
Dan Boneh

Isolation

The confinement
principle

CS155: Computer Security

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh at Stanford University. When slides are obtained from
other sources, a a reference will be noted on the bottom of that slide. A full
list of references is provided on the last slide.

Dan Boneh

Running untrusted code
We often need to run buggy/unstrusted code:

– programs from untrusted Internet sites:

• apps, extensions, plug-ins, codecs for media player
– exposed applications: pdf viewers, outlook

– legacy daemons: sendmail, bind

– honeypots

Goal: if application “misbehaves” ⇒ kill it

Dan Boneh

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Hardware: run application on isolated hw (air gap)

 ⇒ difficult to manage

air gap network 1Network 2

app 1 app 2

Dan Boneh

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Virtual machines: isolate OS’s on a single machine

Virtual Machine Monitor (VMM)

OS1 OS2

app1 app2

Dan Boneh

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
– Process: System Call Interposition
 Isolate a process in a single operating system

Operating System

process 2

process 1

Dan Boneh

Approach: confinement
Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:

– Threads: Software Fault Isolation (SFI)
• Isolating threads sharing same address space

– Application: e.g. browser-based confinement

Dan Boneh

Implementing confinement
Key component: reference monitor

– Mediates requests from applications
• Implements protection policy
• Enforces isolation and confinement

– Must always be invoked:
• Every application request must be mediated

– Tamperproof:
• Reference monitor cannot be killed
• … or if killed, then monitored process is killed too

– Small enough to be analyzed and validated

Dan Boneh

A old example: chroot
Often used for “guest” accounts on ftp sites

To use do: (must be root)

 chroot /tmp/guest root dir “/” is now “/tmp/guest”
 su guest EUID set to “guest”

Now “/tmp/guest” is added to file system accesses for applications in jail
 open(“/etc/passwd”, “r”) ⇒  

 open(“/tmp/guest/etc/passwd” , “r”)
⇒ application cannot access files outside of jail

Dan Boneh

Jailkit
Problem: all utility progs (ls, ps, vi) must live inside jail

• jailkit project: auto builds files, libs, and dirs needed in jail env
• jk_init: creates jail environment
• jk_check: checks jail env for security problems

• checks for any modified programs,
• checks for world writable directories, etc.

• jk_lsh: restricted shell to be used inside jail

• note: simple chroot jail does not limit network access

Dan Boneh

Escaping from jails
Early escapes: relative paths
 open(“../../etc/passwd”, “r”) ⇒  

 open(“/tmp/guest/../../etc/passwd”, “r”)

chroot should only be executable by root.
– otherwise jailed app can do:

• create dummy file “/aaa/etc/passwd”
• run chroot “/aaa”
• run su root to become root (bug in Ultrix 4.0)

Dan Boneh

Freebsd jail
Stronger mechanism than simple chroot

To run: jail jail-path hostname IP-addr cmd

– calls hardened chroot (no “../../” escape)

– can only bind to sockets with specified IP address  
and authorized ports

– can only communicate with processes inside jail

– root is limited, e.g. cannot load kernel modules

Dan Boneh

Problems with chroot and jail
Coarse policies:
– All or nothing access to parts of file system
– Inappropriate for apps like a web browser

• Needs read access to files outside jail  
 (e.g. for sending attachments in Gmail)

Does not prevent malicious apps from:
– Accessing network and messing with other machines
– Trying to crash host OS

Dan Boneh

Isolation

System Call
Interposition

Dan Boneh

System call interposition
Observation: to damage host system (e.g. persistent changes)  
app must make system calls:

– To delete/overwrite files: unlink, open, write
– To do network attacks: socket, bind, connect, send

Idea: monitor app’s system calls and block unauthorized calls

Implementation options:
– Completely kernel space (e.g. GSWTK)
– Completely user space (e.g. program shepherding)
– Hybrid (e.g. Systrace)

Dan Boneh

Initial implementation (Janus) [GWTB’96]

Linux ptrace: process tracing
 process calls: ptrace (… , pid_t pid , …)
 and wakes up when pid makes sys call.

Monitor kills application if request is disallowed

OS Kernel

monitored
application
(browser)

monitor

user space

open(“/etc/passwd”, “r”)

Dan Boneh

Example policy
Sample policy file (e.g., for PDF reader)

 path allow /tmp/*
 path deny /etc/passwd
 network deny all

Manually specifying policy for an app can be difficult:
– Recommended default policies are available
 … can be made more restrictive as needed.

Dan Boneh

Complications
• If app forks, monitor must also fork
– forked monitor monitors forked app

• If monitor crashes, app must be killed

• Monitor must maintain all OS state associated with app

– current-working-dir (CWD), UID, EUID, GID

– When app does “cd path” monitor must update its CWD
• otherwise: relative path requests interpreted incorrectly

cd(“/tmp”)
open(“passwd”, “r”)

cd(“/etc”)
open(“passwd”, “r”)

Dan Boneh

Problems with ptrace
Ptrace is not well suited for this application:

– Trace all system calls or none
inefficient: no need to trace “close” system call

– Monitor cannot abort sys-call without killing app

Security problems: race conditions
– Example: symlink: me ⟶ mydata.dat

 proc 1: open(“me”)
 monitor checks and authorizes
 proc 2: me ⟶ /etc/passwd
 OS executes open(“me”)

Classic TOCTOU bug: time-of-check / time-of-use

tim
e

not atomic

Dan Boneh

SCI in Linux: seccomp-bpf
Seccomp-BPF: Linux kernel facility used to filter process sys calls
• Sys-call filter written in the BPF language (use BPFC compiler)

• Used in Chromium, in Docker containers, …

OS Kernel

Chrome renderer  
process starts

Renderer process 
renders site

user space

 seccomp-bpf

due to exploit:
fopen(“/etc/passwd”, “r”)

prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER,  
 &bpf_policy)

…

run BPF program … kill process

Dan Boneh

BPF filters (policy programs)
Process can install multiple BPF filters:

– once installed, filter cannot be removed (all run on every
syscall)

– if program forks, child inherits all filters
– if program calls execve, all filters are preserved

BPF filter input: syscall number, syscall args., arch. (x86 or
ARM)

Filter returns one of:
– SECCOMP_RET_KILL: kill process
– SECCOMP_RET_ERRNO: return specified error to caller
– SECCOMP_RET_ALLOW: allow syscall

Dan Boneh

Installing a BPF filter

int main (int argc , char **argv) {
 prctl(PR_SET_NO_NEW_PRIVS , 1);
 prctl(PR_SET_SECCOMP, SECCOMP_MODE_FILTER, &bpf_policy)

 fopen(“file.txt", “w”);
 printf(“… will not be printed. \n”);
}

• Must be called before setting BPF filter.
• Ensures set-UID, set-GID ignored on subequent execve() 

 ⇒ attacker cannot elevate privilege

Kill if call open() for write

Dan Boneh

Docker: isolating containers using seccomp-bpf

Container: process level isolation

• Container prevented from  
making sys calls filtered by  
secomp-BPF

• Whoever starts container  
can specify BPF policy
– default policy blocks many syscalls, including

ptrace

hardware
host OS

Docker engine
App 1 

App 2 

App 3
containers

Dan Boneh

Docker sys call filtering
Run nginx container with a specific filter called filter.json:
 $ docker run --security-opt seccomp=filter.json nginx

Example filter:
 “defaultAction”: “SCMP_ACT_ERRNO”, // deny by default
 “syscalls”: [
 { "names": ["accept”], // sys-call name  
 "action": "SCMP_ACT_ALLOW", // allow (whitelist) 
 "args": [] } , // what args to allow
 …  
]

Dan Boneh

Ostia: SCI with minimal kernel support
Monitored app disallowed from making monitored sys calls

– Minimal kernel change (… but app can call close() itself)
Sys-call delegated to an agent that decides if call is allowed

– Can be done without changing app … using a libc stub
⇒ Incorrect state syncing will not result in policy violation

OS Kernel

monitored
application agent

user space

policy file
for app

libc
fopen(“/etc/passwd”, “r”)

Dan Boneh

Isolation

Isolation via  
Virtual Machines

Dan Boneh

Virtual Machines

Virtual Machine Monitor (VMM)
Guest OS 2

Apps

Guest OS 1

Apps

Hardware
Host OS

VM2 VM1

Example: NSA NetTop
single HW platform used for both classified and unclassified data

Dan Boneh

Why so popular now?
VMs in the 1960’s:

– Few computers, lots of users
– VMs allow many users to shares a single computer

VMs 1970’s – 2000: non-existent

VMs since 2000:
– Too many computers, too few users

• Print server, Mail server, Web server, File server, Database , …
– Wasteful to run each service on different hardware
– More generally: VMs heavily used in cloud computing

Dan Boneh

Hypervisor security assumption
VMM Security assumption:
– Malware can infect guest OS and guest apps
– But malware cannot escape from the infected VM
• Cannot infect host OS
• Cannot infect other VMs on the same hardware

Requires that hypervisor protect itself and is not buggy

• (some) hypervisors are much simpler than a full OS

Dan Boneh

Problem: covert channels
• Covert channel: unintended communication channel

between isolated components
– Can be used to leak classified data from secure

component to public component

Classified VM Public VM

secret
doc malware

lis
te

ne
r

covert
channel

VMM

Dan Boneh

An example covert channel
Both VMs use the same underlying hardware

To send a bit b ∈ {0,1} malware does:
– b= 1: at 1:00am do CPU intensive calculation
– b= 0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures completion time
 b = 1 ⇒ completion-time > threshold

Many covert channels exist in running system:
– File lock status, cache contents, interrupts, …
– Difficult to eliminate all

Dan Boneh

VM isolation in practice: cloud

Guest OS Guest OS

Hardware

Xen hypervisor

VM instance
customer 1

VM instance
customer 2

VMs from different customers may run on the same machine
• Hypervisor must isolate VMs … but some info leaks

Type 1 hypervisor:  
no host OS

Dan Boneh

VM isolation in practice: end-user
Qubes OS: a desktop/laptop OS where everything is a VM
• Runs on top of the Xen hypervisor
• Access to peripherals (mic, camera, usb, …) controlled by VMs

Hardware

Xen hypervisor
Debian OS

Personal VM

Windows OS

Work VM

Debian OS

Disposable VM
sketchy PDF:

Dan Boneh

Debian OS

Personal VM

Debian OS

Whonix VM
Force all traffic through Tor

VM isolation in practice: end-user
Qubes OS: a desktop/laptop OS where everything is a VM
• Runs on top of the Xen hypervisor
• Access to peripherals (mic, camera, usb, …) controlled by VMs

Hardware

Xen hypervisor
Windows OS

Work VM

Debian OS

Vault VM
Pwd/U2F Manager

Dan Boneh

Every window frame identifies VM source

GUI VM ensures frames are drawn correctly

Dan Boneh

Subvirt [King et al. 2006]

Virus idea:
– Once on victim machine, install a malicious VMM
– Virus hides in VMM
– Invisible to virus detector running inside VM

HW
OS

⇒

HW

OS
VMM and virus

anti-virus
anti-virus

Dan Boneh

The MATRIX

Dan Boneh

Hypervisor detection

Dan Boneh

VM Based Malware (blue pill virus)
• VMBR: a virus that installs a malicious VMM (hypervisor)

• Microsoft Security Bulletin:
– Suggests disabling hardware virtualization features  

by default for client-side systems

• But VMBRs are easy to defeat
– A guest OS can detect that it is running on top of VMM

Dan Boneh

VMM detection (red pill techniques)
• VM platforms often emulate simple hardware

– VMWare emulates an ancient i440bx chipset
 … but report 8GB RAM, dual CPUs, etc.

• VMM introduces time latency variances
– Memory cache behavior differs in presence of VMM
– Results in relative time variations for any two operations

• VMM shares the TLB with GuestOS
– GuestOS can detect reduced TLB size

• … and many more methods [GAWF’07]

Dan Boneh

VMM Detection
Can an OS detect it is running on top of a VMM?

Applications:

– Virus detector can detect VMBR

– Normal virus (non-VMBR) can detect VMM
• refuse to run to avoid reverse engineering

– Software that binds to hardware (e.g. MS Windows) can  
refuse to run on top of VMM

– DRM systems may refuse to run on top of VMM

Dan Boneh

Hypervisor detection in the browser [HBBP’14]

Can we identify malware web sites?
• Approach: crawl web,  

 load pages in a browser running in a VM,  
 look for pages that damage VM

• The problem: Web page can detect it is running in a VM 
 How? Using timing variations in writing to screen

• Malware in web page becomes benign when in a VM  
 ⇒ evade detection

Dan Boneh

VMM Detection
Bottom line: The perfect VMM does not exist

VMMs today (e.g. VMWare) focus on:

Compatibility: ensure off the shelf software works
Performance: minimize virtualization overhead

• VMMs do not provide transparency

– Anomalies reveal existence of VMM

Dan Boneh

Isolation

Software Fault
Isolation:  
isolating threads

Dan Boneh

Goal: confine apps running in same address space
– Codec code should not interfere with media player
– Device drivers should not corrupt kernel

Simple solution: runs apps in separate address spaces
– Problem: slow if apps communicate frequently
• requires context switch per message

Software Fault Isolation [Whabe et al., 1993]

Dan Boneh

Software Fault Isolation
SFI approach:

– Partition process memory into segments

• Locate unsafe instructions: jmp, load, store
– At compile time, add guards before unsafe instructions
– When loading code, ensure all guards are present

code
segment

data
segment

code
segment

data
segment

app #1 app #2

Dan Boneh

• Designed for MIPS processor. Many registers available.
• dr1, dr2: dedicated registers not used by the binary.

• compiler pretend these registers don’t exist
• dr2 contains segment id

• Indirect load instruction R12<— R[34] becomes:

dr1 <— R34
scratch-reg <— (dr1 >> 20) :get segment ID
compare scratch-reg and dr2 : validate seg. ID
trap if not equal
R12 <— [dr1] : do load

Segment matching technique

Guard ensures code
does not load data from

another segment

Dan Boneh

• dr2 holds segment ID
• indirect load instruction R12<— R[34] becomes:

dr1 <-- R34 & segment-mask : zero out seg bits
dr1 <-- dr1 | dr2 : set valid seg ID
R12 <-- [dr1] : do load

• Fewer instructions than segment matching
• but does not catch offending instructions

• Similar guards places on all unsafe instructions

Address sandboxing technique

Dan Boneh

Problem: what if jmp [addr] jumps directly into indirect
load?

 (bypassing guard)

Solution:

jmp guard must ensure [addr] does not bypass load guard

Dan Boneh

Cross domain calls
caller

domain
callee

domain

call draw call stub draw:

return

br addr
br addr
br addr

ret stub

• Only stubs allowed to make cross-domain jumps
• Jump table contains allowed exit points

– Addresses are hard coded, read-only segment

br addr
br addr
br addr

Dan Boneh

SFI Summary
• Performance

– Usually good: mpeg_play, 4% slowdown

• Limitations of SFI: harder to implement on x86 :
– variable length instructions: unclear where to put guards
– few registers: can’t dedicate three to SFI
– many instructions affect memory: more guards needed

Dan Boneh

Isolation: summary
• Many sandboxing techniques:

 Physical air gap, Virtual air gap (VMMs),
 System call interposition, Software Fault isolation
 Application specific (e.g. Javascript in browser)

• Often complete isolation is inappropriate
– Apps need to communicate through regulated interfaces

• Hardest aspects of sandboxing:
– Specifying policy: what can apps do and not do
– Preventing covert channels

Dan Boneh

THE END

