., and Su, X. 2008. A survey of internet worm detection and containment. Communica-
tions Surveys Tutorials, IEEE 10, 1, 20 –35.

Li, Z., Tang, Y., Cao, Y., Rastogi, V., Chen, Y., and Liu, B. 2011. Webshield: Enabling various web
defense techniques without client side modifications. In Proceedings of the 18th Annual Network and
Distributed System Security Symposium (NDSS).

Lin, K.-J. 2007. Building web 2.0. Computer 40, 5, 101 –102.

Lu, L., Yegneswaran, V., Porras, P., and Lee, W. 2010. Blade: an attack-agnostic approach for pre-
venting drive-by malware infections. In Proceedings of the 17th ACM conference on Computer and
communications security. CCS ’10. ACM, New York, NY, USA, 440–450.

Lunt, T. F. 1993. A survey of intrusion detection techniques. Computers & Security 12, 4, 405 – 418.

Ma, J., Saul, L. K., Savage, S., and Voelker, G. M. 2009. Beyond blacklists: learning to detect malicious
web sites from suspicious urls. In Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. KDD ’09. ACM, New York, NY, USA, 1245–1254.

Magazinius, J., Askarov, A., and Sabelfeld, A. 2010. A lattice-based approach to mashup security. In
Proceedings of the 5th ACM Symposium on Information, Computer and Communications Security.
ASIACCS ’10. ACM, New York, NY, USA, 15–23.

Marhusin, M., Cornforth, D., and Larkin, H. 2008. An overview of recent advances in intrusion detec-
tion. In Computer and Information Technology, 2008. CIT 2008. 8th IEEE International Conference
on. 432 –437.

Moser, A., Kruegel, C., and Kirda, E. 2007. Exploring multiple execution paths for malware analysis. In
Proceedings of the 2007 IEEE Symposium on Security and Privacy. SP ’07. IEEE Computer Society,
Washington, DC, USA, 231–245.

Moshchuk, A., Bragin, T., Deville, D., Gribble, S. D., and Levy, H. M. 2007. Spyproxy: execution-
based detection of malicious web content. In Proceedings of 16th USENIX Security Symposium on
USENIX Security Symposium. USENIX Association, Berkeley, CA, USA, 3:1–3:16.

Moshchuk, E., Bragin, T., Gribble, S. D., and Levy, H. M. 2006. A crawler-based study of spyware on
the web. In Proceedings of Network and Distributed System Security Symposium (NDSS).

Motoyama, M., Levchenko, K., Kanich, C., McCoy, D., Voelker, G. M., and Savage, S. 2010. Re:
Captchas: understanding captcha-solving services in an economic context. In Proceedings of the 19th
USENIX conference on Security. USENIX Security’10. USENIX Association, Berkeley, CA, USA, 28–
28.

Mukherjee, B., Heberlein, L., and Levitt, K. 1994. Network intrusion detection. Network, IEEE 8, 3,
26 –41.

Murali, A. and Rao, M. 2005. A survey on intrusion detection approaches. In Information and Commu-
nication Technologies, 2005. ICICT 2005. First International Conference on. 233 – 240.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

A:34 Jian Chang et al.

Nazario, J. 2009. Phoneyc: a virtual client honeypot. In Proceedings of the 2nd USENIX conference on
Large-scale exploits and emergent threats: botnets, spyware, worms, and more. LEET’09. USENIX
Association, Berkeley, CA, USA, 6–6.

Ormerod, T., Wang, L., Debbabi, M., Youssef, A., Binsalleeh, H., Boukhtouta, A., and Sinha, P.
2010. Defaming botnet toolkits: A bottom-up approach to mitigating the threat. In Emerging Security
Information Systems and Technologies (SECURWARE), 2010 Fourth International Conference on.
195 –200.

Peng, T., Leckie, C., and Ramamohanarao, K. 2007. Survey of network-based defense mechanisms coun-
tering the dos and ddos problems. ACM Comput. Surv. 39.

Polychronakis, M., Anagnostakis, K. G., and Markatos, E. P. 2007. Emulation-based detection of
non-self-contained polymorphic shellcode. In Proceedings of the 10th international conference on Recent
advances in intrusion detection. RAID’07. Springer-Verlag, Berlin, Heidelberg, 87–106.

Polychronakis, M., Mavrommatis, P., and Provos, N. 2008. Ghost turns zombie: exploring the life
cycle of web-based malware. In Proceedings of the 1st Usenix Workshop on Large-Scale Exploits and
Emergent Threats. USENIX Association, Berkeley, CA, USA, 11:1–11:8.

Provos, N., Mavrommatis, P., Rajab, M. A., and Monrose, F. 2008. All your iframes point to us. In
Proceedings of USENIX Security Symposium. 1–16.

Provos, N., McNamee, D., Mavrommatis, P., Wang, K., and Modadugu, N. 2007. The ghost in the
browser analysis of web-based malware. In Proceedings of the first conference on First Workshop on
Hot Topics in Understanding Botnets. USENIX Association, Berkeley, CA, USA, 4–4.

Qing, S. and Wen, W. 2005. A survey and trends on internet worms. Computers & Security 24, 4, 334 –
346.

Ratanaworabhan, P., Livshits, B., and Zorn, B. 2009. Nozzle: a defense against heap-spraying code
injection attacks. In Proceedings of the 18th conference on USENIX security symposium. SSYM’09.
USENIX Association, Berkeley, CA, USA, 169–186.

RBN Study 2007. Russian Business Network Study. http://www.bizeul.org/files/RBN study.pdf.

Reis, C., Dunagan, J., Wang, H. J., Dubrovsky, O., and Esmeir, S. 2006. Browsershield: vulnerability-
driven filtering of dynamic html. In Proceedings of the 7th symposium on Operating systems design and
implementation. OSDI ’06. USENIX Association, Berkeley, CA, USA, 61–74.

Reis, C. and Gribble, S. D. 2009. Isolating web programs in modern browser architectures. In Proceedings
of the 4th ACM European conference on Computer systems. EuroSys ’09. ACM, New York, NY, USA,
219–232.

RFC-2828 2000. IETF RFC 2828. http://tools.ietf.org/html/rfc2828/.

Rieck, K., Krueger, T., and Dewald, A. 2010. Cujo: Efficient detection and prevention of drive-by-
download attacks. In Proceedings of Annual Computer Security Applications Conference 2010. ACSAC
’2010.

Roesch, M. 1999. Snort - lightweight intrusion detection for networks. In Proceedings of the 13th USENIX
conference on System administration. LISA ’99. USENIX Association, Berkeley, CA, USA, 229–238.

Rubin, A. and Geer, D.E., J. 1998. A survey of web security. Computer 31, 9, 34 –41.

Sabahi, F. and Movaghar, A. 2008. Intrusion detection: A survey. In Systems and Networks Communi-
cations, 2008. ICSNC ’08. 3rd International Conference on. 23 –26.

Sabbouh, M., Higginson, J., Semy, S., and Gagne, D. 2007. Web mashup scripting language. In Pro-
ceedings of the 16th international conference on World Wide Web. WWW ’07. ACM, New York, NY,
USA, 1305–1306.

Sabelfeld, A. and Myers, A. C. 2003. Language-based information-flow security. IEEE Journal on Se-
lected Areas in Communications 21, 2003.

Sadoddin, R. and Ghorbani, A. 2006. Alert correlation survey: framework and techniques. In Proceedings
of the 2006 International Conference on Privacy, Security and Trust: Bridge the Gap Between PST
Technologies and Business Services. PST ’06. ACM, New York, NY, USA, 37:1–37:10.

Saxena, P., Akhawe, D., Hanna, S., Mao, F., McCamant, S., and Song, D. 2010. A symbolic execution
framework for javascript. In Proceedings of the 2010 IEEE Symposium on Security and Privacy. SP
’10. IEEE Computer Society, Washington, DC, USA, 513–528.

Saxena, P., Hanna, S., Poosankam, P., and Song, D. 2010. Flax: Systematic discovery of client-side
validation vulnerabilities in rich web applications. In In 17th Annual Network & Distributed System
Security Symposium, (NDSS).

Schmidt, A.-D., Schmidt, H.-G., Batyuk, L., Clausen, J., Camtepe, S., Albayrak, S., and Yildizli,
C. 2009. Smartphone malware evolution revisited: Android next target? In Malicious and Unwanted
Software (MALWARE), 2009 4th International Conference on. 1–7.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

Analyzing and Defending Against Web-based Malware A:35

Seifert, C., Welch, I., and Komisarczuk, P. 2009. Identification of malicious web pages through analysis
of underlying dns and web server relationships.

Shabtai, A., Moskovitch, R., Elovici, Y., and Glezer, C. 2009. Detection of malicious code by applying
machine learning classifiers on static features: A state-of-the-art survey. Inf. Secur. Tech. Rep. 14,
16–29.

Siddiqui, M., Wang, M. C., and Lee, J. 2008. A survey of data mining techniques for malware detection
using file features. In Proceedings of the 46th Annual Southeast Regional Conference on XX. ACM-SE
46. ACM, New York, NY, USA, 509–510.

Sidiroglou, S., Ioannidis, J., Keromytis, A., and Stolfo, S. 2005. An email worm vaccine architecture.
In Information Security Practice and Experience, R. Deng, F. Bao, H. Pang, and J. Zhou, Eds. Lecture
Notes in Computer Science Series, vol. 3439. Springer Berlin / Heidelberg, 97–108.

Song, C., Zhuge, J., Han, X., and Ye, Z. 2010. Preventing drive-by download via inter-module com-
munication monitoring. In Proceedings of the 5th ACM Symposium on Information, Computer and
Communications Security. ASIACCS ’10. ACM, New York, NY, USA, 124–134.

Sotirov, A. 2007. Heap feng shui in javascript. In Proceedings of BlackHat Europe.

Sotirov, A. and Dowd, M. 2008. Bypassing browser memory protections. In Proceedings of BlackHat.

Su, Z. and Wassermann, G. 2006. The essence of command injection attacks in web applications. In
Conference record of the 33rd ACM SIGPLAN-SIGACT symposium on Principles of programming
languages. POPL ’06. ACM, New York, NY, USA, 372–382.

Tipton, H. 2009. Information Security Management Handbook, Volume 3 6 Ed. CRC Press, Inc., Boca
Raton, FL, USA.

Top Ten Project 2011. OWASP Top Ten Project. http://www.owasp.org/.

Toth, T. and Kruegel, C. 2002. Accurate buffer overflow detection via abstract payload execution. In
Proceedings of the 5th international conference on Recent advances in intrusion detection. RAID’02.
Springer-Verlag, Berlin, Heidelberg, 274–291.

Vinod, P., Laxmi, V., and Gaur, M. 2009. Survey on malware detection methods. In Proceedings of The
Third Annual IIT Kanpur Hacker’s Workshop 2009.

Wang, H. J., Guo, C., Simon, D. R., and Zugenmaier, A. 2004. Shield: vulnerability-driven network
filters for preventing known vulnerability exploits. SIGCOMM Comput. Commun. Rev. 34, 193–204.

Wang, Y., Beck, D., Jiang, X., and Roussev, R. 2006. Automated web patrol with strider honeymonkeys:
Finding web sites that exploit browser vulnerabilities. In Proceedings of Network and Distributed System
Security Symposium (NDSS).

Wang, Y., Verbowski, C., Dunagan, J., Chen, Y., Wang, H. J., and Yuan, C. 2003. Strider: A black-
box, state-based approach to change and configuration management and support. In In Usenix LISA.
159–172.

Wassermann, G. and Su, Z. 2007. Sound and precise analysis of web applications for injection vulnera-
bilities. In Proceedings of the 2007 ACM SIGPLAN conference on Programming language design and
implementation. PLDI ’07. ACM, New York, NY, USA, 32–41.

Wassermann, G. and Su, Z. 2008. Static detection of cross-site scripting vulnerabilities. In Proceedings
of the 30th international conference on Software engineering. ICSE ’08. ACM, New York, NY, USA,
171–180.

Wilhelm, J. and Chiueh, T.-c. 2007. A forced sampled execution approach to kernel rootkit identification.
In Proceedings of the 10th international conference on Recent advances in intrusion detection. RAID’07.
Springer-Verlag, Berlin, Heidelberg, 219–235.

Xie, Y. and Aiken, A. 2006. Static detection of security vulnerabilities in scripting languages. In Proceedings
of the 15th conference on USENIX Security Symposium - Volume 15. USENIX Association, Berkeley,
CA, USA.

You, I. and Yim, K. 2010. Malware obfuscation techniques: A brief survey. In Proceedings of the 2010 Inter-
national Conference on Broadband, Wireless Computing, Communication and Applications. BWCCA
’10. IEEE Computer Society, Washington, DC, USA, 297–300.

Yue, C. and Wang, H. 2009. Characterizing insecure javascript practices on the web. In Proceedings of the
18th international conference on World wide web. WWW ’09. ACM, New York, NY, USA, 961–970.

Zeidanloo, H., Shooshtari, M., Amoli, P., Safari, M., and Zamani, M. 2010. A taxonomy of botnet
detection techniques. In Computer Science and Information Technology (ICCSIT), 2010 3rd IEEE
International Conference on. Vol. 2. 158 –162.

Zhu, Z., Lu, G., Chen, Y., Fu, Z., Roberts, P., and Han, K. 2008. Botnet research survey. In Computer
Software and Applications, 2008. COMPSAC ’08. 32nd Annual IEEE International. 967 –972.

ACM Computing Surveys, Vol. V, No. , Article A, Publication date: January YYYY.

