
Automated Security Testing
CS155 Computer and Network Security

Acknowledgments: Lecture slides are from the Computer Security course taught
by Dan Boneh at Stanford University. When slides are obtained from other
sources, a a reference will be noted on the bottom of that slide. A full list of
references is provided on the last slide.

Fuzzing

Fuzzing

Form of vulnerability analysis:

1. Feed large number of random anomalous test cases into program

2. Monitor for crashes or unexpected program behavior

Some kinds of errors can be used to find an exploit

Commonly used to test file parsers (e.g., PDF readers) and network protocols

HTTP Fuzzing Example
Standard HTTP GET Request
GET /index.html HTTP/1.1

Anomalous Requests
GEEEE…EET /index.html HTTP/1.1
GET ///////index.html HTTP/1.1
GET %n%n%n%n%n%n.html HTTP/1.1
GET /AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA.html HTTP/1.1
GET /index.html HTTTTTTTTTTTTTP/1.1
GET /index.html HTTP/1.1.1.1.1.1.1.1

HTTP Fuzzing Example
Standard HTTP GET Request
GET /index.html HTTP/1.1

Anomalous Requests
GEEEE…EET /index.html HTTP/1.1
GET ///////index.html HTTP/1.1
GET %n%n%n%n%n%n.html HTTP/1.1
GET /AAAAAAAAAAAAA.html HTTP/1.1
df%w3rasd8#r78jskdflasdjf
4isg8swksdfskdflsdgmsf$gkjs

Random Fuzzing

TLS 1.3 State Diagram

Types of Fuzzing

Mutation-based (Dumb) fuzzing
Add anomalies to existing good inputs (e.g., test suite)

Generative (Smart) fuzzing
Generate inputs from specification of format, protocol, etc

Evolutionary (Responsive) fuzzing
Leverage program instrumentation, code analysis

Use response of program to build input set

Mutation-Based Fuzzing

Basic Idea

Take known good input and add anomalies

Anomalies may be completely random or follow some heuristics

Large integers or strings

Randomly flip bits

Fuzzing PDF Reader

Download 100s of random PDF files

Mutate content in the PDF file:

- flip bits

- increase size of integers or strings

- remove data

Limited by the functionality that the
existing files happened to use — unlikely
to hit less commonly tested code paths

Mutation-Based Fuzzing
Basic Idea

Take known good input and add anomalies

Anomalies may be completely random or follow some heuristics

Advantages

Little or no knowledge of the structure of the inputs is assumed

Requires little to no set up time

Disadvantages

Dependent on the inputs being modified

May fail for protocols with checksums, challenge-response, etc.

Generation Based Fuzzing

Basic Idea
Test cases are generated from protocol description: RFC, spec, etc.

Anomalies are added to each possible spot in the inputs

Generation Example

Generation Example: TLS Heartbeat

length <<length>> bytes random padding

01

length <<length>> bytes random padding

02

Generation Example: TLS Heartbeat

length data padding

01

Heartbleed Vulnerability: server trusts user provided length field
and echoes back memory contents following request data

5HRG4y9N2vvbXNUwv0Jgi5eRv8il
IFhm4qpdc8t9xTTBZdata&usernam
e=zakir&password=123lnI1c9rX7Za
yyY2N0H72MngCOUuWIogpPuRa
bENAkXlkH8t3Os05q8v

data&usernam
e=zakir&password=123

Generation Based Fuzzing

Basic Idea
Test cases are generated from protocol description: RFC, spec, etc.

Anomalies are added to each possible spot in the inputs

Advantages

Knowledge of protocol may give better results than random fuzzing

Disadvantages

Can take significant time to set up. Requires understanding spec

Can you find anything  
with “dumb” fuzzing?

Charlie Miller’s 5 Lines

In 2010, Charlie Miller fuzzed Adobe Acrobat, Apple Preview,
Powerpoint, and Open Office by downloading PDF and PPT files
and five lines of simple fuzzing:

numwrites = random.randrange(math.ceil((float(len(buf)) / FuzzFactor))) + 1
for j in range(numwrites):
 rbyte = random.randrange(256)
 rn = random.randrange(len(buf))
 buf[rn] = "%c"%(rbyte)

Charlie Miller’s 5 Lines
Collect a large number of pdf files

Aim to exercise all features of pdf readers

Found 80,000 PDFs on Internet

Reduce to smaller set with apparently equivalent code coverage
Used Adobe Reader + Valgrind in Linux to measure code coverage

Reduced to 1,515 files of ‘equivalent’ code coverage

Same effect as fuzzing all 80k in 2% of the time

Charlie Miller’s 5 Lines

Randomly changed selected bytes to random values in files

Produce ~3 million test cases from 1,500 files

Use standard common tools to determine if crash represents a exploit
Acrobat: 100 unique crashes, 4 actual exploits

Preview: 250 unique crashes, 60 exploits (tools may over-estimate)

Adobe Acrobat

Apple Preview

Mutation vs Generation

Ease of Use Knowledge Completeness Complex 
 Programs

Mutation Easy to setup and
automate

Little to no protocol
knowledge required

Limited by  
initial corpus

May fail for protocols
with checksums or
other complexity

Generative Writing generator  
is labor intensive

Requires having
protocol  

specification
More complete  
than mutations

Handles arbitrarily
complex protocols

Problems with Fuzzing

Mutation based fuzzers can generate an infinite number of test cases...
When has the fuzzer run long enough?

Generation based fuzzers generate a finite number of test cases.  
What happens when they’re all run and no bugs are found?

How do you monitor the target application such that you know when
something “bad” has happened?

Sometimes every anomalous test case triggers the same (boring) bug?

Code Coverage
What if we tried to build tests that try to reach code in the program?

Code coverage is a metric which can be used to determine how much code
has been executed.

Function coverage: Has each function in the program been called?

Edge coverage: Has every edge in the Control flow graph been executed?

Branch coverage: Has each branch of each control structure been
executed?

Predicate coverage: Has each boolean expression been evaluated to true
and false?

Evolutionary Fuzzing

Basic Idea: 
Generate inputs based on the structure and response of the program

Autodafe: Prioritizes based on inputs that reach dangerous API functions

EFS: Generates test cases based on code coverage metrics

Typically instrument program with additional instructions to track what code
has been reached — or, if no source is available, track with Valgrind.

Tools

Two popular tools today are:

cross_fuzz — specifically targeted at browser and generating complex DOM
sequences

American Fuzzy Lop (AFL) — most everything else

AFL Algorithm
 1) Load user-supplied initial test cases into the queue,

 2) Take next input file from the queue,

 3) Attempt to trim the test case to the smallest size that doesn't alter
 the measured behavior of the program,

 4) Repeatedly mutate the file using a balanced and well-researched variety
 of traditional fuzzing strategies,

 5) If any of the generated mutations resulted in a new state transition
 recorded by the instrumentation, add mutated output as a new entry in the
 queue.

 6) Go to 2.

Program Analysis

Program Analyzers

Program analysis — process of analyzing program behavior to determine correctness,
robustness, safety and liveness

Static analysis
Analyze source to find errors or check their absence

Consider all possible inputs (in summary form)

Can prove absence of bugs, in some cases

Dynamic analysis
Run instrumented code to find problems

Need to choose sample test input

Can find vulnerabilities but cannot prove their absence

Static Analysis

A static analysis tool S analyzes the source code of a program P to
determine whether it satisfies a property φ, such as:

• “P never deferences a null pointer”

• “P does not leak file handles”

• “No cast in P will lead to a ClassCastException”

Static Analysis

A static analysis tool S analyzes the source code of a program P to
determine whether it satisfies a property φ, such as:

• “P never deferences a null pointer”

• “P does not leak file handles”

• “No cast in P will lead to a ClassCastException”

Unfortunately, it is impossible to write such a tool!

Rice's theorem states that all non-trivial, semantic  
properties of programs are undecidable

For any nontrivial property φ, there is no general automated  
method to determine whether P satisfies φ

Two Imperfect Options

An analysis tool S analyzes the source code of a program P to determine
whether it satisfies a property φ can be wrong in one of two ways:

If S is sound, it will never miss violations, but it may say that P violates φ
even though it doesn’t (resulting in false positives).

If S is complete, it will never report false positives, but it may miss real
violations of φ (resulting in false negatives).

Soundness vs Completeness

sound (over-approximate) analysis

possible program behaviors

complete  
(under-approximate)  
analysis

Is this program safe?

Yes, it is safe.  
This program will not crash.

Try analyzing without approximating…

Non-termination!  
Therefore, need to approximate

Try analyzing without approximating…

Non-termination!  
Therefore, need to approximate

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊕ Zero

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero
x = b ? -1 : 1

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero

⊤ All integers
x = b ? -1 : 1

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero

⊤ All integers
x = b ? -1 : 1

x = y / 0

Abstraction
Concrete Domain of Integers Abstract Domain of Signs

x = 5

x = - 5

x = 0

⊕ Positive ints

⊖ Negative ints

⊙ Zero

⊤ All integers

⊥ No integers 
(undefined)

x = b ? -1 : 1

x = y / 0

Try analyzing with  
“signs” approximation…

Try analyzing with  
“signs” approximation…

Might Crash

Try analyzing with “path-sensitive
signs” approximation…

Bugs to Detect
Uninitialized variables

Null pointer dereference

Use after free

Double free

Array indexing errors

Mismatched array new/delete

Potential stack overrun

Potential heap overrun

Return pointers to local variables

Logically inconsistent code

Invalid use of negative values

Passing large parameters by value

Underallocations of dynamic data

Memory leaks

File handle leaks

Network resource leaks

Unused values

Unhandled return codes

Use of invalid iterators

Example: Check for missing optional args

Prototype for open() syscall:
int open(const char *path, int oflag, /* mode_t mode */...);

Typical mistake:
fd = open(“file”, O_CREAT);

Result: file has random permissions

Check: Look for oflags == O_CREAT without mode argument

Example: Chroot protocol checker

Goal: confine process to a “jail” on the filesystem

chroot() changes filesystem root for a process

Problem: chroot() itself does not change current working directory

Check: check if any sys calls (e.g., open) are called before chdir is called

Tainting Checkers
Unchecked data accepted

from untrusted source
Unvetted data taints other

data transitively

User input, network packets, 
parsed files

Tainted data used  
as an operator

system() printf() malloc() strcpy() Sent to RDBMS HTML Rendered

Command 
 Injection

Format String  
Manipulation

Int/buffer  
overflow

Buffer  
overflow

SQL  
Injection

Cross Site 
Scripting Attacks

Finding Vulnerabilities

Stanford Research
Using Programmer-Written Compiler Extensions to Catch Security Holes
Ken Ashcraft and Dawson Engler

IEEE Security and Privacy (“Oakland”) 2002

Used modified compiler to find over 100 security holes in Linux and BSD

Longterm, commercialized and extended tools

Checking for Unsanitized Integers

Example Untrusted Integer
Remote exploit, no length checks

/* 2.4.9/drivers/isdn/act2000/capi.c:actcapi_dispatch */
isdn_ctrl cmd;
...
while ((skb = skb_dequeue(&card->rcvq))) {
msg = skb->data;
...
memcpy(cmd.parm.setup.phone,
msg->msg.connect_ind.addr.num,
msg->msg.connect_ind.addr.len - 1);

Overview of Static Analysis

Automated method to find errors or check their absence

Consider all possible inputs (in summary form)

Can prove absence of bugs, in some cases

Very well-studied part of computer science, but tools will inherently always
over- or under-report problems

Dynamic Analysis

Dynamic (Program) Analysis analyzes computer software while
it is operating (in contrast to static which looks only at code)

Unit tests, integration tests, system tests and acceptance tests
are all a form of dynamic testing.

However, typically like to instrument code to understand where
the problem occurred

Valgrind
==25832== Invalid read of size 4

==25832== at 0x8048724: BandMatrix::ReSize(int, int, int) (bogon.cpp:45)

==25832== by 0x80487AF: main (bogon.cpp:66)

==25832== Address 0xBFFFF74C is not stack’d, malloc’d or free’d

Isn’t that a Debugger?

Traditional debuggers typically focus on allow programmers to
find the source of fatal errors (e.g., NULL pointer deref)

Not all bugs lead to crashes — especially for inputs that
typically don’t crash.

In contrast, security tools attempt to uncover non-fatal
problems — potential race conditions or overflows

Google AddressSanitizer (ASan)

AddressSanitizer is a memory error detector for C/C++ that finds:  

Use after free (dangling pointer dereference)
Heap buffer overflow
Stack buffer overflow
Global buffer overflow
Use after return
Use after scope
Initialization order bugs
Memory leaks

https://github.com/google/sanitizers/wiki/AddressSanitizer

Google AddressSanitizer (ASan)

LLVM Pass
Modifies the code to check the shadow state for each memory access and
creates poisoned redzones around stack and global objects to detect
overflows and underflows

A run-time library that replaces the malloc function
The run-time library replaces malloc, free and related functions, creates
poisoned redzones around allocated heap regions, delays the reuse of freed
heap regions, and does error reporting.

Google AddressSanitizer (ASan)
==9901==ERROR: AddressSanitizer: heap-use-after-free on address 0x60700000dfb5 at pc 0x45917b
bp 0x7fff4490c700 sp 0x7fff4490c6f8
READ of size 1 at 0x60700000dfb5 thread T0
 #0 0x45917a in main use-after-free.c:5
 #1 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
 #2 0x459074 in _start (a.out+0x459074)
0x60700000dfb5 is located 5 bytes inside of 80-byte region [0x60700000dfb0,0x60700000e000)
freed by thread T0 here:
 #0 0x4441ee in __interceptor_free projects/compiler-rt/lib/asan/asan_malloc_linux.cc:64
 #1 0x45914a in main use-after-free.c:4
 #2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
previously allocated by thread T0 here:
 #0 0x44436e in __interceptor_malloc projects/compiler-rt/lib/asan/asan_malloc_linux.cc:74
 #1 0x45913f in main use-after-free.c:3
 #2 0x7fce9f25e76c in __libc_start_main /build/buildd/eglibc-2.15/csu/libc-start.c:226
SUMMARY: AddressSanitizer: heap-use-after-free use-after-free.c:5 main

Summary of Program Analysis

Pros Cons

Static
Enables quickly finding bugs at

development time

Can detect some problems that

dynamic misses

Either over or under reports.  
Misses complex bugs.  

Generally requires code.

Dynamic
May uncover complex  

behavior missed by static.  
Can run on blackbox.

Depends on user input— 
only checks executed code

Reverse Engineering

Reverse Engineering

reverse engineering: process of discovering the technological principles of
a [insert noun] through analysis of its structure, function, and operation

In security, this is typically uncovering the human readable code for a binary:

Vulnerability or exploit research

Malware analysis

Check for copyright/patent violations

Interoperability (e.g. understanding a file/protocol format)

Copy protection (e.g., DRM or software licensing) removal

Techniques

Static Code Analysis (structure)
 * Disassemblers

Dynamic Code Analysis (operation)
 * Tracing / Hooking

 * Debuggers

Disassembly

Decompilation

Decompilation

Difficulties
Disassembly is imperfect

Benign Optimizations
- Constant folding

- Dead code elimination

- Inline expansion

- etc...

Intentional Obfuscation
- Packing

Packing

Packing: technique to hide the real code of a program through one or more
layers of compression/encryption

At run-time the unpacking routine restores the original code in memory and
then executes it

Packing

Automated Security Testing
CS155 Computer and Network Security

