
CE441: Data and Network Security Fall 2021

Project #1*
Due: Parts 1 and 2: Friday, Mehr 23 - 11:59pm,

Part 3: Saturday, Aban 1 - 11:59pm.

The goal of this assignment is to gain hands-on experience finding vulnerabilities
in code and mounting buffer overflow attacks. In Parts 1 and 2, you are given the
source code for six exploitable programs which are to be installed with setuid root in
a virtual machine we provide. You’ll have to identify a vulnerability (buffer overflow,
double free, format string vulnerability, etc.) in each program. You’ll write an exploit
for each that executes the vulnerable program with crafted argument, causing it to
jump to an exploit string. In each instance, the result will yield a root shell even
though the attack was run by an unprivileged user. In Part 3, you will use a fuzzer
to find a vulnerability in a program called bsdtar, part of a widely used library called
libarchive. You’ll download and build the vulnerable version of libarchive in your VM
and then run the fuzzer to find an input that causes the program to crash.

The Environment

You’ll run your exploits in a virtual machine (VM) provided for the assignment.
This serves two purposes. First, the vulnerable programs contain real, exploitable
vulnerabilities and we strongly advise against installing them with setuid root on your
machine. Second, everything from the particular compiler version, to the operating
system and installed library versions will affect the exact location of code on the
stack. The VM provides an identical environment to the one in which the assignment
will be tested for grading.

The VM is configured with Ubuntu Linux 16.04 LTS, with ASLR (address ran-
domization) turned off. It has a single user account “user” with password “ce441”,
but you can temporarily become the root user using sudo. The exploits will be run
as “user” and should yield a command line shell (/bin/sh) running as “root”. The
VM comes with a set of tools pre-installed (curl, wget, openssh, gcc, vim etc), but
feel free to install additional software. For example, to install the emacs editor, you
can run as root:

$ apt-get install emacs

* Acknowledgment: This project is obtained from CS155, Spring 2020, Stanford University.
Edited By H. Ahmadzadeh & A. Ehteshami.

When you first run the VM, it will have an OpenSSH server running so you can login
from your host machine as well as transfer files using, e.g., ssh and scp. You can
login to the VM from your host machine using the command:

$ ssh user@192.168.56.144

For start working, you have to clone the handouts repository to the vm.

Parts 1 and 2

Parts 1 and 2 ask you to develop exploits for six different vulnerable target programs.

Targets

The targets/ directory in the assignment contains the source code for the vulnerable
targets as well as a Makefile for building and installing them on the VM. Specifically,
to install the target programs, as the non-root “user”:

$ cd targets
$ make
$ sudo make install

This will compile all of the target programs, set the executable stack flag on each of
the resulting executables, and install them with setuid root in /tmp.

Your exploits must assume that the target programs are installed in /tmp/ such
as /tmp/target1, /tmp/target2, etc.

Exploit Skeleton Code

The sploits/ directory in the assignment contains skeleton code for the exploits
you’ll write, named sploit1.c, sploit2.c, etc., to correspond with the targets.
Also included is the header file shellcode.h, which provides Aleph One’s shellcode
in the static variable static const char* shellcode.

Part3

In Part 3 you’ll learn how to find security vulnerabilities using a fuzzer called Amer-
ican Fuzzy Lop. Fuzzing is a technique for finding vulnerabilities in a program by
running the program on random data until it crashes. We will be using afl-fuzz, one of
the most successful and widely-used fuzzers currently available. afl-fuzz has already

2

been installed on the VM. You can read more about afl-fuzz and how it works at
http://lcamtuf.coredump.cx/afl/.

Fuzzing libarchive

You will be fuzzing libarchive (https://www.libarchive.org/), a widely used archive
and compression library. It provides a program called bsdtar that offers similar func-
tionality to the more common GNU tar program. For example, you can use bsdtar
to extract a .tar.gz file in the same way as regular tar:

$ bsdtar -xf <some-file>.tar.gz

In the proj1/fuzz/ directory, download and extract the source code for libarchive
version 3.1.2:

$ curl -O http://www.libarchive.org/downloads/libarchive-3.1.2.tar.gz
$ tar -xf libarchive-3.1.2.tar.gz

This should give you a directory called libarchive-3.1.2/. In that directory, run:

$ CC=afl-gcc ./configure --prefix=\$HOME/ce441-001-handouts/proj1/
fuzz/install

This will configure libarchive so that it will be built using the afl-fuzz compiler,
afl-gcc, and so that it will install itself in the install/ directory rather than system-
wide. You can then build and install libarchive, including bsdtar:

$ make
$ make install

(Note that we are not using sudo.) After this, bsdtar should be installed under
install/bin/.

The fuzz/testcases/ directory contains a seed testcase that afl-fuzz will modify
to try to crash bsdtar. Run afl-fuzz on this testcase by running the following command
from the fuzz/ directory:

$ afl-fuzz -i testcases -o results install/bin/bsdtar -O -xf @@

This command instructs afl-fuzz to run bsdtar and supply the arguments -O -xf @@.
The -O (capital-O, not numeral-0) option tells bsdtar to not write any files to disk.
afl-fuzz will replace @@ with the name of the input to test for a crash, so the -xf @@
part will cause bsdtar to try to extract the input file generated by afl-fuzz. The

3

http://lcamtuf.coredump.cx/afl/

result is that afl-fuzz will generate a bunch of test cases based on the seeds in the
testcases/ directory and then run bsdtar on each generated file until bsdtar crashes.

The fuzzer may run for several minutes before finding a crash. Once it does, hit
Ctrl-C to stop AFL.

Write-up

Spend a few minutes investigating the crash. Use GDB to get a backtrace at the time
of the crash. Try to figure out what the vulnerability is in the source code.

In the fuzz/README file, include your backtrace from GDB and briefly describe
the vulnerability (two or three sentences; no more than 200 words).

Deliverables

Deliverables of The assignment is divided into three parts:

• Parts 1 and 2 (due on Mehr 23 11:59pm) consists of targets six targets.

• Part 3 consists of fuzzing a real-world program (bsdtar) to find a vulnerability.

For each submission, you’ll need to provide a screen recording & push all of the
proj1 files to your repository in tarasht. Your repo will contain the contents of
the proj1/sploits/ directory, the crashes found during fuzzing, the README in
the proj1/fuzz/ directory, and proj1/ID.csv. Make sure that if you clone your
repository:

1. In the sploits/ directory, running make with no arguments should yield sploit1
through sploit6 executables in the same directory.

2. In the fuzz/ directory, running the vulnerable version of bsdtar on any of the
crashing testcases should reproduce the crash.

3. In the fuzz/ directory, there should be a README file that describes the
vulnerability found via fuzzing.

4. The repository must include the file ID.csv which conatins a comma-separated
line with your SUID number, Tarasht ID, last name, first name (order matters).
The top-level directory already contains such a file, so you just need to modify
it.

In your screen recording, explain your solution step by step and record your voice
with the screen. Your screen recording should contain all the tools you have used to

4

solve the problems (e.g. gdb). Submit only one screen recording for each part and
try to minimize the size of it (max size: 30MB). Moreover, its length should be less
than 5 minutes for each exploit and less than 10 minutes for part 3.

Do Not push your screen recordings to your repository in the tarasht. Upload
them to a file hosting service, e.g. Google Drive, and insert the links in proj1/Links.txt.
Push proj1/Links.txt in your repository.

NOTE: Due to the size of the class, the correctness of your submission will be
graded primarily by script. As a result, following the the submission format is impor-
tant. We really, really want to give you full credit! Help us help you!

Setup: Set-by-step

Download the VM from http://partov.ce.sharif.edu/assets/40441-991/CE44
1_vm.ova.xz and extract. It contains a file CE441.ova (md5sum: a3f9457567ceadbe
48699f89225ce980), which is an Open Virtualization Format archive of the virtual
machine. (You also can use this link.)

Import the virtual machine using VirtualBox. We strongly recommend using
VirtualBox. VirtualBox is free for Windows, macOS, and Linux, and the virtual
machine was developed and tested using VirtualBox. To import the virtual machine,
choose “File”, “Import Appliance”, and select the CE441.ova file. This will set up a
new virtual machine called CE441.

Note: You might need to set network adapter 2 to use a host-only network if SSH
doesn’t work out of the box. On macOS and Linux, you can add a host-only network by
selecting “File”, “Host Network Manager”, clicking the “Create” button and creating
a virtual network interface named “vboxnet0”. On Windows 10, the host-only network
should be auto-configured when you open and close the “Settings” for the VM.

Once the VM has booted, login with username “user” and password “ce441”. The
VM should be configured with a host-only network adapter and static IP address
192.168.56.144, so you should also be able to log in using SSH from your host:

$ ssh user@192.168.56.144

Once logged in, clone handouts repository and change origin to your repository:

$ git clone https://tarasht.ce.sharif.edu/ce441-001-students/ce
441-001-handouts
$ cd ce441-001-handouts
$ git remote set-url origin https://tarasht.ce.sharif.edu/ce441-
001-students/ce441-001-"student-id"

build and install the targets:

5

http://partov.ce.sharif.edu/assets/40441-991/CE441_vm.ova.xz
http://partov.ce.sharif.edu/assets/40441-991/CE441_vm.ova.xz
http://partov.ce.sharif.edu/assets/40441-991/CE441_vm.ova.zip

$ cd proj1/targets
$ make && sudo make install
Password: ce441

Write, build and test your exploits:

$ cd ../sploits
..edit,test...
$ make
$./sploit1

6

