CS155: Computer Security

|solation

The confinement
principle

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh at Stanford University. When slides are obtained from
other sources, a a reference will be noted on the bottom of that slide. A full
list of references is provided on the last slide.

Running untrusted code

We often need to run buggy/unstrusted code:
(~ — programs from untrusted Internet sites:

* apps, extensions, plug-ins, codecs for media player
— exposed applications: pdf viewers, outlook

— legacy daemons: sendmail, bind

_ — honeypots

Goal: if application “misbehaves” = Kkill it

Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
— Hardware: run application on isolated hw (air gap)
| 1

—_— " ,.
Network 2 «——— air gap > network 1

= difficult to manage

Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
— Virtual machines: isolate OS’s on a single machine

L

0S,

Virtual Machine Monitor (VMM)

Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
— Process: System Call Interposition
Isolate a process in a single operating system

process 1

process 2

Operating System

Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
— Threads: Software Fault Isolation (SFI)

* Isolating threads sharing same address space

— Application: e.g. browser-based confinement

Implementing confinement

Key component: reference monitor

— Mediates requests from applications
* Implements protection policy
 Enforces isolation and confinement

— Must always be invoked:
* Every application request must be mediated

— Tamperproof:
» Reference monitor cannot be killed
* ... or if killed, then monitored process is killed too

— Small enough to be analyzed and validated

Dan Boneh

A old example: chroot

Often used for “guest” accounts on ftp sites

To use do: (must be root)

chroot /tmp/gquest root dir */” is now “/tmp/guest”
Su guest EUID set to “guest”

Now “/tmp/guest” is added to file system accesses for applications in jail
open("/etc/passwd”, “r") =
open("/tmp/guest/etc/passwd”, “r”)
= application cannot access files outside of jail

Dan Boneh

Jailkit
Problem: all utility progs (Is, ps, vi) must live inside jalil

e jailkit project: auto builds files, libs, and dirs needed in jail env
e jk_init: creates jail environment

e jk_check: checks jail env for security problems
e checks for any modified programs,
e checks for world writable directories, etc.

e jk_Ish: restricted shell to be used inside jail

e note: simple chroot jail does not limit network access

Escaping from jails

Early escapes: relative paths
open(“../../etc/passwd”, "r") =

open("/tmp/guest/../../etc/passwd”, “r")

chroot should only be executable by root.
— otherwise jailed app can do:

* create dummy file “/aaa/etc/passwd”
* run chroot "“/aaa”
*run su root to become root (bug in Ultrix 4.0)

an Boneh

Freebsd jail

Stronger mechanism than simple chroot

To run: jail jail-path hostname IP-addr cmd
— calls hardened chroot (no “../../” escape)

— can only bind to sockets with specified IP address
and authorized ports

— can only communicate with processes inside jail

— root is limited, e.g. cannot load kernel modules

Problems with chroot and jail

Coarse policies:
— All or nothing access to parts of file system

— Inappropriate for apps like a web browser

* Needs read access to files outside jail
(e.qg. for sending attachments in Gmail)

Does not prevent malicious apps from:
— Accessing network and messing with other machines
— Trying to crash host OS

|Isolation

System Call
Interposition

System call interposition

Observation: to damage host system (e.g. persistent changes)
app must make system calls:

— To delete/overwrite files: unlink, open, write
— To do network attacks: socket, bind, connect, send

Idea: monitor app’s system calls and block unauthorized calls

Implementation options:
— Completely kernel space (e.g. GSWTK)
— Completely user space (e.g. program shepherding)
— Hybrid (e.g. Systrace)

Initial implementation (Janus) [GWTB'96]

Linux ptrace: process tracing

process calls:

ptrace (..., pid_t pid, ...)

and wakes up when pid makes sys call.

Monitor kills application if request is disallowed

Example policy
Sample policy file (e.g., for PDF reader)

path allow /tmp/*
path deny /etc/passwd
network deny all

Manually specifying policy for an app can be difficult:

— Recommended default policies are available

.. can be made more restrictive as needed.

Dan Boneh

Complications

 If app forks, monitor must also fork
— forked monitor monitors forked app cd(“/etc”)

cd(“/tmp”)

 If monitor crashes, app must be killed

open(“passwd”, “r”)

open(“passwd”, “r”)

* Monitor must maintain all OS state associated with app
— current-working-dir (CWD), UID, EUID, GID

— When app does “cd path” monitor must update its CWD
» otherwise: relative path requests interpreted incorrectly

Problems with ptrace

Ptrace is not well suited for this application:

— Trace all system calls or none
inefficient: no need to trace “close” system call

— Monitor cannot abort sys-call without killing app

Security problems: race conditions
— Example: symlink: me — mydata.dat

proc 1: open(*me”)

monitor checks and authotizes

proc2: me — /etc/pasjswd\ ot atormic
v OS executes open(*me)———— |

Classic TOCTOU bug: time-of-check / time-of-use

time

SCI in Linux: seccomp-bpf

Seccomp-BPF: Linux kernel facility used to filter process sys calls
« Sys-call filter written in the BPF language (use BPFC compiler)
* Used in Chromium, in Docker containers, ...

user space
00
prctl(PR_SEf_SECCOMP, SECCOMP_MODE_FILTER, due to exploit:
&bpf_policy) fopen(“/etc/passwd”, “r”)
v v

(sccompbot | run 9F progrem -l process|

Dan Boneh

BPF filters (policy programs)

Process can install multiple BPF filters:

— once installed, filter cannot be removed (all run on every
syscall)

— if program forks, child inherits all filters
— if program calls execve, all filters are preserved

BPF filter input: syscall number, syscall args., arch. (x86 or
ARM)

Filter returns one of:
— SECCOMP_RET_KILL: Kill process
— SECCOMP_RET_ERRNO: return specified error to caller
— SECCOMP_RET_ALLOw: allow syscall

Installing a BPF filter

* Must be called before setting BPF filter.

« Ensures set-UID, set-GID ignhored on subequent execve()
= attacker cannot elevate privilege

int main (int argc , char **argvy
Prctl(PR_SET_NO_NEW_PRIVS , 1);<
(

prctl(pr_seT_seccomp, sEccomp_mopE_FILTER, &bpf_policy),

€

fopen(“file.txt”, “w”);

printf(“... will not be printed. \n”
1 Kill if call open() for write

Dan Boneh

Docker: isolating containers using seccomp-bpf

containers

Container: process level isolation |

. 1. 0 . U O
« Container prevented from S S S
making sys calls filtered by - N w
secomp-BPF Docker engine

host OS
* Whoever starts container _ hardware /

can specify BPF policy
— default policy blocks many syscalls, including
ptrace

Docker sys call filtering

Run nginx container with a specific filter called filter.json:
S docker run --security-opt seccomp=filter.json nginx

Example filter:
“defaultAction”: “SCMP_ACT_ERRNO”, // deny by default
“syscalls”: [

{ "names”: ["accept”], // sys-call name
"action”: "SCMP_ACT_ALLOW", // allow (whitelist)
‘args: [] }, // what args to allow

-

Ostia: SCI with minimal kernel support

Monitored app disallowed from making monitored sys calls
— Minimal kernel change (... but app can call close() itself)

Sys-call delegated to an agent that decides if call is allowed
— Can be done without changing app ... using a libc stub

= Incorrect state syncing will not result in policy violation

monitored user space
application j > agent
! | policy file
fopen("/etc/passwd”, “r") for app
v

0S Kernela

|Isolation

Isolation via
Virtual Machines

Virtual Machines

Host OS

Example: NSA NetTop
single HW platform used for both classified and unclassified data

Why so popular now?

VMs in the 1960’s:
— Few computers, lots of users
— VMs allow many users to shares a single computer

VMs 1970's — 2000: non-existent

VMs since 2000:
— Too many computers, too few users

* Print server, Mail server, Web server, File server, Database, ...

— Wasteful to run each service on different hardware
— More generally: VMs heavily used in cloud computing

Hypervisor security assumption

VMM Security assumption:
— Malware can infect guest OS and guest apps
— But malware cannot escape from the infected VM

* (Cannot infect host OS
 Cannot infect other VMs on the same hardware

Requires that hypervisor protect itself and is not buggy
* (some) hypervisors are much simpler than a full OS

Problem: covert channels

« Covert channel: unintended communication channel
between isolated components

— Can be used to leak classified data from secure
component to public component

malware channel

_
Q
C
)
+—J
i

An example covert channel

Both VMs use the same underlying hardware

Tosend a bit be{0,1} malware does:
— b=1: at 1:00am do CPU intensive calculation

— b=0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures completion time

b=1 = completion-time > threshold

Many covert channels exist in running system:
— File lock status, cache contents, interrupts, ...

— Difficult to eliminate all

Dan Boneh

VM isolation in practice: cloud

VM instance
customer 2

VM instance
customer 1

Xen hypervisor

Type 1 hypervisor:
no host OS

VMs from different customers may run on the same machine
« Hypervisor must isolate VMs ... but some info leaks

VM isolation in practice: end-user

Qubes OS: a desktop/laptop OS where everything is a VM
« Runs on top of the Xen hypervisor
« Access to peripherals (mic, camera, usb, ...) controlled by VMs

Disposable VM Work VM Personal VM
sketchy PDF: @ c J.\ . Q

Xen hypervisor

VM isolation in practice: end-user

Qubes OS: a desktop/laptop OS where everything is a VM
« Runs on top of the Xen hypervisor
« Access to peripherals (mic, camera, usb, ...) controlled by VMs

Vault VM Work VM Whonix VM
Pwd/U2F Manager El c Force all traffic through Tor

Xen hypervisor

Every window frame identifies VM source

File Edit View History Bookmarks Tools Help

o) [Alll http://www.bbc.co.uk/news/video_and_audio/

EE’ Mobile N Spoft | Weather | Tran 2affiafiore ~
File Edit View Insert Format Table Tools Window Help NEWS VIDEO 1
’

& - H= BER V8 KXEB-¢ B - @E -w #] FindText Home UK Africa Asia-Pac Europe LatinAmerica Mid-East SouthAsia US& Canada Business Health ScilEnvirf
[Default | v [Liberation Serif [v][2 [v] B Z7 U

R SRR R Ty N R R RR PR C ROy

i

One-minute World News

‘Work Report

by Lorem Ipsum

- Lumm ipsum ddlor sit amet, consectetur adipiscing elit. Nunc ut arcu mauris. Aenean non vehicula
tortor. Vestibulum in felis nec odio adipiscing imperdiet sit amet ac lit. Proin vel tortor mi. Nullam

0. Morbi imperdiet pellentesque imperdiet. Mauris turpis turpis, tempus et dapibus a,

- convallis nec arcu. Quisque sed risus eu justo tempus ultricies eunon eros. Nam elementum

pulvinar massa non laoreet. Fusce lectus neque, sdalesin fringilla at, portitor quis sem. Duis

faucibus diam vel purus facilsis vitae interdum risus semper. Suspendisse consectetur neque mattis

nulla commado bibendum.

fimieged pulvinar aliquet iaculis. Vestibulum eleifend rhoncus quam molestie condimentum, Fusce
‘egestas risus a libero aliguam in auctor leo fringilla. Phasellus placerat consectetur libero, non
hendrerit nisi egestas nec. Cras auctor fringilla laoreet. Mauris metus sem, dapitus nec consequat
quis, molestieid ipaum. Curabitur vulputate ulrices elit. Sed nisi augue, fermentum vitae vehicula
aucter, gravida atuma. Fusce non nisl id leo scelerisque sodales, Fusce id lacus vel arcutempor
aliquam etvel mi, Curabitur ullamcorper quam nec metus vestibulum tristique. Aenean nisl velit,
ultricies eu molis ac, sagitis et lea Mauris sagitis diam metus, sit amet vulputate tellus, Vivamus
fermentum loborts tistque. tellusnec sem molls potator, Nullam ligula v
< i, condimentum st amet faclst nec. aliquet ac nibh, B BIEE NeWs

Pellentesque ac lacus et mauris congue condimentum. Nulla blandit sem quis mi vulputate vel
convallis est convallis. Aenean commodo lacinia magna egetlaoreet. Vestibulum in dolor at odio
lacinia cursus. Duis condimentum ullamcorper cursus. Nullalacinia accumsan faucibus. Donec nec
“ ante justo. Vivamus purus augue, amare nec vehicula ac, pretium sit amet justo, Morbi ante dui,
dignissim nec blandit a, ulrices eget uma. Sed eu felis ac velit imperdiet placerat. Nunc blandit
suscipit i, in feugiat neque tempus vel. Vivamus arcu tortor, iaculis et pharetra ne, sollicitudin at
justo. Morbi quis felis elit. In potenti. Cras. ugiat
arcu, id suscipit magna pharetra at. Maecenas dui lacus, ultricies vitae molestie sed, fermentum vel
o justo. Nunc vitae ipsum nec felis aliquet impendiet scelerisque vitae neque:

Watch the latest news summary from BBC World News. International news updated 24 hours a day.

Share this page
o

Curabitur vel convallis ligula. Pellentesque non magna nec sapien ultrices toncus. Fusce in ipsum
utorci aliquam molestie. Nunc pretium, lectus at fringilla euismod. sem auaue tellus, -
< m >
Page 1 /1 | Default | English (USA) |INSRT |STD |* BOGM 0+ +—® |74%

U525 4l 4 untitled 1 - OpenOffice.org Writer || BBC News - One-minute World News -

[
- D)) E el

GUI VM ensures frames are drawn correctly

Dan Boneh

SU bVI rt [King et al. 2006]

Virus idea:
— Once on victim machine, install a malicious VMM
— Virus hides in VMM
— Invisible to virus detector running inside VM

VMM and virus

anti-viru:

>
-
e~
<<
=
v
L
T

Y hE PR EBRCNE, Sy D Dy, wEIR

Y HE D& BECNE MEw AE NS XER
> o D & W™= 4 u A <o ow oo -
bawmmurr BN 6 u RN SEOY HE) HERN 4HE WKy HE Difite BN E &M
e DNt @3S E HE
O DK 3. < Jdod O QLK -U OLE

B REND ORI E D VIRER S TR RS T CTHE VRO B R YRR G My

O M MM S A ANHEB Y (RECY &S UXE P 3T peulasyhE Dt~ B3 e NE
S HECSNE MW TTE N2 K

RENUEY BPEONHERYT REDY ¥C NEHN LHE WURY @ Ot HH QW

) MPW O RHEBRY REVD IS XESN LB JUKY 8 D

WL HE DR BFECNE MMes TTE N\ K@i

b..q wy = ME 'HEHUN T DRV RE DR
j&u&n wmﬁb

ok t R £ s TIE
SImEes TTEI N2l X“WEIQ

BOE RENiy BPY Oty REDN) XE NEMN LHE VUKV HE DRt BHONK

P2 HE O I CNE S TTE AN Wk

 BTC)M WEH NE YY" KW

HH SN

$.23, mi@m« REQL UQ NESN LB MUK HE DEb B
EF

LRy #m ,wn

=y e Uﬂ.’ HA SN

SN § W & /3ﬂ }.B
T mEwe TIE Ntetd R@

> o o 3w O < a'w e - e =
BE MEXY P OxEHBNYT REOD X6 XEISIN L3F HUELY HE DN~ BHECSNE M

S HEBEE RGN BPY O W RRY REDD X6 NESN LHE WURY HE Dl

K 00N D PRI e R D R D RS SR D e A L R MhE oDk HHE SN

wid
-

U B S S lwum/Ru ﬁ.zo JE./BH uf'—n
e » -

B - - - v - e - - ¢

ﬂnﬂn- BN T e dn) N m e R et o &S0 N e e W) e Y Jl.i bt .\ g

LT TT RGTIRY |

WP ORHBEY REP) HE€ XESD ~FE WUKY HE Dt E

URD thBonll BECSE. WA TF S MK LS <mie

h %EC NEURCE XEWMHMMN WP D nd@Ky S0 HE HNEID, A0FE, LR & DR

SmEes TIE N2eid @I

L2 SR ORGe BMESH)E Smgs TTH AN KEKR

S U-AE o v B H O 0 Wl

PRV HE DS- BESNE SWe

FERFRERMV P ORERRY REDD BT HEUR LYE WERYHE D~ BE

W RN BB O N W ..Hﬁt_ub EES HEIN LJIF VUKV HE DRt =@Rl

Hypervisor detection

VM Based Malware (blue pill virus)

« VMBR: a virus that installs a malicious VMM (hypervisor)

« Microsoft Security Bulletin:
— Suggests disabling hardware virtualization features
by default for client-side systems

 But VMBRSs are easy to defeat
— A guest OS can detect that it is running on top of VMM

VMM detection (red pill techniques)

VM platforms often emulate simple hardware

— VMWare emulates an ancient i440bx chipset
... but report 8GB RAM, dual CPUs, etc.

VMM introduces time latency variances
— Memory cache behavior differs in presence of VMM
— Results in relative time variations for any two operations

VMM shares the TLB with GuestOS
— GuestOS can detect reduced TLB size

... and many more methods [GAWF'07]

VMM Detection

Can an OS detect it is running on top of a VMM?

Applications:

— Virus detector can detect VMBR

— Normal virus (non-VMBR) can detect VMM
* refuse to run to avoid reverse engineering

— Software that binds to hardware (e.g. MS Windows) can
refuse to run on top of VMM

— DRM systems may refuse to run on top of VMM

Hypervisor detection in the browser [xser14

Can we identify malware web sites?

« Approach: crawl web,
load pages in a browser running in a VM,
look for pages that damage VM

 The problem: Web page can detect it is running in a VM
How? Using timing variations in writing to screen

« Malware in web page becomes benign when in a VM
= evade detection

VMM Detection

Bottom line: The perfect VMM does not exist

VMMs today (e.g. VMWare) focus on:
Compatibility: ensure off the shelf software works

Performance: minimize virtualization overhead

* VMMs do not provide transparency

— Anomalies reveal existence of VMM

|Isolation

Software Fault
Isolation:
isolating threads

Software Fault Isolation [whabe et al, 1993

Goal: confine apps running in same address space
— Codec code should not interfere with media player
— Device drivers should not corrupt kernel

Simple solution: runs apps in separate address spaces
— Problem: slow if apps communicate frequently
* requires context switch per message

Software Fault Isolation

SFI approach:

— Partition process memory into segments

app #1 app #2

* Locate unsafe instructions: jmp, load, store
— At compile time, add guards before unsafe instructions
— When loading code, ensure all guards are present

Segment matching technique

« Designed for MIPS processor. Many registers available.

« dr1, dr2: dedicated registers not used by the binary.
« compiler pretend these registers don’t exist
« dr2 contains segment id

* Indirect load instruction R12<— R[34] becomes:

Guard ensures code
does not load data from
another segment

dr1 <— R34
scratch-reg <— (dr1 >> 20) :get segment ID
compare scratch-reg and dr2 : validate seg. ID

trap if not equal
R12 <— [dr1] : do load

Dan Boneh

Address sandboxing technique

dr2 holds segment ID
indirect load instruction R12<— R[34] becomes:

dr1 <-- R34 & segment-mask : zero out seg bits
dr1 <--dr1 | dr2 : set valid seg ID
R12 <-- [dr1] : do load

Fewer instructions than segment matching
« but does not catch offending instructions
Similar guards places on all unsafe instructions

Dan Boneh

Problem: whatif jmp [addr] jumps directly into indirect
load?

(bypassing guard)
Solution:

jmp guard must ensure [addr] does not bypass load guard

Cross domain calls

caller
domain

call draw

N

callee
domain

call stub »draw:

— br addr

return

br addr

br addr

br addr

ret stub | « br addr

—

br addr

* Only stubs allowed to make cross-domain jumps

* Jump table contains allowed exit points
— Addresses are hard coded, read-only segment

Dan Boneh

SFI Summary

Performance
— Usually good: mpeg_play, 4% slowdown

Limitations of SFI: harder to implement on x86 :

— variable length instructions: unclear where to put guards
— few registers: can't dedicate three to SFI

— many instructions affect memory: more guards needed

Isolation: summary

* Many sandboxing techniques:
Physical air gap, Virtual air gap (VMMs),
System call interposition, Software Fault isolation
Application specific (e.g. Javascript in browser)

» Often complete isolation is inappropriate
— Apps need to communicate through regulated interfaces

* Hardest aspects of sandboxing:
— Specifying policy: what can apps do and not do
— Preventing covert channels

THE END

