
CE441: Data and Network Security Fall 2021

Project #2∗

Due: Thursday, Aban 27 - 11:59pm

1 Introduction

In this project, you will construct several attacks against a web application (Part 1),
and then update the application to defend against those attacks (Part 2). You will
specifically be attacking Bitbar, a Node.js web app that lets users manage Bitbars,
a new ultra-safe cryptocurrency. Each user is given 100 Bitbars when they register
for the site. They can transfer Bitbars to other users using the web interface, as
well as create and view other user profiles. You have been given the source code for
the Bitbar application. Real attackers generally do not have access to the source of
a target website, but the source may make finding the vulnerabilities a bit easier.
Bitbar is powered by a collection of Node packages, including the Express.js web
application framework, a SQLite database, and EJS for HTML templating. The list
of resources in the next section includes links for more information on these packages
as well as other information that you can use as a reference.

2 Setup Instructions

You will run the Bitbar application in a provided Docker container. When the server
is running, the site is accessible at http://localhost:3000.

Browser

We will grade using the latest version of Mozilla Firefox (version 93.0), and we
strongly recommend you test your attacks in Firefox. Chrome has introduced ag-
gressive browser-side XSS guards, which may make some attacks unfeasible if you use
Chrome. Other browsers may lack the protections Firefox has, making your defenses
fail when we grade them.

* Acknowledgment: This project is obtained from CS155, Spring 2020, Stanford University.
Edited By H. Ahmadzadeh, A. Ehteshami & S. Asgari.

http://localhost:3000


Detailed setup instructions:

Your web server will run in a Docker container. The following instructions will walk
you through installing Docker, and the container.

1. If you are running Windows or Mac, Follow the instructions in link1 and link2
respectively to install Docker Desktop1. If you are running Linux, select your
Linux distribution in https://docs.docker.com/engine and follow the in-
structions to install Docker Engine.

2. Pull proj2 from the handouts repository in Tarasht. Open command prompt
and navigate to proj2 directory.

3. Run bash build_image.sh. This builds your Docker image and installs all
necessary packages. This may take a couple of minutes. Run Docker images
command to verify the success. you should see ce441-proj2-image for a suc-
cessful build.

4. To start the server, run bash start_server.sh. Once you see the follow-
ing output, the Bitbar application is available in your browser at http://
localhost:3000:

./node modules/babel-cli/bin/babel-node.js ./bin/www

You can close the server by pressing Ctrl+C in the terminal. The server will
completely reset every time that you shut it down. To restart the server
with a clean database, just run bash start server.sh once again.

Docker tips:

You don’t need to familiarize yourself with Docker in order to complete this assign-
ment. However, a few tips that may prove useful:

• docker ps -a lists all of your containers.

• docker images lists your images.

• docker system prune -a deletes unused images and containers from your ma-
chine. (Do this when you’re done with the assignment if you want to save space!)

• The scripts build image and start server are simply one-line Docker com-
mands to build a Docker image and spin up a temporary container from that
image.

1for a step-by-step guide for Windows, refer to https://www.youtube.com/watch?v=
IwLQ92XRiGg

2

https://docs.docker.com/desktop/windows/install
https://docs.docker.com/desktop/mac/install
https://docs.docker.com/engine
http://localhost:3000
http://localhost:3000
https://www.youtube.com/watch?v=IwLQ92XRiGg
https://www.youtube.com/watch?v=IwLQ92XRiGg


• The only file that is mapped from your local machine to the running Docker
container is code/router.js. So if you start modifying other files and the
modifications aren’t showing up, don’t worry. You may have to restart your
container after modifying code/router.js for changes to take effect. If you
decide to modify other files, you must rebuild the Docker image to copy your
changes into the image.

• The docs: https://docs.docker.com/

3 Part 1: Attacks

For the first part of the project, you will develop a series of attacks against the Bitbar
application. In each exercise, we describe what inputs you will need to provide to the
grader, and what specific actions the grader will take using your input. The grader
should obtain the result described in each exercise for you to receive credit. All of your
attacks should assume that the site is accessible at the URL http://localhost:3000.

You may not use any external libraries nor may you edit the web app itself. In
particular, this means you cannot use jQuery. You may use online resources, but
please cite them in in your submission’s README.txt.

Exploit Alpha: Cookie Theft

In the first attack, your goal is to steal the logged in user’s Bitbar session cookie
and send it to an attacker controlled URL. You need to create URL starting with:
http://localhost:3000/profile?username= that sends the stolen cookie to
http://localhost:3000/steal_cookie?cookie=[stolen cookie here] when vis-
ited. When the attack is successful, the server will log the stolen cookie to the terminal
output.

Important! The attack should not be visibly obvious to the user. This means
there should no changes to the site’s appearance and no extraneous text should be
visible. Except for the browser location bar (which can be different), the grader
should see apage that looks normal when the grader visits their profile. Avoiding the
blue warning text stating that a user is not found is an important part of the attack.
It is fine if the number of Bitbars displayed or the contents of the profile are not
correct (so long as they look "normal"). It’s also fine if the page looks weird briefly
before correcting itself.

Deliverable and Grading. You need to submit a file named a.txt that contains
only your malicious URL. The grader will be logged in to Bitbar as user1 and will be
on the Profile tab. From here, the grader will copy your URL on the address bar and
navigate to it. She/He verify that your solution works by selecting "Containers/Apps"

3

https://docs.docker.com/
http://localhost:3000


in Docker, then "bitbar-container" and clicking "LOGS".The stolen cookie should be
seen there.

Hint: Try adding random text to the end of the URL. How does this change the
HTML of the page?

Exploit Bravo: Cross-Site Request Forgery

In the second attack, you will construct a Cross Site Request Forgery (CSRF) attack
that steals Bitbar from another user. You will specifically build a malicious HTML
page which when is opened by the victim, steals 10 Bitbars from her/his account and
deposits them into attacker account.

Your submitted attack is a self-contained HTML page (b.html) that transfers 10
Bitbars from the grader’s logged in account to the user attacker. As soon as the
transfer is complete, your attack site should immediately redirect the user to http:
//sharif.edu/~kharrazi/courses/40441-001/. This should happen fast enough
that normal users won’t notice.

Important! The location bar of the browser should never contain localhost:3000 at
any point, as this might tip off the victim to the attack.

Deliverable and Grading. You need to submit a single self-contained HTML file
b.html that contains your exploit. The grader will be logged in to Bitbar before load-
ing b.html on a web browser. The grader will check that (1) 10 Bitbars are transferred
out of her/his account to the attacker, (2) the attacker site immediately redirects to
the CE441 website, and (3) the web browser never directly visits localhost:3000.

Exploit Charlie: Session Hijacking with Cookies

In the third attack, you need to trick the Bitbar application into thinking you’re
logged in as a different user by hijacking the victim’s session cookie. At the start of
the attack, you will be logged in as attacker and you need to convince Bitbar into
believing that you are user1 instead of attacker so that you can transfer user1’s
Bitbar into attacker account.

Your solution will be a Javscript file (c.txt) that can be copy/pasted into your
browser’s Javscript console. After executing your Javscript in the Console, Bitbar
should show that user1 is logged in, instead of the attacker account, and you should
be able to transfer 10 Bitbar from user1 to attacker in the web UI.

The password for the user attacker is evil. User1’s ID is 1.

Deliverable and Grading. You must submit a file c.txt containing the JavaScript
to be executed in the Javascript console. You can assume that the grader will run your
attack while the database has the original user1 1 with 200 Bitbars. After running

4

http://sharif.edu/~kharrazi/courses/40441-001/
http://sharif.edu/~kharrazi/courses/40441-001/


this JavaScript and refreshing the page, the application must be logged in as user1
and must allow the grader to transfer Bitbar into the attacker account.

Hint: How does the site store its sessions?

Exploit Delta: Cooking the Books with Cookies

In this attack, you need to forge 1 million new Bitbar rather than stealing them
from other users. You specifically need to develop a Javascript exploit that results in
your account balance being bumped to 1 million Bitbar after completing any small
transaction (e.g., sending 1 Bitbar to user1).

Begin this attack by creating a new user. You have big plans for this account, so a
starting balance of 100 Bitbars is not sufficient for your intentions.

Similar to Attack Charlie, your solution is Javscript code (d.txt) that can be copied
and pasted into your browser’s JavaScript console when logged into your new account.
After pasting this code into the console, conducting a small transaction should bump
your account balance to 1 million Bitbars.

Important! The new balance must persist between sessions. After logging out and
back into the account, the balance should be 1 million Bitbars. The goal here is
to forge 1 million Bitbars out of thin air without affecting any other users. The
transaction should look completely valid to the innocent recipient.

Deliverable and Grading. You will submit a text file d.txt containing your exploit
code. The grader will create a new account, paste this code into the browser console,
send 1 Bitbar to another user, and verify that the new account contains 1 million
Bitbars.

Exploit Echo: SQL Injection

In this attack, you need to develop a malicious username that executes malicious SQL
against the backend database that powers the Bitbar application.

The grader will create a new user account with your provided username and then
click on "Close". As a result user3 and the new account should be deleted from the
database to leave no trace of the attack behind. All other accounts should remain
unchanged. No usernames in the database except the one you created are malicious.
Moreover, none of them contain any spaces.

Deliverable and Grading. A text file e.txt containing your malicious username.
The grader will Close the account, then verify that the malicious account and user3
have been removed from the database.

Tip: If you mess up the user database while working on the problem, simply kill
(ctrl-C) the Docker container and restart the server to reset the database.

5



Exploit Foxtrot: Profile Worm

In this attack, you should develop a Worm, similar to the Samy Worm, which steals
Bitbar and spreads to other accounts. You should construct a profile that when visited
transfers 1 Bitbar from the logged-in user to attacker and replaces the profile of the
current user with itself.

If the attacker changes her/his profile to whatever you provide in your solution, the
following should happen:

1. When user1 views attacker’s profile, 1 Bitbar will be transferred from user1
to attacker, and user1’s profile will be replaced with your solution profile.

2. Later, if user2 views user1’s profile, 1 Bitbar will be transferred from user2
to attacker, and user2’s profile will be replaced as well, and so on.

When viewing an infected profile, the number of Bitbars should appear to be 10,
regardless of the corresponding user’s real bitbar balance. This also applies to the
attacker. Some useful tips:

• There is no problem if:

– The number of Bitbars displayed for infected user accounts get 10 Bitbars
immediately or counts up to 10

– Newly-infected users only see the exploit text in their profile after they
have logged out and logged back in again.

– The exploit is triggered when the attacker views her/his own infected
profile.

• It’s not acceptable if, for example, the count is first set to 100, and then set to
10.

The transfer and application should be reasonably quick (under 15 seconds). Dur-
ing that time, the grader will not click anywhere. During the transfer and repli-
cation process, the browser’s location bar should remain at: http://localhost:
3000/profile?username=x where x is the user whose profile is being viewed. The
visitor should not see any extra graphical user interface elements (e.g. frames), and
the user whose profile is being viewed should appear to have 10 Bitbars.

Deliverable and Grading. A file named f.txt containing your malicious profile.
We will copy and paste your profile text into attacker’s profile and view that profile
using the grader’s victim account. We will then view the victim’s profile with more
accounts, checking for the transfer and replication. You will not be graded on the
corner case where the users has no Bitbar in their account.

6

https://en.wikipedia.org/wiki/Samy_(computer_worm)
http://localhost:3000/profile?username=x
http://localhost:3000/profile?username=x


Exploit Gamma: Password Extraction via Timing Attack

A timing attack is a side-channel attack where an attacker attempts to extract data
by analyzing the time that a system takes to execute an action. For example, a web
server may take longer to respond to a login request that contains a valid password,
compared to a request using an invalid password. Even if the Same Origin Policy
prevents the attacker from directly viewing the HTML response to a login request, the
amount of time the server takes to respond may leak whether the provided password
was correct or incorrect.

In the last exploit, you will develop an attack that determines the password of another
user by exploiting such a timing side-channel. You will specifically find the victim
password by analyzing the amount of time it takes for the Bitbar login page to respond
to a correct password versus incorrect passwords.

You need to construct a malicious username, which consists of a script that guesses the
password of userx by testing the passwords in a provided dictionary and measuring
the server response time for each provided password. Your script needs to analyze
server’s response times for all the passwords in the provided list, determine the correct
password and send it to:

http://localhost:3000/steal_password?password=[password]&timeElapsed=[
time elapsed]

You can use the code snippet proj2/code/gamma_starter.html as a starting point
for your attack. This snippet includes the dictionary of passwords to attempt.

Deliverable and Grading. You should submit a file named g.txt containing ma-
licious username script. To grade your attack, we will log in as attacker, go to
transfer page, enter the malicious username script you specify in your solution into
the username field, and transfer 10 Bitbars to it.

There is no problem if the grader is logged in as userx after performing the attack,
and the attack may take a few seconds to fully execute. The grader will not click
anywhere or leave the transfer webpage while the attack is in progress. There should
not be any visible changes to the website and the blue error message on the transfer
page should say "The user does not exist".

Hint: Make sure you use backticks instead of quotes for this attack. Timing side
channels can be subtle.

Race conditions

Beware of Race Conditions: Depending on how you write your code, all of these
attacks could potentially have race conditions that affect the success of your at-
tacks. Attacks that fail on the grader’s browser during grading will receive less than
full credit. To ensure that you receive full credit, you should wait after making an

7



outbound network request rather than assuming that the request will be sent imme-
diately.

Part 1 Submission

• Put the deliverable file for each exploit inside a directory called attacks.

• Create a README.txt to cite the online references you used and to give any
special notes to the grader, and place that in the attacks directory as well.

• For each part, record your screen with voice and explain your solution step by
step. Your screen recording should contain all the tools you have used to solve
the problems. Submit only one screen recording for each part and try to mini-
mize the size of each one (max size: 15 MB). Moreover, each screen recording’s
length should be less than 5 minutes. Do Not push your screen recordings to
your repository in Tarasht. Upload them to a file hosting service, e.g. Google
Drive, and insert links in proj2/attacks/links.txt. Push proj2/attacks to
your repository in Tarasht.

• When we pull your repository, we expect to see the following seven files inside
proj2/attacks’:

– README.txt

– links.txt

– a.txt

– b.html

– c.txt

– d.txt

– e.txt

– f.txt

– g.txt

4 Part 2: Defenses

Now that you understand how insecure the Bitbar web application really is, you
should modify the application to defend against the attacks from Part 1 (and you
should never make these mistakes in your own web apps!). There might be more than
one way of implementing each attack, so think about other possible attack methods.
You should defend against all of them.

8



Implementation Tips

General

• Forcing a logout after detecting CSRF or cookie tampering is acceptable, but
for other bad inputs, displaying an error message can be a good choice.

• It is acceptable to have secret key(s) in the server’s process memory as JavaScript
variable(s).

• You are not required to defend against cookie replay attacks.

• As you don’t need to obtain a TLS certificate, you can assume a cookie will not
be stolen by a network attacker.

Alpha Defense

• If you have detected an injected username that does not conform to what you
have defined as a "valid" username, do not display it in the error message.

Bravo Defense

• You do not need to defend against the case where an attacker makes a simple
GET request to recover a CSRF token intended for a victim user.

• The more short-lived a CSRF token is, the better it is.

Foxtrot Defense

• You should use a CSP-related defense for this attack.

• We will test your defense with 4-5 test case profiles that exercise some of the
most common methods of XSS.

Restrictions:

• You are only allowed to implement your defenses in router.js with the two
exceptions: you can also change any of the files in views/ to add CSRF secret
token defenses and modify attributes of <script> tags (see below for special
restrictions on changes in views/), and you can change app.js for the foxtrot
defense. All other files must remain unchanged.

• Do not change the site’s appearance or behavior on normal inputs. A non-
malicious user should not notice about the modifications you made.

9



• After detecting malicious inputs, web app should fail in a user-friendly manner.
You can sanitize the inputs or display an error message, though sanitizing is
probably the more user-friendly option in most cases.

• Do not enable the built-in defenses in Express.js. Express.js comes with a num-
ber of built-in defenses that were disabled in Part 1. These built-in defenses
must remain disabled. Although in the real world it’s better to use standard,
vetted defense code instead of implementing your own, the goal of part2 is
to practice implementation of these defenses. In particular, that means you
cannot:

1. Use Express.js to change the CORS policies that have been set in app.js,
2. Enact stricter EJS escaping policies in any files inside views/,
3. Add any additional Node packages beyond those provided to you in the

code directory.
Note: You can add CSRF secret tokens to files inside views/. You can also
add nonce attribute to <script> tags in views/. However, do not modify
the <%- tags within these files to enact stricter EJS escaping functionality.

• Do not over-sanitize inputs. You are allowed to sanitize inputs using default
JavaScript functions, but make sure you don’t over-sanitize (for example, the
profile should still allow the same set of sanitized HTML tags).

We highly encourage you to use the functions imported from ’./utils/crypto’ in
your defenses. Specifically, consider how the generateRandomness and HMAC functions
can be used to prevent CSRF and cookie tampering, respectively.

Finally, please describe your defenses briefly in proj2/Defenses/README.txt file.

Part 2 Submission

1. Ensure that router.js, app.js and the files inside views/ are the only files
you have changed to implement your defenses.

2. In proj2/Defenses/README.txt file, you should describe your defenses, cite
the online references you used, and leave special notes for the grader.

3. For each part, record your screen with voice and explain your solution step by
step. Your screen recording should contain all the tools you have used to solve
the problems. Submit only one screen recording for each part and try to mini-
mize the size of each one (max size: 15 MB). Moreover, each screen recording’s
length should be less than 5 minutes. Do Not push your screen recordings to
your repository in Tarasht. Upload them to a file hosting service, e.g. Google
Drive, and insert links in proj2/Defenses/links.txt. Push proj2/Defenses
to your repository in Tarasht.

10



5 Resources

• HTML, CSS, JavaScript: http://www.w3schools.com/

• Node.js (Bitbar uses version 9.11.1): https://nodejs.org/dist/latest-v9.
x/docs/api/

• Express JS (The web framework that powers Bitbar in app.js):
https://expressjs.com/en/4x/api.html

• EJS for HTML Templating (See .ejs files within views/): http://ejs.co/#docs

• XSS: https://cs155.stanford.edu/papers/CSS.pdf, https://www.owasp.
org/index.php/XSS Filter Evasion Cheat Sheet

• SQL: http://www.w3schools.com/sql/, https://github.com/kriasoft/node-sqlite
(package Bitbar uses)

• Clickjacking Attacks and Defense: http://media.blackhat.com/bh-eu-10/
presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides.
pdf

• Timing Attacks: https://crypto.stanford.edu/~dabo/pubs/papers/webtiming.
pdf

11

http://www.w3schools.com/
https://nodejs.org/dist/latest-v9.x/docs/api/
https://nodejs.org/dist/latest-v9.x/docs/api/
https://expressjs.com/en/4x/api.html
http://ejs.co/#docs
https://cs155.stanford.edu/papers/CSS.pdf
https://www.owasp.org/index.php/XSS
https://www.owasp.org/index.php/XSS
http://www.w3schools.com/sql/
https://github.com/kriasoft/node-sqlite
http://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides.pdf
http://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides.pdf
http://media.blackhat.com/bh-eu-10/presentations/Stone/BlackHat-EU-2010-Stone-Next-Generation-Clickjacking-slides.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/webtiming.pdf
https://crypto.stanford.edu/~dabo/pubs/papers/webtiming.pdf

	Introduction
	Setup Instructions
	Part 1: Attacks
	Part 2: Defenses
	Resources

