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Cryptography
Is:


– A tremendous tool for protecting information

– The basis for many security mechanisms


Is not:

– The solution to all security problems

– Reliable unless implemented and used properly

– Something you should try to invent yourself
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Transport Layer Security / TLS



Transport Layer Security / TLS
Standard for Internet security


– Goal: “... provide privacy and reliability between two 
communicating applications”


Two main parts

1. Handshake Protocol:   Establish shared secret key  

using public-key cryptography    


2. Record Layer:    Transmit data using negotiated key


	 Our starting point:  Using a key for encryption and integrity
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File system

File 1

File 2
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No eavesdropping

No tampering

(protecting data at rest)



Building block:   symmetric cipher

E, D:  cipher       k:  secret key (e.g. 128 bits)

m, c:  plaintext,  ciphertext            n:  nonce (non-repeating)


Encryption algorithm is publicly known

	 ⇒   never use a proprietary cipher	 	 	

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce



Use Cases
Single use key:    (one time key)


• Key is only used to encrypt one message

•    encrypted email:     new key generated for every email


• No need for nonce    (set to 0)


Multi use key:   (many time key)

• Key is used to encrypt multiple messages or multiple files


•   TLS:    same key used to encrypt many frames

• Use either a unique nonce or a random nonce



First example: One Time Pad   (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:

⊕

1 0 0 1 1 0 1 0 01Ciphertext:

Encryption:      c = E(k, m) = m ⨁ k
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First example: One Time Pad   (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:

⊕

1 0 0 1 1 0 1 0 01Ciphertext:

Encryption:      c = E(k, m) = m ⨁ k

Decryption:            D(k, c) = c ⨁ k = (m ⨁ k) ⨁k = m



One Time Pad (OTP) Security
Shannon (1949):    


– OTP is “secure” against one-time eavesdropping


– without key,  ciphertext reveals no “information”  
about plaintext


Problem:   OTP key is as long as the message



Stream ciphers     (single use key)

Problem:   OTP key is as long as the message

Solution:    Pseudo random key  --  stream ciphers


Example:   ChaCha20     (one-time if no nonce)        key:  128 or 256 bits.

key

PRG 

message
⊕

ciphertext

c ← PRG(k) ⊕ m



Dangers in using stream ciphers
One time key !!         “Two time pad” is insecure:
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Dangers in using stream ciphers
One time key !!         “Two time pad” is insecure:

Eavesdropper does:

	 	 	 c1  ⊕  c2       →        m1 ⊕  m2 

Enough redundant information in English that:

	 	 	  m1 ⊕  m2   →        m1 ,  m2

What if want to use 
same key to encrypt 

two files? 

c1  ←  m1  ⊕  PRG(k)


c2  ←  m2  ⊕  PRG(k)




Block ciphers:  crypto work horse

E, D CT Block
n bits

PT Block
n bits

Key k Bits

Canonical examples:

1. 3DES (old):   n= 64 bits,    k = 168 bits


2. AES:     n=128 bits,   k = 128, 192, 256 bits



Block Ciphers Built by Iteration

R(k,m):    round function


	 for   AES-128: 10 rounds,     AES-256: n=14 rounds

key  k

key expansion

k1 k2 k3 kn
R(

k 1, 
⋅)

R(
k 2, 

⋅)

R(
k 3, 

⋅)

R(
k n, 

⋅)m c



AES-NI:   AES in hardware  (Intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
• aesenc,  aesenclast:    one round of AES
	 	 aesenc  xmm1,  xmm2 	 (result written to xmm1)

round keystate
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AES-NI:   AES in hardware  (Intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
• aesenc,  aesenclast:    one round of AES
	 	 aesenc  xmm1,  xmm2 	 (result written to xmm1)

• aesdec,  aesdeclast:  one round of AES
• aeskeygenassist:  do AES key expansion

⟹  more than 10x speedup over a software AES

⟹  better security:   all AES instructions are constant time

round keystate



Incorrect use of block ciphers

Electronic Code Book (ECB):


 Problem:   

– if    m1=m2     then   c1=c2

PT:

CT:

m1 m2

c1 c2
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In pictures



CTR mode encryption (eavesdropping security)

Counter mode with a random IV:    (parallel encryption)

m[0] m[1] …

E(k,IV) E(k,IV+1) …

m[L]

E(k,IV+L)
⊕

c[0] c[1] … c[L]

IV

IV
ciphertext

Why is this secure for multiple messages?        See the crypto course (40-675)



A Warning
eavesdropping security is insufficient  for most applications 


Need also to defend against active (tampering) attacks.

	 CTR mode is insecure against active attacks!


Next:    methods to ensure message integrity



Message Integrity:    MACs

• Goal:   provide message integrity.     No confidentiality.


– ex:   Protecting public binaries on disk.   

Alice Bob

k kmessage  m 
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Message Integrity:    MACs

• Goal:   provide message integrity.     No confidentiality.


– ex:   Protecting public binaries on disk.   

Alice Bob

k kmessage  m tag

Generate tag:

     tag ← S(k, m)

Verify tag:

    V(k, m, tag)  =  `yes’

?



Construction:   HMAC  (Hash-MAC)
Most widely used MAC on the Internet.

	 H:   hash function.      
	        example:   SHA-256    ;    output is 256 bits



Construction:   HMAC  (Hash-MAC)
Most widely used MAC on the Internet.

	 H:   hash function.      
	        example:   SHA-256    ;    output is 256 bits

Building a MAC out of a hash function:

– Standardized method:   HMAC

	 	  S( k, msg ) =  H(  k⊕opad  ‖  H( k⊕ipad ‖ msg )  )



Why is this MAC construction secure?


	 	 … see the crypto course (40-675)



Combining MAC and ENC   (Auth. Enc.)

	 	 Encryption key  kE.      MAC key = kI


Option 1:   (SSL)


Option 2:   (IPsec)


Option 3:   (SSH)

msg  m msg  m MAC
enc kEMAC(kI, m)

msg  m
Enc kE

MAC
MAC(kI, c)

msg  m
enc kE

MAC
MAC(kI, m)



Combining MAC and ENC   (Auth. Enc.)

	 	 Encryption key  kE.      MAC key = kI


Option 1:   (SSL)


Option 2:   (IPsec)


Option 3:   (SSH)

msg  m msg  m MAC
enc kEMAC(kI, m)

msg  m
Enc kE

MAC
MAC(kI, c)

msg  m
enc kE

MAC
MAC(kI, m)

always 
correct



AEAD:  Auth. Enc. with Assoc. Data

AES-GCM:     CTR mode encryption  then   MAC

	 	 	 (MAC accelerated via Intel’s PCLMULQDQ instruction)

AEAD: 

encrypted dataassociated data

authenticated

encrypted



Summary
Shared secret key:

•   Used for secure communication and document encryption


Encryption:   (eavesdropping security)      [should not be used standalone]


•   One-time key:    ex: a stream cipher

•   Many-time key:   ex: AES-CTR  with a unique/random nonce


Integrity:  HMAC


Authenticated encryption:  encrypt-then-MAC using AES-GCM
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encryption and 
compression problems



Encryption and compression:   oil and vinegar

HTTP:  uses compression to reduce bandwidth


Option 1:   first encrypt and then compress


• Does not work …  ciphertext looks like a random string


Option 2:  first compress and then encrypt

• Used in many Internet protocols  (TLS, HTTP, QUIC, …)


• Trouble  …



Trouble …     [Kelsey’02]

Compress-then-encrypt reveals information:

POST /bank.com/buy?id=aapl

Cookie: uid=jhPL8g69684rksfsdg

POST /bank.com/buy?id=goog

Cookie: uid=jhPL8g69684rksfsdg

Second message compresses better than first:

	 	 network observer can distinguish the two messages!



Even worse:  the CRIME attack  [RD’2012]  

Goal:   steal user’s bank cookie

(simplified)
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Even worse:  the CRIME attack  [RD’2012]  

POST /bank.com/buy?id=uid=a


Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

observe ciphertext size



Even worse:  the CRIME attack  [RD’2012]  

POST /bank.com/buy?id=uid=b


Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

observe ciphertext size



Even worse:  the CRIME attack  [RD’2012]  

POST /bank.com/buy?id=uid=j

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

ciphertext slightly shorter

      ⇒   first character of Cookie is “j”



Even worse:  the CRIME attack  [RD’2012]  

POST /bank.com/buy?id=uid=ja


Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

observe ciphertext size



Even worse:  the CRIME attack  [RD’2012]  

POST /bank.com/buy?id=uid=jh


Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

ciphertext slightly shorter

    ⇒   2nd character of Cookie is “h”



Even worse:  the CRIME attack  [RD’2012]  

POST /bank.com/buy?id=uid=jh


Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal:   steal user’s bank cookie

Recover entire cookie after 
	 	 256 × |Cookie|    tries


Takes several minutes (simplified) 



What to do?
• Disable compression   ☹️

• Use a different compression context for parts  
under Javascript control and parts that are not


• Change secret (Cookie) after every request



What to do?
• Disable compression   ☹️

• Use a different compression context for parts  
under Javascript control and parts that are not


• Change secret (Cookie) after every request

Does not eliminate inherent leakage due to compression
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(1) Public-key encryption
Tool for managing or generating symmetric keys


• E – Encryption alg.	 PK – Public encryption key


• D – Decryption alg.	 SK – Private decryption key 


Algorithms  E, D  are publicly known.

Alice1
Em1 E(PK, m1)=c1

Bob

D
c D(SK,c)=m

Alice2
Em2 E(PK, m2)=c2



1. Algorithm KeyGen:    outputs  pk and sk

2. Algorithm   F(pk, ⋅)  :    a one-way function
– Computing   y = F(pk, x)   is easy
– One-way:   given random  y,  finding   x   s.t.  y = F(pk,x)  is difficult

Building block:   trapdoor permutations



1. Algorithm KeyGen:    outputs  pk and sk

2. Algorithm   F(pk, ⋅)  :    a one-way function
– Computing   y = F(pk, x)   is easy
– One-way:   given random  y,  finding   x   s.t.  y = F(pk,x)  is difficult

3. Algorithm   F-1(sk, ⋅)  :        Invert   F(pk, ⋅)   using trapdoor SK

	 	 	 F-1(sk,   y )  =  x

Building block:   trapdoor permutations



Example:   RSA
1.  KeyGen:	 generate two equal length primes    p, q

	    set    N ←  p⋅q           (3072 bits  ≈  925 digits)


	     set    e ← 216+1 = 65537     ;      d ← e-1 (mod ϕ(N))


	 pk = (N, e)        ;       sk = (N, d)


2.  RSA(pk,  x) :	           x   →    (xe mod N)

	 Inverting this function is believed to be as hard as factoring N  


3.  RSA-1(pk, y)  :	           y   →    (yd mod N)



Public Key Encryption with a TDF
KeyGen:     generate    pk  and   sk
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–      c0 ←  F(pk, x)    ,    c1 ←  E(k,  m)	          (E: symmetric cipher)

– send      c = (c0, c1)
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– choose random   x ∈ domain(F)    and set    k ← H(x) 

–      c0 ←  F(pk, x)    ,    c1 ←  E(k,  m)	          (E: symmetric cipher)

– send      c = (c0, c1)
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c0 c1



Public Key Encryption with a TDF
KeyGen:     generate    pk  and   sk

Encrypt(pk, m):          
– choose random   x ∈ domain(F)    and set    k ← H(x) 

–      c0 ←  F(pk, x)    ,    c1 ←  E(k,  m)	          (E: symmetric cipher)

– send      c = (c0, c1)

Decrypt(sk, c=(c0,c1) ):        x ←  F-1(sk, c0)     ,    k ← H(x)  ,     m ← D(k, c1) 

security analysis in crypto course

c0 c1



(2) Digital signatures
Goal: 	 bind document to author

• Problem:  attacker can copy Alice’s sig from one doc to another

Main idea:  make signature depend on document
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Example:    signatures from a trapdoor permutation (e.g. RSA)
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verify(pk, m, sig)    :=     accept if    F(pk, sig) = H(m)



Digital signatures
Goal: 	 bind document to author


• Problem:  attacker can copy Alice’s sig from one doc to another


Main idea:  make signature depend on document


Example:    signatures from a trapdoor permutation (e.g. RSA)


sign( sk, m)    :=     F-1 (sk,  H(m) )


verify(pk, m, sig)    :=     accept if    F(pk, sig) = H(m)

• Only someone who knows sk can sign a message m


• Anyone who has pk can verify a (msg, signature) pair



Certificates:   bind Bob’s ID to a PK
How does Alice (browser)  obtain Bob’s public key  pkBob  ?

CABrowser 
Alice

skCA

Server Bob

pkCA pkCA
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Certificates:   bind Bob’s ID to a PK
How does Alice (browser)  obtain Bob’s public key  pkBob  ?

CA
pk     and

proof “I am Bob”

Browser 
Alice

skCA

check

proofissue Cert with skCA :

Bob’s  
key is pkBob’s  

key is pk

generate

   (sk,pk) 

Server Bob

pkCA

verify

cert

Bob uses Cert for an extended period  (e.g. one year) 


pkCA
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Sample certificate:



Signature schemes used in the real world

RSA signature scheme:

• Fast to verify, but signatures are long

• Often used in certificates


ECDSA, Schnorr, BLS signature schemes:

• Faster to generate signature and more compact than RSA

• Used everywhere, other than web certificates



(3) Key exchange
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(3) Key exchange

ServerBrowser

Goal:  Browser and Server want a shared secret, unknown to attacker

Example:  Diffie-Hellman key exchange.   

• Only secure against eavesdropping

• TLS 1.3:  enhances Diffie-Hellman key exchange  

	 	 ⟹  security against an active attacker

attacker ??
key key



Diffie–Hellman key exchange

[https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange]

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange
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Client Server

secret

key

certS
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ClientHello:  nonceC ,  KeyShareClient Server

secret

key

certS
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TLS 1.3 session setup  (simplified)

ClientHello:  nonceC ,  KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…] 

CertVerify:   Enc[SigS(data)] ,      Finished

Client Server

secret

key

certS
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ClientHello:  nonceC ,  KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…] 

CertVerify:   Enc[SigS(data)] ,      Finished

Client Server

secret

key

certS

Diffie-Hellman key exchange
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TLS 1.3 session setup  (simplified)

ClientHello:  nonceC ,  KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…] 

CertVerify:   Enc[SigS(data)] ,      Finished

Client Server

secret

key

Finished

session-keys ←  HKDF( DHkey, nonceC , nonceS )

certS

Diffie-Hellman key exchange
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TLS 1.3 session setup  (simplified)

ClientHello:  nonceC ,  KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…] 

CertVerify:   Enc[SigS(data)] ,      Finished

Client Server

secret

key

Finished

session-keys ←  HKDF( DHkey, nonceC , nonceS )

certS

Encrypted ApplicationData

Encrypted ApplicationData

Diffie-Hellman key exchange



Properties

Nonces:  prevent replay of an old session

Forward secrecy:  server compromise does not expose old sessions

Some identity protection:  certificates are sent encrypted

Gmail



Properties

Nonces:  prevent replay of an old session

Forward secrecy:  server compromise does not expose old sessions

Some identity protection:  certificates are sent encrypted

One sided authentication:
– Browser identifies server using server-cert
– TLS has support for mutual authentication

•  requires a client pk/sk and client-cert

Gmail
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Example:   Vehicle Safety Comm.  (VSC)

Car 1 Car 2 Car 3 Car 4

brake
1.

2. Car Ambulance

out of my 
way !!

 Require authenticated (signed) messages from cars.

−  Prevent impersonation and DoS on traffic system.


Privacy problem:   cars broadcasting signed  (x,y, v).
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Program


Copyright 2007 Stanford University
51

Example:   Vehicle Safety Comm.  (VSC)

Car 1 Car 2 Car 3 Car 4

brake
1.

2. Car Ambulance

out of my 
way !!

 Require authenticated (signed) messages from cars.

−  Prevent impersonation and DoS on traffic system.


Privacy problem:   cars broadcasting signed  (x,y, v).

Clean solution:  group sigs.   Group = set of all cars. 



Summary: crypto concepts
Symmetric cryptography:   

	 Authenticated Encryption (AE) and message integrity  


Public-key cryptography:

	 Public-key encryption,  digital signatures,  key exchange


Certificates:   bind a public key to an identity using a CA

– Used in TLS to identify server (and possibly client)


Modern crypto:  goes far beyond basic encryption and signatures


