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The confinement
principle
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Running untrusted code

We often need to run buggy/unstrusted code:
(~ — programs from untrusted Internet sites:

* apps, extensions, plug-ins, codecs for media player
— exposed applications: pdf viewers, outlook

— legacy daemons: sendmail, bind

\_ — honeypots

Goal: if application “misbehaves” = Kkill it



Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
— Hardware: run application on isolated hw (air gap)
| 1
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= difficult to manage



Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
— Virtual machines: isolate OS’s on a single machine
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Virtual Machine Monitor (VMM)



Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
— Process: System Call Interposition
Isolate a process in a single operating system

process 1

process 2

Operating System



Approach: confinement

Confinement: ensure misbehaving app cannot harm rest of system

Can be implemented at many levels:
— Threads: Software Fault Isolation (SFI)

* Isolating threads sharing same address space

— Application: e.g. browser-based confinement



Implementing confinement

Key component: reference monitor

— Mediates requests from applications
* Implements protection policy
 Enforces isolation and confinement

— Must always be invoked:
* Every application request must be mediated

— Tamperproof:
» Reference monitor cannot be killed
* ... or if killed, then monitored process is killed too

— Small enough to be analyzed and validated
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A old example: chroot

Often used for “guest” accounts on ftp sites

To use do: (must be root)

chroot /tmp/gquest root dir */” is now “/tmp/guest”
Su guest EUID set to “guest”

Now “/tmp/guest” is added to file system accesses for applications in jail
open("/etc/passwd”, “r") =
open("/tmp/guest/etc/passwd”, “r”)
= application cannot access files outside of jail

Dan Boneh



Jailkit
Problem: all utility progs (Is, ps, vi) must live inside jalil

e jailkit project: auto builds files, libs, and dirs needed in jail env
e jk_init: creates jail environment

e jk_check: checks jail env for security problems
e checks for any modified programs,
e checks for world writable directories, etc.

e jk_Ish: restricted shell to be used inside jail

e note: simple chroot jail does not limit network access



Escaping from jails

Early escapes: relative paths
open( “../../etc/passwd”, "r") =

open("/tmp/guest/../../etc/passwd”, “r")

chroot should only be executable by root.
— otherwise jailed app can do:

* create dummy file “/aaa/etc/passwd”
* run chroot "“/aaa”
*run su root to become root (bug in Ultrix 4.0)
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Freebsd jail

Stronger mechanism than simple chroot

To run: jail jail-path hostname IP-addr cmd
— calls hardened chroot (no “../../” escape)

— can only bind to sockets with specified IP address
and authorized ports

— can only communicate with processes inside jail

— root is limited, e.g. cannot load kernel modules



Problems with chroot and jail

Coarse policies:
— All or nothing access to parts of file system

— Inappropriate for apps like a web browser

* Needs read access to files outside jail
(e.qg. for sending attachments in Gmail)

Does not prevent malicious apps from:
— Accessing network and messing with other machines
— Trying to crash host OS
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System call interposition

Observation: to damage host system (e.g. persistent changes)
app must make system calls:

— To delete/overwrite files:  unlink, open, write
— To do network attacks: socket, bind, connect, send

Idea: monitor app’s system calls and block unauthorized calls

Implementation options:
— Completely kernel space (e.g. GSWTK)
— Completely user space (e.g. program shepherding)
— Hybrid (e.g. Systrace)



Initial implementation (Janus)  [GWTB'96]

Linux ptrace: process tracing

process calls:

ptrace (..., pid_t pid, ...)

and wakes up when pid makes sys call.

Monitor kills application if request is disallowed



Example policy
Sample policy file (e.g., for PDF reader)

path allow /tmp/*
path deny /etc/passwd
network deny all

Manually specifying policy for an app can be difficult:

— Recommended default policies are available

.. can be made more restrictive as needed.
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Complications

 If app forks, monitor must also fork
— forked monitor monitors forked app cd(“/etc”)

cd(“/tmp”)

 If monitor crashes, app must be killed

open(“passwd”, “r”)

open(“passwd”, “r”)

* Monitor must maintain all OS state associated with app
— current-working-dir (CWD), UID, EUID, GID

— When app does “cd path” monitor must update its CWD
» otherwise: relative path requests interpreted incorrectly



Problems with ptrace

Ptrace is not well suited for this application:

— Trace all system calls or none
inefficient: no need to trace “close” system call

— Monitor cannot abort sys-call without killing app

Security problems: race conditions
— Example: symlink: me — mydata.dat

proc 1: open(*me”)

monitor checks and authotizes

proc2: me — /etc/pasjswd\ ot atormic
v OS executes open(*me)———— |

Classic TOCTOU bug: time-of-check / time-of-use

time




SCI in Linux: seccomp-bpf

Seccomp-BPF: Linux kernel facility used to filter process sys calls
« Sys-call filter written in the BPF language (use BPFC compiler)
* Used in Chromium, in Docker containers, ...

user space
00
prctl(PR_SEf_SECCOMP, SECCOMP_MODE_FILTER, due to exploit:
&bpf_policy) fopen(“/etc/passwd”, “r”)
v v

(sccompbot | run 9F progrem -l process|
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BPF filters (policy programs)

Process can install multiple BPF filters:

— once installed, filter cannot be removed (all run on every
syscall)

— if program forks, child inherits all filters
— if program calls execve, all filters are preserved

BPF filter input: syscall number, syscall args., arch. (x86 or
ARM)

Filter returns one of:
— SECCOMP_RET_KILL: Kill process
— SECCOMP_RET_ERRNO:  return specified error to caller
— SECCOMP_RET_ALLOw:  allow syscall



Installing a BPF filter

* Must be called before setting BPF filter.

« Ensures set-UID, set-GID ignhored on subequent execve()
= attacker cannot elevate privilege

int main (int argc , char **argvy
Prctl(PR_SET_NO_NEW_PRIVS , 1);<
(

prctl(pr_seT_seccomp, sEccomp_mopE_FILTER, &bpf_policy),

€

fopen(“file.txt”, “w”);

printf(“... will not be printed. \n”
1 Kill if call open() for write
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Docker: isolating containers using seccomp-bpf

containers

Container: process level isolation |

. 1. 0 . U O
« Container prevented from S S S
making sys calls filtered by - N w
secomp-BPF Docker engine

host OS
* Whoever starts container \_ hardware /

can specify BPF policy
— default policy blocks many syscalls, including
ptrace



Docker sys call filtering

Run nginx container with a specific filter called filter.json:
S docker run --security-opt seccomp=filter.json nginx

Example filter:
“defaultAction”: “SCMP_ACT_ERRNO”, // deny by default
“syscalls”: [

{ "names”: ["accept”], // sys-call name
"action”: "SCMP_ACT_ALLOW", // allow (whitelist)
‘args: [] }, // what args to allow

-




Ostia: SCI with minimal kernel support

Monitored app disallowed from making monitored sys calls
— Minimal kernel change (... but app can call close() itself )

Sys-call delegated to an agent that decides if call is allowed
— Can be done without changing app ... using a libc stub

= Incorrect state syncing will not result in policy violation

monitored user space
application j > agent
! | policy file
fopen("/etc/passwd”, “r") for app
v

0S Kernela
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Virtual Machines

Host OS

Example: NSA NetTop
single HW platform used for both classified and unclassified data



Why so popular now?

VMs in the 1960’s:
— Few computers, lots of users
— VMs allow many users to shares a single computer

VMs 1970's — 2000: non-existent

VMs since 2000:
— Too many computers, too few users

* Print server, Mail server, Web server, File server, Database, ...

— Wasteful to run each service on different hardware
— More generally: VMs heavily used in cloud computing



Hypervisor security assumption

VMM Security assumption:
— Malware can infect guest OS and guest apps
— But malware cannot escape from the infected VM

* (Cannot infect host OS
 Cannot infect other VMs on the same hardware

Requires that hypervisor protect itself and is not buggy
* (some) hypervisors are much simpler than a full OS



Problem: covert channels

« Covert channel: unintended communication channel
between isolated components

— Can be used to leak classified data from secure
component to public component

malware channel

_
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An example covert channel

Both VMs use the same underlying hardware

Tosend a bit be{0,1} malware does:
— b=1: at 1:00am do CPU intensive calculation

— b=0: at 1:00am do nothing

At 1:00am listener does CPU intensive calc. and measures completion time

b=1 = completion-time > threshold

Many covert channels exist in running system:
— File lock status, cache contents, interrupts, ...

— Difficult to eliminate all
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VM isolation in practice: cloud

VM instance
customer 2

VM instance
customer 1

Xen hypervisor

Type 1 hypervisor:
no host OS

VMs from different customers may run on the same machine
« Hypervisor must isolate VMs ... but some info leaks



VM isolation in practice: end-user

Qubes OS: a desktop/laptop OS where everything is a VM
« Runs on top of the Xen hypervisor
« Access to peripherals (mic, camera, usb, ...) controlled by VMs

Disposable VM Work VM Personal VM
sketchy PDF: @ c J.\ . Q

Xen hypervisor




VM isolation in practice: end-user

Qubes OS: a desktop/laptop OS where everything is a VM
« Runs on top of the Xen hypervisor
« Access to peripherals (mic, camera, usb, ...) controlled by VMs

Vault VM Work VM Whonix VM
Pwd/U2F Manager El c Force all traffic through Tor

Xen hypervisor




Every window frame identifies VM source
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GUI VM ensures frames are drawn correctly
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SU bVI rt [King et al. 2006]

Virus idea:
— Once on victim machine, install a malicious VMM
— Virus hides in VMM
— Invisible to virus detector running inside VM

VMM and virus

anti-viru:
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Hypervisor detection




VM Based Malware (blue pill virus)

« VMBR: a virus that installs a malicious VMM (hypervisor)

« Microsoft Security Bulletin:
— Suggests disabling hardware virtualization features
by default for client-side systems

 But VMBRSs are easy to defeat
— A guest OS can detect that it is running on top of VMM



VMM detection (red pill techniques)

VM platforms often emulate simple hardware

— VMWare emulates an ancient i440bx chipset
... but report 8GB RAM, dual CPUs, etc.

VMM introduces time latency variances
— Memory cache behavior differs in presence of VMM
— Results in relative time variations for any two operations

VMM shares the TLB with GuestOS
— GuestOS can detect reduced TLB size

... and many more methods [GAWF'07]



VMM Detection

Can an OS detect it is running on top of a VMM?

Applications:

— Virus detector can detect VMBR

— Normal virus (non-VMBR) can detect VMM
* refuse to run to avoid reverse engineering

— Software that binds to hardware (e.g. MS Windows) can
refuse to run on top of VMM

— DRM systems may refuse to run on top of VMM



Hypervisor detection in the browser [xser14

Can we identify malware web sites?

« Approach: crawl web,
load pages in a browser running in a VM,
look for pages that damage VM

 The problem: Web page can detect it is running in a VM
How? Using timing variations in writing to screen

« Malware in web page becomes benign when in a VM
= evade detection



VMM Detection

Bottom line: The perfect VMM does not exist

VMMs today (e.g. VMWare) focus on:
Compatibility: ensure off the shelf software works

Performance: minimize virtualization overhead

* VMMs do not provide transparency

— Anomalies reveal existence of VMM
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Software Fault
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isolating threads




Software Fault Isolation [whabe et al, 1993

Goal: confine apps running in same address space
— Codec code should not interfere with media player
— Device drivers should not corrupt kernel

Simple solution: runs apps in separate address spaces
— Problem: slow if apps communicate frequently
* requires context switch per message



Software Fault Isolation

SFI approach:

— Partition process memory into segments

app #1 app #2

* Locate unsafe instructions: jmp, load, store
— At compile time, add guards before unsafe instructions
— When loading code, ensure all guards are present



Segment matching technique

« Designed for MIPS processor. Many registers available.

« dr1, dr2: dedicated registers not used by the binary.
« compiler pretend these registers don’t exist
« dr2 contains segment id

* Indirect load instruction R12<— R[34] becomes:

Guard ensures code
does not load data from
another segment

dr1 <— R34
scratch-reg <— (dr1 >> 20) :get segment ID
compare scratch-reg and dr2 : validate seg. ID

trap if not equal
R12 <— [dr1] : do load
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Address sandboxing technique

dr2 holds segment ID
indirect load instruction R12<— R[34] becomes:

dr1 <-- R34 & segment-mask : zero out seg bits
dr1 <--dr1 | dr2 : set valid seg ID
R12 <-- [dr1] : do load

Fewer instructions than segment matching
« but does not catch offending instructions
Similar guards places on all unsafe instructions
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Problem: whatif jmp [addr] jumps directly into indirect
load?

(bypassing guard)
Solution:

jmp guard must ensure [addr] does not bypass load guard



Cross domain calls

caller
domain

call draw

N

callee
domain

call stub »draw:

— br addr

return

br addr

br addr

br addr

ret stub | « br addr

—

br addr

* Only stubs allowed to make cross-domain jumps

* Jump table contains allowed exit points
— Addresses are hard coded, read-only segment
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SFI Summary

Performance
— Usually good: mpeg_play, 4% slowdown

Limitations of SFI: harder to implement on x86 :

— variable length instructions: unclear where to put guards
— few registers: can't dedicate three to SFI

— many instructions affect memory: more guards needed



Isolation: summary

* Many sandboxing techniques:
Physical air gap, Virtual air gap (VMMs),
System call interposition, Software Fault isolation
Application specific (e.g. Javascript in browser)

» Often complete isolation is inappropriate
— Apps need to communicate through regulated interfaces

* Hardest aspects of sandboxing:
— Specifying policy: what can apps do and not do
— Preventing covert channels



THE END



