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ABSTRACT
A key bottleneck in a full TLS handshake is the need to
fetch and validate the server certificate before a secure con-
nection can be established. We propose a mechanism by
which a browser can prefetch and prevalidate server certifi-
cates so that by the time the user clicks on an HTTPS link
the server’s certificate is immediately ready to be used to
setup a TLS session. Combining this with a recent proposal
called Snap Start reduces the TLS handshake to zero round
trips so that an HTTP request can be sent over HTTPS im-
mediately upon request. Prefetching and prevalidating cer-
tificates improves web security by making it less costly for
websites to enable TLS and by removing time pressure from
the certificate validation process. We implemented prefetch-
ing and prevalidation in the open-source browser Chromium,
and performed extensive experiments to study the effects of
four different prefetching strategies on server performance.
Along the way we conducted a study of a popular certificate
validation mechanism called OCSP and report on the perfor-
mance and characteristics of common OCSP responders in
the wild. The OCSP data collected, which is of independent
interest, enabled us to evaluate the effectiveness of prefetch-
ing and prevalidating in reducing TLS handshake latency.
We show a factor of four speed-up over the standard TLS
handshake.

1. INTRODUCTION
Web browsers and servers use the Transport Layer Security
(TLS) protocol [11] to secure and authenticate sensitive data
in transit, but TLS often presents difficulties for both clients
and servers. TLS misconfigurations and certificate warnings
are common and they can result in security vulnerabilities
and usability problems [3] [35]. TLS-enabled servers face a
heavier load [6] that discourages them from using TLS when
possible, leading to session hijacking exploits [5]. Serving
websites over TLS also increases client latency. In addition
to negatively imapcting the user experience, even small addi-

tions to client latency can have an impact on website traffic,
usage, and revenue [34]. In this paper we address the client
latency imposed by TLS.

The standard TLS handshake requires two round trips be-
fore a client or server can send application data. The net-
work latency imposed by the handshake impacts user ex-
perience and discourages websites from enabling TLS. The
web browser must also validate the server’s certificate using
certificate revocation protocols such as the Online Certifi-
cate Status Protocol (OCSP) [30], adding more latency and
leading clients to cache certificate validation results. Be-
cause high latency discourages websites from enabling TLS
and forces browsers to compromise the freshness of certifi-
cate validation, there is a tradeoff between security and user
experience. Decreasing TLS handshake latency can encour-
age wider use of TLS and improve web security.

Recent proposals have mitigated the TLS performance penalty
by decreasing the number of round trips needed to perform
a TLS handshake. A proposal called Fast-track removes one
round trip from the handshake when the client has cached
long-lived parameters from a previous handshake [33]. More
recent proposals work only when the client sends data first,
as is the case for HTTP. TLS False Start reduces the hand-
shake to one round trip when whitelisted secure cipher suites
are used [23]. TLS Snap Start reduces the handshake to zero
round trips when the client has performed a full handshake
with the server in the past and has cached static param-
eters [20]. Even when Snap Start is used, the client may
not have the certificate’s validation status in its cache, and
the latency imposed by the certificate validation will still
negatively impact user experience.

In this paper, we introduce server certificate prefetching and
prevalidation, a method by which web browsers can perform
zero round trip Snap Start handshakes with a server even
if the browser has never seen the server before. In addition
to enabling Snap Start handshakes, certificate prefetching
allows the client to prevalidate the certificate, so that cer-
tificate validation does not lead to perceived latency for the
user. By allowing browsers to use Snap Start more often
and by removing certificate validation from the time-critical
step of a page load, prefetching can encourage servers to
enable TLS and allow browsers to verify certificate status
more often and strictly.
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The Chromium browser uses DNS prefetching, in which DNS
resolutions are done long before they are needed. Our work
applies prefetching to certificates, which has the additional
benefit of enabling certificate validation before a user click.

1.1 Contributions
• We propose server certificate prefetching and preval-

idation as a mechanism that significantly speeds up
the full TLS handshake. We discuss four certificate
prefetching strategies: (1) prefetch from DNS as part
of a DNS domain-name resolution, (2) prefetch using
an HTTP request to the server itself, (3) prefetch with
an HTTP request to a content distribution network
(CDN), and (4) prefetch using a truncated TLS hand-
shake with the server. Once the server certificate is
prefetched, the browser applies prevalidation to the
certificate either by consulting a certificate revocation
list (CRL) or by communicating with an online OCSP
responder.

• We present detailed statistics from OCSP responders
in the wild, including measurements of the validity du-
rations and response times. We observe a noticeable
penalty for TLS connection time due to OCSP. This
data shows the strong benefits of certificate prevalida-
tion, which eliminates the expensive OCSP check from
the critical path. We also identify an interesting attack
on private browsing modes that results from the imple-
mentation of OCSP in all major browsers other than
Firefox.

• We implemented two prefetching methods (HTTP and
DNS) in the open-source browser Chromium. Our
implementation integrates with an experimental im-
plementation of Snap Start in Chromium to obtain a
highly optimized zero round trip TLS handshake pro-
tocol. We also implemented server-side Snap Start in
OpenSSL to study the effects of prefetching and preval-
idation on a TLS server’s performance. We present
results of experiments comparing multiple prefetch-
ing and prevalidation strategies and demonstrate their
benefits.

2. BACKGROUND
In this section, we review the features of TLS, Snap Start,
DNS, and OCSP that are relevant to certificate prefetching.

2.1 Transport Layer Security
TLS is a protocol for encrypting and authenticating traffic
between a client and a server [11]. To set up a secure con-
nection, the client and server perform a handshake in which
each party can authenticate itself by providing a certificate
signed by a certificate authority. Using a cipher suite ne-
gotiated in the handshake, the client and server agree on
a key to secure the application data that is sent after the
handshake.

On the web, TLS provides privacy and data integrity for
HTTP traffic between a web browser and a website. Fig-
ure 1 shows a full TLS handshake using RSA key exchange
and no client certificate, which is a common configuration
on the web. The ClientHello and ServerHello establish an

Client Server

ClientHello −−−−−−→
ServerHello
Certificate

←−−−−−− ServerHelloDone

ClientKeyExchange
[ChangeCipherSpec]
Finished −−−−−−→

[ChangeCipherSpec]
←−−−−−− Finished

HTTP request −−−−−−→
←−−−−−− HTTP response

Figure 1: A standard TLS handshake, with RSA key
exchange and no client certificate.

agreement between the client and the server on which ver-
sion of TLS and which cipher suite to use. These initial
messages also allow the client and server to exchange fresh
random values used in deriving the session key, which pre-
vents message replay. The client’s random value includes
the client’s clock time. After the server has received the
ClientKeyExchange message, both the client and the server
can derive the master key with which the application data
is encrypted. The ChangeCipherSpec messages indicate to
the other party that subsequent messages will be encrypted
with the negotiated cipher suite. Finished messages contain
a hash of the entire handshake to ensure to both parties that
handshake messages have not been altered by a network at-
tacker. The client only sends the first application data, in
this case an encrypted HTTP request, after two round trips
between the client and server.

TLS allows connections to be established by resuming pre-
vious sessions. If a session is to be resumed in the future,
the server provides a session ID in the ServerHelloDone mes-
sage of the full handshake. To resume a session, the client
begins a resume handshake by sending the saved session ID
in its ClientHello. An extension called TLS SessionTicket
allows session resumption without server-side state [32]. If
the client and server both include empty SessionTicket ex-
tensions in their Hello messages, then the server sends a
NewSessionTicket message after receiving the client’s Fin-
ished message. The NewSessionTicket contains encrypted
and authenticated state that the server needs to resume the
session. To resume a session, the client sends its cached ses-
sion ticket in the SessionTicket extension in its ClientHello.
Session tickets are used to enable Snap Start handshakes
that can be resumed.

TLS specifies an alert protocol for handling errors and con-
nection closures. An alert may be sent at any point during
the connection, and alerts specify a description (for example,
unexpected_message or bad_record_mac) and an alert level
of warning or fatal. Each party must send a close_notify

alert before closing the connection. If either party sends
a fatal alert at any point during the connection, then the
server must invalidate the session identifier.

A proposal called TLS False Start, enabled by default in
Google Chrome, removes one round trip from the TLS hand-
shake [23]. In a False Start handshake, the client sends ap-
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Client Server

ClientHello −−−−−−→
(with Snap Start extension)

NewSessionTicket*
[ChangeCipherSpec]

Finished
←−−−−−− HTTP response

Figure 2: A TLS Snap Start handshake. The
client’s ClientKeyExchange, ChangeCipherSpec, and Fin-
ished messages, as well as the first HTTP request,
are all sent in an extension in the ClientHello. Aster-
isk (*) indicates an optional message.

plication data immediately after sending its Finished mes-
sage, without waiting for the server’s Finished message. The
server buffers the encrypted application data until after it
has sent its Finished message, and then it processes the en-
crypted record. The False Start proposal argues that, as
long as the client has negotiated a secure cipher suite, the
encrypted data can only be decrypted by the expected peer.
If an attacker has interfered with the handshake, neither the
server nor the attacker will be able to decrypt the data that
the client sent preemptively.

The hidden costs of TLS handshakes. A little-known but
significant contributor to the cost of TLS is the modified
browser caching behavior under HTTPS. We give two ex-
amples.

First, Internet Explorer will not use locally cached HTTPS
content without first establishing a valid TLS connection
to the source web site [24]. While web servers can use a
Cache-Control header to tell the browser that certain con-
tent is static and can be used directly from cache, Internet
Explorer ignores this header for HTTPS content and insists
on an HTTPS handshake with the server before using the
cached content (in IE9 this session is used to send an un-
necessary If-Modified-Since query). This behavior is es-
pecially damaging for sites who use a content distribution
network (CDN) since IE will insist on an HTTPS handshake
with the CDN before using the cached content. These re-
dundant handshakes, which include a certificate validation
check, discourage web sites from using HTTPS. Our ap-
proach to prevalidating certificates greatly reduces the cost
of these handshakes.

Second, some browsers such as Firefox are reluctant to cache
HTTPS content unless explicitly told to do so using a

Cache-Control: public

header [4]. Websites that simply turn on TLS without also
specifying this header see vastly more HTTPS requests for
static content. This issue has been fixed in Firefox 4.

2.2 TLS Snap Start
Figure 2 shows the message flow of a TLS Snap Start hand-
shake [20]. The client must have performed a full TLS hand-
shake in the past. In this full handshake, the client sends an
empty Snap Start extension, and the server echoes a Snap
Start extension that includes a selected cipher suite and a

value called an orbit. The orbit is made up of eight bytes
chosen by the server, and the orbit helps the server syn-
chronize the rejection of replayed messages across multiple
geographically separated locations. Since the server does not
provide its own random value in a Snap Start handshake, it
must keep track of client randoms that it has seen within
a certain time interval, and it rejects handshakes that in-
clude an orbit different than its own or a client time older
than its chosen allowable interval. By assigning a different
orbit to each of its geographically separate server locations,
a website can ensure that a handshake with one of its server
locations cannot be replayed to a server in another location,
since the latter server will reject the incorrect orbit.

By caching the server certificate, selected cipher suite, and
orbit, the client can later perform a Snap Start handshake.
In a Snap Start handshake, the client sends a Snap Start ex-
tension in its ClientHello. The extension includes the server’s
orbit value, twenty “suggested” random bytes, a hash of the
server’s handshake messages (which the client predicts using
its cached information), and TLS ciphertext records, includ-
ing ClientKeyExchange, ChangeCipherSpec, Finished, and the
first HTTP request.

Upon receiving a full Snap Start extension in a ClientHello,
the server forms its server random from the twenty suggested
random bytes, the orbit, and the time included in the client
random. Since the server does not choose its random value,
it must prevent replay attacks by rejecting incorrect orbit
values, requiring the time in the ClientHello to be within
some interval of the server’s current clock time, and keep-
ing track of client-suggested random values that it has al-
ready seen within this interval. Since the server rejects client
times that are older than its allowable interval, the client
and server clocks must be synchronized to some degree for
a Snap Start handshake to be successful. Since the client
must be able to predict the contents of the server’s hand-
shake messages, the ServerHello cannot include a session ID.
Instead, the connection can use session tickets, since NewSes-
sionTicket is sent after the client’s Finished message and the
client only needs to predict up to the ServerHelloDone mes-
sage.

If the client has sent a valid Snap Start extension, the server
does not send its handshake messages. The server processes
the records in the Snap Start extension to derive the master
key and validate the handshake. It then sends its Finished
message, processes the first HTTP request, and sends an en-
crypted HTTP response. Overall, no extra round trips are
added to the interaction beyond what is needed to precess
an unencrypted HTTP request.

Before starting a Snap Start session, the browser must vali-
date the server’s certificate by consulting a CRL or by issu-
ing an OCSP query. Hence, while Snap Start reduces round
trips with the web server, the browser must still communi-
cate with a certificate validation authority before setting up
the connection. Our OCSP study (Section 2.4.2) shows that
this step is quite costly and happens often. Our approach to
prevalidation removes this costly step from the critical path,
thus enabling the full benefits of Snap Start.

2.3 DNS Prefetching
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When establishing connections with web servers, the web
browser relies on the Domain Name System (DNS) [28] to
translate meaningful host names into numeric IP addresses.
The IP addresses of recently resolved domain names are
typically cached by the local DNS resolver, e.g. the web
browser or operating system. If the resolution of a domain
name is not locally cached, the DNS resolver sends requests
over the network to DNS servers which answer the query by
itself, or by querying other name servers recursively. Pre-
vious studies reveal that DNS resolution times cause signif-
icant user perceived latency in web surfing, more so than
transmission time [8]. To increase responsiveness, modern
browsers such as Google Chrome implement DNS prefetch-
ing (or pre-resolving), which resolves domain names before
the user clicks on a link [13]. Once the domain names have
been resolved, when the user navigates to that domain, there
will be no effective user delay due to DNS resolutions.

Web browsers deploy various heuristics to determine when
DNS prefetching should be performed. A basic approach
is to scan the content of each rendered page, and resolve
the domain name for each link. In Google Chrome, the
browser pre-resolves domain names of auto-completed URLs
while the user is typing in the omnibox. In addition, DNS
prefetching may be triggered when the user’s mouse hovers
over a link, and during browser startup for the top 10 do-
mains. Google’s measurements show that the average DNS
resolution time when a user first visits a domain is around
250 ms, which can be saved by DNS prefetching [31].

We extend the DNS prefetching architecture in modern browsers
to also prefetch and prevalidate TLS server certificates. Our
experiments show significant improvements in TLS hand-
shake performance.

2.4 Certificate Validation
In the X.509 [10] public key infrastructure, a certificate is-
sued by a certificate authority (CA) binds a public key with
an individual, commonly a domain name. Web browsers de-
termine the authenticity of a HTTPS website by validating
the server certificate obtained via the TLS handshake. Fun-
damentally, a server certificate must be signed by a trusted
source. Web browsers and operating systems come with a
pre-installed list of trusted signers in their root CA store.
More often, the root CAs will not directly sign certificates
due to security risks, but delegate authority to intermedi-
ate CAs that actually sign the certificates. Therefore, the
browser should verify that the leaf certificate is well-rooted,
or bundled with a certificate chain leading to a trusted root
CA.

To determine the validity period of a public key certificate,
each certificate specifies the date it becomes valid, and the
date it expires. In addition, X.509 defines mechanisms for
the issuing CA to revoke certificates that haven’t expired
but should no longer be trusted, e.g. when the private key
corresponding to the certificate has been compromised, or
more often because the certificate was reissued. The com-
mon certificate revocation checking mechanisms are Certifi-
cate Revocation Lists (CRL) and the Online Certificate Sta-
tus Protocol (OCSP).

2.4.1 CRL

A CRL [10] is a list that contains serial numbers of certifi-
cates that are revoked, signed by a CA. Web browsers may
download CRLs published by CAs to verify the revocation
status of a certificate. The location of where the CRL is pe-
riodically published for each certificate is indicated by the
CRL distribution point extension. However, downloading
a complete list of all unexpired certificates that have been
revoked can be cumbersome, especially for large CAs. Alter-
natively, the CAs may issue delta CRLs which only list the
certificates whose revocation statuses have changed since a
previous complete CRL cached by the client. Delta CRL
requires support on both CAs and clients and has not been
widely deployed in practice.

2.4.2 OCSP
OCSP [30] was introduced as an alternative to CRL. Web
browsers can check whether a specific certificate has been re-
voked by asking the OCSP responder of that certificate. The
location of the OCSP responder for each certificate is indi-
cated by the authority information access (AIA) extension.
Since an OCSP response is typically smaller than a CRL,
it is more feasible for a CA (or the delegated OCSP sign-
ing authority) to issue OCSP responses with shorter validity
intervals (10 days maximum recommended by Mozilla [29],
and 2 weeks recommended by Microsoft [26]), defined with
the thisUpdate and nextUpdate fields.

In practice, we observe that the actual OCSP response caching
behaviors may vary on different web browsers and operat-
ing systems. On Windows, Internet Explorer, Safari, and
Google Chrome all use CryptoAPI to perform certificate
validation, which shares OCSP response caches maintained
by the operating system and cleared on expiration. Sim-
ilarly on Mac OS X, Safari and Google Chrome both use
Security Framework API and share OCSP response caches
maintained by the operating system and cleared on expi-
ration. For Opera on all platforms, OCSP responses are
cached by the browser, which are cleared on expiration and
also when the user clears private data. For Firefox on all
platforms, OCSP responses are cached by the browser using
NSS, independent of operating system caches. In particular,
the OCSP cache is stored in memory and cleared when the
program closes, or on expiration. In addition, Firefox forces
a maximum OCSP response lifetime of 24 hours regardless of
longer expiration times. On Linux, Google Chrome also uses
NSS and stores OCSP caches in memory. Note that shorter
OCSP lifetimes may provide better freshness, but induce
more frequent OCSP lookups. Furthermore, we discovered
that when OCSP checking is performed for the whole cer-
tificate chain, multiple OCSP requests are not performed in
parallel, which may result in longer delays [17].

Although all major browsers support OCSP checking, recent
studies have revealed that the implementations of OCSP
checking are inconsistent, in particular the warning prompts
and fallback mechanisms on status check failures [12]. Some
browsers ignore bogus OCSP responses, while all avoid treat-
ing such errors as fatal; otherwise, websites would have to
rely on the availability of OCSP responders. Researchers
have suggested that current implementations of certificate
revocation mechanisms in browsers are flawed due to le-
nient checking [21], as evidenced during the Comodo security
breach [9] causing browser vendors to patch their browsers
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instead of relying on revocation. One possible solution would
be OCSP stapling, in which the TLS server provides the
OCSP response during the TLS handshake. This would
effectively provide fresh OCSP responses and avoid addi-
tional OCSP lookups on the client. However, current imple-
mentations of OCSP stapling do not support multi-stapling,
needed for intermediate CAs. Even if allowed, the responses
might be too large to fit in the server’s initial congestion
window and result in additional round trips [22].

OCSP is mandatory for extended validation (EV) certifi-
cates [?] and EV certificates use dedicated OCSP respon-
ders. If both CRL and OCSP extensions are present in the
certificates, web browsers will generally prefer to use OCSP
rather than download a large CRL.

Regardless of using CRL, OCSP, or OCSP stapling, we pro-
pose to perform certificate validation during the prefetching
phase, such that more strict and frequent validation checking
can be obtained without impacting user experience. We note
that some browsers do implement prevalidation, either by
periodically validating certificates in the disk cache in Cryp-
toAPI [27], or by concurrently validating certificates during
DNS lookup phase for previously visited HTTPS websites
in Google Chrome. However, existing prevalidation mecha-
nisms are not effective for unvisited websites, therefore we
propose to prefetch server certificates in advance. In the
case that OCSP checking may be removed in the future due
to wider use of short-lived certificates, certificate prefetching
would still be beneficial, simply because certificates would
expire more frequently and full TLS handshakes will more
often be required.

3. OCSP MEASUREMENTS
3.1 Experimental Setup
To collect statistics of OCSP responses in the wild, we ran
experiments on the Perspectives system [39]. Perspectives
has a collection of network notary servers that periodically
probe HTTPS servers and collect public key certificates,
which allows clients (using our browser extensions) to com-
pare public keys from multiple network vantage points. In
this work, we extended the Perspectives system to probe
OCSP responders for certificate revocation statuses if the
queried certificate was configured with an OCSP responder
URL. The data collected on the notary servers include the
revocation status of the certificate, the validity lifetime of
the OCSP response, and the latency of the OCSP lookup.

In addition to probing OCSP responders from the notary
servers, we performed latency measurements for OCSP lookups
on clients that have installed our Perspectives extension for
Google Chrome. For each certificate that was fetched from
an HTTPS website, we performed an OCSP request and
measured the elapsed time to complete the lookup. As of
May 2011, there were 242 active clients contributing data
for this measurement. The notary servers receive data from
clients with our Google Chrome extension as well as the
previously deployed Firefox extension.

3.2 Results
3.2.1 OCSP response validity lifetime

Table 1 gives the OCSP response validity lifetime for certifi-
cates from OCSP responders for which the notary servers
have performed more than 1000 OCSP lookups. We observe
that 87.14% of the OCSP responses are valid for a period of
equal to or less than 7 days. The minimum observed lifetime
was 15 minutes. Analyzing the lifetime of OCSP responses
helps us determine how often a prefetched OCSP response
would expire before the certificate is actually used. Shorter
OCSP response validity lifetimes reduce the effectiveness of
OCSP response caching.

3.2.2 OCSP lookup response time
Figure 3 shows the distribution of the OCSP lookup re-
sponse times that we recorded. The data shows that al-
though 8.27% of the probes took less than 100 ms to com-
plete, a majority of the OCSP probes (74.8%) took between
100 ms and 600 ms. In our measurements, the median OCSP
lookup time is 291 ms and the mean is 497.55 ms. Ta-
ble 2 gives the response time statistics breakdown of OCSP
responders for which at least 500 OCSP probes were per-
formed. Our data for OCSP responder response times only
include measurements performed at the client side (using
the Perspectives extension for Google Chrome) and not on
the notary servers. We believe the measurements from real
web clients more accurately reflect the latency experienced
by a user. We observe that 95.3% of the OCSP responses
are cached by the OCSP responders and are not generated
at the time of request. These OCSP responders therefore do
not support the optional OCSP nonce specified in the RFC
2560. If OCSP responders are required to support nonces
and generate responses at the time of request, we expect an
increase in response time for the OCSP responder to gener-
ate a response.

The actual response time of a user navigating to an unvisited
HTTPS website typically consists of several round trip times
for performing the DNS lookup, the TCP three-way hand-
shake, the TLS handshake, the OCSP lookup (usually block-
ing the completion of the TLS handshake), and finally the
HTTP request-response protocol. As previously introduced,
DNS prefetching removes round trips for DNS lookups at
the time of user navigation, while TLS False Start removes
a round trip for the first HTTP request. In this paper, we
propose certificate prefetching along with prevalidating to
effectively remove the round trips for the TLS handshake
and the OCSP lookup, which may reduce hundreds of mil-
liseconds of the perceived latency on average.

3.3 OCSP and Private Browsing Modes
Most modern browsers implement a private browsing mode,
designed to let users visit websites without leaving traces of
their visits to these sites on their computer [2]. An attacker
who takes control of the user’s machine after the user exits
private browsing should not be able to determine what the
user did while in private mode.

OCSP permits a powerful attack on private browsing modes
in all major browsers, except Firefox, on both Windows and
Mac OSX. As mentioned before, IE, Chrome, and Safari use
the Windows CryptoAPI for certificate validation. When
Windows issues an OCSP query, it caches the result as spec-
ified by the nextUpdate field. Unfortunately, CryptoAPI
provides no interface for removing specific entries from the
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Table 1: Validity lifetime of OCSP responses

OCSP responder
Number
of OCSP
lookups

Number
of distinct
certificates

Validity lifetime (rounded to the closest hour)

Avg Min Max

http://EVSSL-ocsp.geotrust.com 2035 198 6 days 23 hours 12 hours 7 days 11 hours

http://ocsp.cs.auscert.org.au 1060 97 4 days 4 days 4 days

http://ocsp.cacert.org/ 2381 76 3 hours 15 minutes 23 hours

http://ocsp.usertrust.com 3846 315 4 days 4 days 4 days

http://ocsp.godaddy.com 90925 4139 7 hours 6 hours 11 hours

http://ocsp.comodoca.com 56928 4581 4 days 4 days 4 days

http://ocsp-ext.pki.wellsfargo.com/ 2612 53 20 hours 13 minutes 1 day

http://ocsp.entrust.net 18691 1474 7 days 14 hours 7 days 8 days 4 hours

http://ocsp.netsolssl.com 4117 570 4 days 4 days 4 days

http://EVIntl-ocsp.verisign.com 64403 1566 7 days 7 days 86 days 7 hours

http://ocsp.digicert.com 92093 1672 7 days 7 days 7 days

http://ocsp.starfieldtech.com/ 9016 480 11 hours 6 hours 1 day 5 hours

http://ocsp.webspace-forum.de 2228 29 4 days 4 days 4 days

http://ocsp.startssl.com/sub/class1/server/ca 4963 348 5 hours 1 hour 1 day 4 hours

http://ocsp.startssl.com/sub/class2/server/ca 4597 160 6 hours 1 hour 1 day 4 hours

http://ocsp.serverpass.telesec.de/ocspr 2212 248 1 hour 1 hour 1 hour

http://ocsp.gandi.net 1060 78 4 days 4 days 4 days

http://EVSecure-ocsp.verisign.com 108993 465 7 days 7 days 7 days

http://ocsp.globalsign.com/ExtendedSSL 2441 115 7 days 7 days 7 days

http://ocsp.verisign.com 247251 12433 7 days 7 days 20 days 21 hours

http://ocsp.thawte.com 134321 3811 7 days 7 days 7 days

http://ocsp.tcs.terena.org 7823 675 4 days 4 days 4 days

Figure 3: Cumulative distribution of OCSP lookup response times

Table 2: Response times of OCSP responders

OCSP responder Number of lookups
Response time

Median (ms) Min (ms) Max (ms) Standard deviation
http://EVSecure-ocsp.verisign.com 938 167 25 7235 610.76
http://ocsp.digicert.com 1372 252 12 12303 759.64
http://ocsp.godaddy.com/ 741 101 20 4832 515.53
http://ocsp.thawte.com 4209 564 10 12376 976.09
http://ocsp.verisign.com 1389 279 21 10209 743.53
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cache. As a result, when the browser exits private browsing
mode it does not remove the newly acquired OCSP responses
from the cache. An attacker who wishes to learn what the
user did while in private browsing mode need only dump the
Windows OCSP cache. The contents of the cache divulge
the identity of HTTPS websites visited. A similar attack
applies to browsers on Mac OSX who use Apple’s Security
Framework API.

To give an example we use the Windows certutil tool [25]
that can be used to manipulate the OCSP cache. To view
the cache, the attacker issues the command

certutil -URLcache ocsp

on the browser’s machine. A truncated sample output is

http://ocsp.thawte.com/MFEwTzBNMEswSTAJBgUrDgMCG...

http://ocsp.thawte.com/MEUwQzBBMD8wPTAJBgUrDgMCG...

In this example Thawte’s OCSP responder was queried twice
and the query path contains the certificates’ serial numbers.
The attacker can search for a web site whose certificate’s
serial number matches the query and learn what web sites
were visited while the user was in private mode. Fixing
this problem may be difficult since it requires changes to
CryptoAPI.

4. SERVER CERTIFICATE PREFETCHING
AND PREVALIDATION

To allow clients to prefetch its handshake information, a
server publishes the concatenation of its certificate, cipher
suite choice, and orbit. (For simplicity, we refer to the
prefetching of this information and the prevalidation of the
certificate as “certificate prefetching.”) The client obtains
this information when it is likely that the user might navi-
gate to the website. The browser can use the same triggers
that it uses to pre-resolve hostnames to determine when cer-
tificate prefetching is useful: for example, when the user is
typing in the omnibox or when a user is viewing a page
with links to HTTPS websites. In this section, we discuss
two major benefits of certificate prefetching, and describe
various methods for clients to download server information.

4.1 Benefits of Prefetching
4.1.1 Enable abbreviated handshakes

After prefetching a server’s certificate, a web browser can use
Snap Start without having performed a full handshake with
the server in the past. Studies of user browsing behavior
suggest that at least 20% of websites that a user visits in
a browsing session are sites that the user has never visited
before [1, 14, 7, 36]. These studies may underestimate how
often certificate prefetching will be useful, since Snap Start
without prefetching cannot be used when the browser cache
has been cleared since the browser’s last full handshake with
a server.

4.1.2 Enable prevalidation of server certificate
Prefetching the server certificate allows the browser to vali-
date the certificate in the background before the user navi-
gates to the website. As discussed in Section 2.4.2, certificate

validation performed during the TLS handshake introduces
significant latency. Provided that the certificate status is
not in the client’s cache, a Snap Start handshake with a
prefetched and prevalidated certificate is significantly faster
than a Snap Start handshake without prefetching.

As discussed in Section 3.3, modern browsers commonly
cache OCSP responses across public and private browsing
modes. Further, Opera is the only one of the five browsers
that clears the OCSP cache when the user opts to clear all
private data. The persistence of OCSP responses is a privacy
leak, and we note that, once fixed, certificate prevalidation
will become more important because OCSP responses will
be cached less frequently.

4.2 Prefetching Methods
A näıve prefetching method is to open a TLS connection
to the server and cache the necessary information needed
to perform a Snap Start handshake. These dummy connec-
tions basically perform a standard TLS handshake with the
server, and would eventually disconnect on timeout. How-
ever, many clients performing TLS dummy handshakes may
negatively impact server performance and also flood the
server’s session cache. We discuss four options for certifi-
cate prefetching that add little or no server load.

4.2.1 Prefetching with a truncated handshake
To perform a Snap Start handshake, a web browser requires
the server’s certificate, cipher suite choice, and orbit. In
a standard TLS handshake, the browser has obtained all
this information by the time it receives the ServerHelloDone
message. Thus the browser can prefetch a server’s certificate
information by sending a ClientHello message with an empty
Snap Start extension and sending a fatal alert after receiv-
ing the ServerHelloDone message. The alert ensures that the
server closes the session, so that prefetching does not flood
the server’s session cache. After caching the appropriate
information and validating the certificate, the browser can
perform a Snap Start handshake if the user actually navi-
gates to the website.

4.2.2 Prefetching directly from the server
For a web browser to prefetch a certificate via a HTTP GET
request to the server, the server must place the concatena-
tion of its certificate, supported cipher suites, and orbit in a
file at a standardized location. (In our implementation, we
prefetched from http://www.domain.com/cert.txt.) The
web browser retrieves the file, parses and validates the cer-
tificate, and caches all the information for use in a Snap
Start handshake later.

4.2.3 Prefetching from a CDN
To avoid placing any extra load on the server, a client can
attempt to prefetch certificate information from a CDN,
for example by sending a request to http://www.cdn.com/

domain.com.crt. The browser cannot know in advance which
CDN a particular website uses to host its certificate infor-
mation, so it can send requests to multiple CDNs to have a
high probability of successfully prefetching a server’s certifi-
cate. Previous research suggests that sending requests to a
small number of CDNs will cover a large percentage of the
CDN market share [16]. Alternately, a DNS TXT record can
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hold the location where a browser should prefetch a server’s
certificate. Once the web browser has successfully obtained
certificate information from a CDN, it proceeds to parse the
certificate and cache the information.

4.2.4 Prefetching via DNS
Alternatively, the server may place its certificate information
in a DNS record to offload the prefetching traffic. There has
been previous work to store certificates or CRLs in DNS
using CERT resource records [18], although not widely sup-
ported in practice. For the convenience of our prototype
implementation, we stored the server’s certificate informa-
tion in a standard DNS TXT resource record, which allow
servers to associate arbitrary text with the host name. Web
browsers can prefetch certificates by querying for the do-
main’s TXT record, in parallel with A records, during the
DNS prefetching phase. Although TXT records were orig-
inally provisioned to hold descriptive text, in practice it
has been freely used for various other purposes. For ex-
ample, the Sender Policy Framework (SPF) [40] uses TXT
records to specify which IP addresses are authorized to send
mail from that domain. We also consider recent propos-
als in the IETF DNS-based Authentication of Named En-
tities (DANE) working group that suggest using DNSSEC
to associate public keys with domain names, which intro-
duce a new TLSA resource record type that allows storing
a cryptographic hash of a certificate or the certificate itself
in DNS [15].

5. PREFETCHING EXPERIMENTS
Our experiments studied the effects of different prefetching
methods on a TLS server’s performance, including:

• If many clients are prefetching certificates using one of
the methods that affect the server (HTTP request to
the server, truncated handshake), what is the impact
on the server’s performance?

• How do the methods that affect the server compare to
each other, to methods that don’t affect the server, and
to the näıve method of doing a full dummy handshake
in terms of server impact?

• How does latency experienced by the user compare for
a Snap Start handshake with prevalidated certificate, a
Snap Start handshake with a cached but not validated
certificate, and a normal TLS handshake?

5.1 Experimental Setup
We used the hosting company Slicehost to acquire machines
for running our experiments. Our server machine ran Apache
2.2.17 and OpenSSL 0.9.8p with our Snap Start implemen-
tation (on Ubuntu10.04 with 256MB of RAM and uncapped
outgoing bandwidth). We ran clients on separate machines
that generated Snap Start handshakes that didn’t verify cer-
tificates, Snap Start handshakes that did verify certificates,
normal TLS handshakes, truncated TLS handshakes, and
HTTP requests. To generate traffic, we used Chromium,
revision 61348 with our modifications to support truncated
handshakes and Snap Start with a prevalidated certificate,
and the command-line tool httping [38]. To measure la-
tency, we generated 500 requests one after the other from

a single client, which had 1GB of RAM and ran Ubuntu
10.04. To measure throughput, we set up eight clients (each
with 256MB of RAM, running Ubuntu 10.04, and capped at
10Mbps outgoing bandwidth) making continuous requests,
and we logged each request on the server.

We measured latency and throughput for four types of re-
quests: Snap Start with a prevalidated certificate, Snap
Start without a prevalidated certificate, a normal TLS hand-
shake, and a HTTP HEAD request. Then we measured
these types of requests with three different kinds of cover
traffic: HTTP cover traffic generated with httping to sim-
ulate many clients prefetching via a HTTP request directly
to the server, truncated handshake cover traffic generated
with our modified Chromium client to simulate many clients
prefetching via truncated handshakes, and HTTPS cover
traffic generated with httping to simulate many clients prefetch-
ing via the näıve full dummy handshake method. For each
type of cover traffic and each type of request, we measured
latency and throughput with ten clients generating cover
traffic.

5.2 Results
Table 3 shows the median and mean latency for each type
of request. Snap Start with a prevalidated certificate corre-
sponds to the situation when the client has prefetched and
prevalidated the certificate and then performs a Snap Start
handshake without needing to validate the certificate. The
row labelled Snap Start corresponds to the situation when
the client has cached the information necessary to perform
a Snap Start handshake but must validate the certificate.
The data shows that the median latency for a Snap
Start handshake with a prevalidated certificate is
four times faster than a normal TLS handshake.
Prevalidation speeds up Snap Start by close to a factor of
three.

Figure 4 shows how different prefetching methods affect the
server’s latency and throughput for different types of TLS
handshakes. No cover traffic gives a baseline for how the
server performs with prefetching disabled or when clients
prefetch from DNS or a CDN. HTTP cover traffic simulates
many clients prefetching via a HTTP request directly to the
server. Truncated handshake cover traffic simulates many
clients prefetching by performing truncated dummy hand-
shakes (sending a fatal alert after receiving ServerHelloDone).
HTTPS cover traffic simulates many clients prefetching by
the näıve method of performing fully dummy handshakes.

Full data for these experiments can be found in Appendix A.

6. ANALYSIS
Our experiments show that prefetching certificates allows for
much faster handshakes than Snap Start without prefetch-
ing. We measured median latency for a Snap Start hand-
shake with a prevalidated certificate to be 64% faster than a
Snap Start handshake with an unvalidated certificate. How-
ever, this figure is probably a conservative estimate of the
benefits of prevalidating, due to the unusually high speed of
Slicehost’s network connection. Our measurements of OCSP
response times in the wild, shown in Figure 3, show that
prevalidating certificates will reduce latency even more in a
real-world setting. In addition to enabling Snap Start hand-

8



Table 3: Latency measurements for a Snap Start handshake with prevalidated server certificate (no veri-
fication during the handshake), a Snap Start handshake with online certificate verification, and a normal
(unabbreviated) TLS handshake

Median latency (ms) Mean latency (ms)
Snap Start, prevalidated certificate 30.45 35.58

Snap Start, no prevalidation 83.40 99.86
Normal TLS 121.82 124.11

Figure 4: Median latency and throughput for TLS
handshakes with different types of cover traffic.

shakes when the browser has never seen a website before,
certificate prevalidation is useful when the browser has cer-
tificate information from a previous handshake but does not
have its OCSP status cached. The frequency of this situation
varies depending on the browser and the OCSP responder.
As discussed in Section 2.4.2, Firefox on all platforms and
Google Chrome on Linux clear the OCSP cache upon pro-
gram exit; in this situation, prevalidating will often be useful
even when the browser has visited a website recently enough
to perform a Snap Start handshake without prefetching.

Our experiments also show that prefetching via any of our
proposed prefetching methods has a less dramatic impact
on server performance than doing full dummy handshakes,
especially for server throughput. We also observed that
prefetching via a HTTP request to the server and via trun-
cated handshakes have about the same effect on server per-
formance, so clients and servers choosing between these two
methods should consider other factors, such as client-side
code complexity, that we discuss below. Since prefetch-
ing via full dummy handshakes places a heavier load on
the server and is also more computation for the client, we
conclude that full dummy handshakes are a poor choice for
prefetching.

While Snap Start and prevalidating certificates reduce la-
tency, throughput with no cover traffic is about the same for
all three types of handshakes. This is because the server does
about the same amount of computational work in each hand-
shake, with the main difference being how long the socket
stays open.

6.1 Pros and Cons of Prefetching Methods
Having observed the performance impact of each prefetch-
ing method, we consider the benefits and drawbacks of each
method and discuss how browsers and servers might choose
which method to implement.

Prefetching with a truncated handshake. Like full dummy
handshakes, truncated handshakes allow a browser to prefetch
certificate information even if the server has not taken any
actions to enable prefetching. A truncated handshake re-
quires both the client and the server to do much less work
than a full dummy handshake, and as a result the impact on
the server is less dramatic. A truncated handshake requires
slightly more client-side code complexity than prefetching
via a HTTP GET request directly to the server, since the
TLS implementation must be modified to truncate the hand-
shake when prefetching. (For example, in Chromium, we
used a URLFetcher interface to prefetch a certificate via
HTTP, but making a HTTPS request that truncates after
receiving ServerHelloDone requires going below this abstrac-
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tion to modify the TLS implementation.) Truncated hand-
shakes will also dirty server logs; without adding a new TLS
alert number, a browser performing a truncated handshake
for prefetching will have to use an inaccurate alert such as
user_canceled or internal_error to close the connection.

Prefetching via a HTTP GET request to the server.
Prefetching via a HTTP request directly to the server is
the simplest prefetching method to implement in a browser,
but for clients to be able to prefetch via HTTP, the server
must explicitly enable it by creating a file with its certifi-
cate, orbit, and supported cipher suites. The impact on the
server from clients prefetching via HTTP requests is about
equal to that of prefetching via truncated handshakes.

Prefetching from a CDN. Prefetching certificates from a
CDN has no impact on server performance, and for a server
that already uses a CDN to distribute static content, en-
abling prefetching via CDN will be as simple as enabling
prefetching for other methods. However, the main drawback
of prefetching from CDNs, as discussed in Section 4.2.3, is
that the browser cannot know from which CDN to prefetch
the certificate for a particular website, so the browser must
send requests to multiple CDNs to increase its probability
of a successful prefetch. These requests can be performed
asynchronously, but still use more client bandwidth than the
other methods. As a compromise, we suggest that a DNS
TXT record can hold the location of a server’s certificate
(whether it is on a CDN or on the server itself), which al-
lows web browsers to prefetch certificates from CDNs with-
out making requests to multiple CDNs.

Prefetching from DNS. Like CDN prefetching, DNS cer-
tificate prefetching places no additional load on the server,
but DNS also uses minimal client bandwidth and it is also
a more accessible option for servers that don’t already use a
CDN. DNS certificate prefetching may be slightly limited by
the fact that not all domain registrars and DNS providers
support DNS TXT records [19] [37]. DNS prefetching also
has the undesirable effects of swelling DNS records and over-
loading the meaning of TXT records.

7. CONCLUSION
Client latency from TLS handshakes costs websites in traf-
fic and revenue, and discourages websites from using TLS.
Server certificate prefetching and prevalidation can enable
abbreviated TLS handshakes and remove certificate valida-
tion latency. In our tests, a Snap Start handshake with
a prevalidated certificate was about four times faster than
a normal TLS handshake. We also found that 74.8% of
OCSP lookups took between 100 ms and 600 ms, so for
many users in the wild, prefetching enables an even more
dramatic speed-up over standard TLS.

Web browsers can prefetch server certificates either from
the server itself (via a truncated TLS handshake or a HTTP
GET request) or from a third party (a CDN or DNS). While
each method of prefetching has benefits and drawbacks, we
suggest that using a DNS record to notify the web browser of

the server’s certificate location may be a flexible and effective
compromise.

Certificate prefetching, in addition to decreasing client la-
tency, allows browsers to validate certificates more frequently,
since prevalidation does not affect client latency. We hope
that certificate prefetching encourages deployment of Snap
Start in web browsers and servers, since prefetching makes
Snap Start applicable more often, and motivates more web-
sites to enable TLS.
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APPENDIX
A. FULL DATA FROM PREFETCHING EX-

PERIMENTS
Tables 4 and 5 give the data from the prefetching exper-
iments discussed in Section 5. We measured mean and
median latency (in milliseconds) and throughput (connec-
tions/second).
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Table 4: Latencies, in milliseconds, for different types of requests with no cover traffic and with ten clients
generating HTTP, truncated handshake, and HTTPS cover traffic.

no cover traffic HTTP truncated handshake HTTPS
Median Mean Median Mean Median Mean Median Mean

Snap Start, prevalidated certificate 30.45 35.58 37.65 57.77 32.00 61.82 42.25 61.53
Snap Start 83.40 99.86 84.76 101.14 82.64 104.11 87.20 103.05

Normal TLS 121.82 124.11 126.69 137.00 125.60 213.94 130.84 273.96
HTTP HEAD request 15.59 15.76 15.75 16.85 15.67 18.19 16.02 17.70

Table 5: Throughput, in connections per second, for different types of requests with no cover traffic and with
ten clients generating HTTP, truncated handshake, and HTTPS cover traffic.

no cover traffic HTTP truncated handshake HTTPS
Median Mean Median Mean Median Mean Median Mean

Snap Start, prevalidated certificate 75.00 72.25 77.00 72.79 72.50 63.89 66.00 62.88
Snap Start 76.00 76.67 70.00 68.54 72.50 70.45 61.50 56.98

Normal TLS 76.00 76.50 74.50 76.81 77.50 77.05 68.50 74.89
HTTP HEAD request 503.00 500.13 456.00 423.65 429.00 413.35 184.50 175.03
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