
Dan Boneh

Crypto Concepts

Symmetric encryption,
Public key encryption,
and TLS

Acknowledgments: Lecture slides are from the Computer Security course taught by
Dan Boneh and Zakir Durumeric at Stanford University. When slides are obtained
from other sources, a reference will be noted on the bottom of that slide. A full list of
references is provided on the last slide.

Cryptography
Is:

– A tremendous tool for protecting information

– The basis for many security mechanisms

Is not:

– The solution to all security problems

– Reliable unless implemented and used properly

– Something you should try to invent yourself

Dan Boneh

Goal 1: Secure communication

no eavesdropping

no tampering

(protecting data in motion)

Dan Boneh

Goal 1: Secure communication

no eavesdropping

no tampering

(protecting data in motion)

Transport Layer Security / TLS

Transport Layer Security / TLS
Standard for Internet security

– Goal: “... provide privacy and reliability between two
communicating applications”

Two main parts

1. Handshake Protocol: Establish shared secret key  

using public-key cryptography

2. Record Layer: Transmit data using negotiated key

	 Our starting point: Using a key for encryption and integrity

Dan Boneh

Goal 2: protected files

File system

File 1

File 2

Alice Alice

(protecting data at rest)

Dan Boneh

Goal 2: protected files

File system

File 1

File 2

Alice Alice

No eavesdropping

No tampering

(protecting data at rest)

Building block: symmetric cipher

E, D: cipher k: secret key (e.g. 128 bits)

m, c: plaintext, ciphertext n: nonce (non-repeating)

Encryption algorithm is publicly known

	 ⇒ never use a proprietary cipher	 	 	

Alice

E
m, n E(k,m,n)=c

Bob

D
c, n D(k,c,n)=m

k k

nonce

Use Cases
Single use key: (one time key)

• Key is only used to encrypt one message

• encrypted email: new key generated for every email

• No need for nonce (set to 0)

Multi use key: (many time key)

• Key is used to encrypt multiple messages or multiple files

• TLS: same key used to encrypt many frames

• Use either a unique nonce or a random nonce

First example: One Time Pad (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:

⊕

1 0 0 1 1 0 1 0 01Ciphertext:

Encryption: c = E(k, m) = m ⨁ k

First example: One Time Pad (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:

⊕

1 0 0 1 1 0 1 0 01Ciphertext:

Encryption: c = E(k, m) = m ⨁ k

Decryption: D(k, c) = c ⨁ k

First example: One Time Pad (single use key)

Vernam (1917)

0 1 0 1 1 1 0 0 01Key:

1 1 0 0 0 1 1 0 00Plaintext:

⊕

1 0 0 1 1 0 1 0 01Ciphertext:

Encryption: c = E(k, m) = m ⨁ k

Decryption: D(k, c) = c ⨁ k = (m ⨁ k) ⨁k = m

One Time Pad (OTP) Security
Shannon (1949):

– OTP is “secure” against one-time eavesdropping

– without key, ciphertext reveals no “information”  
about plaintext

Problem: OTP key is as long as the message

Stream ciphers (single use key)

Problem: OTP key is as long as the message

Solution: Pseudo random key -- stream ciphers

Example: ChaCha20 (one-time if no nonce) key: 128 or 256 bits.

key

PRG

message
⊕

ciphertext

c ← PRG(k) ⊕ m

Dangers in using stream ciphers
One time key !! “Two time pad” is insecure:

Dangers in using stream ciphers
One time key !! “Two time pad” is insecure:

c1 ← m1 ⊕ PRG(k)

c2 ← m2 ⊕ PRG(k)

Dangers in using stream ciphers
One time key !! “Two time pad” is insecure:

Eavesdropper does:

	 	 	 c1 ⊕ c2 → m1 ⊕ m2

Enough redundant information in English that:

	 	 	 m1 ⊕ m2 → m1 , m2

c1 ← m1 ⊕ PRG(k)

c2 ← m2 ⊕ PRG(k)

Dangers in using stream ciphers
One time key !! “Two time pad” is insecure:

Eavesdropper does:

	 	 	 c1 ⊕ c2 → m1 ⊕ m2

Enough redundant information in English that:

	 	 	 m1 ⊕ m2 → m1 , m2

What if want to use 
same key to encrypt

two files?

c1 ← m1 ⊕ PRG(k)

c2 ← m2 ⊕ PRG(k)

Block ciphers: crypto work horse

E, D CT Block
n bits

PT Block
n bits

Key k Bits

Canonical examples:

1. 3DES (old): n= 64 bits, k = 168 bits

2. AES: n=128 bits, k = 128, 192, 256 bits

Block Ciphers Built by Iteration

R(k,m): round function

	 for AES-128: 10 rounds, AES-256: n=14 rounds

key k

key expansion

k1 k2 k3 kn
R(

k 1,
⋅)

R(
k 2,

⋅)

R(
k 3,

⋅)

R(
k n,

⋅)m c

AES-NI: AES in hardware (Intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
• aesenc, aesenclast: one round of AES
	 	 aesenc xmm1, xmm2 	 (result written to xmm1)

round keystate

AES-NI: AES in hardware (Intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
• aesenc, aesenclast: one round of AES
	 	 aesenc xmm1, xmm2 	 (result written to xmm1)

• aesdec, aesdeclast: one round of AES

round keystate

AES-NI: AES in hardware (Intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
• aesenc, aesenclast: one round of AES
	 	 aesenc xmm1, xmm2 	 (result written to xmm1)

• aesdec, aesdeclast: one round of AES
• aeskeygenassist: do AES key expansion

round keystate

AES-NI: AES in hardware (Intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
• aesenc, aesenclast: one round of AES
	 	 aesenc xmm1, xmm2 	 (result written to xmm1)

• aesdec, aesdeclast: one round of AES
• aeskeygenassist: do AES key expansion

⟹ more than 10x speedup over a software AES

⟹ better security: all AES instructions are constant time

round keystate

Incorrect use of block ciphers

Electronic Code Book (ECB):

 Problem:

– if m1=m2 then c1=c2

PT:

CT:

m1 m2

c1 c2

Dan Boneh

In pictures

CTR mode encryption (eavesdropping security)

Counter mode with a random IV: (parallel encryption)

m[0] m[1] …

E(k,IV) E(k,IV+1) …

m[L]

E(k,IV+L)
⊕

c[0] c[1] … c[L]

IV

IV
ciphertext

Why is this secure for multiple messages? See the crypto course (40-675)

A Warning
eavesdropping security is insufficient for most applications

Need also to defend against active (tampering) attacks.

	 CTR mode is insecure against active attacks!

Next: methods to ensure message integrity

Message Integrity: MACs

• Goal: provide message integrity. No confidentiality.

– ex: Protecting public binaries on disk.

Alice Bob

k kmessage m

Message Integrity: MACs

• Goal: provide message integrity. No confidentiality.

– ex: Protecting public binaries on disk.

Alice Bob

k kmessage m tag

Generate tag:

 tag ← S(k, m)

Message Integrity: MACs

• Goal: provide message integrity. No confidentiality.

– ex: Protecting public binaries on disk.

Alice Bob

k kmessage m tag

Generate tag:

 tag ← S(k, m)

Verify tag:

 V(k, m, tag) = `yes’

?

Construction: HMAC (Hash-MAC)
Most widely used MAC on the Internet.

	 H: hash function.
	 example: SHA-256 ; output is 256 bits

Construction: HMAC (Hash-MAC)
Most widely used MAC on the Internet.

	 H: hash function.
	 example: SHA-256 ; output is 256 bits

Building a MAC out of a hash function:

– Standardized method: HMAC

	 	 S(k, msg) = H(k⊕opad ‖ H(k⊕ipad ‖ msg))

Why is this MAC construction secure?

	 	 … see the crypto course (40-675)

Combining MAC and ENC (Auth. Enc.)

	 	 Encryption key kE. MAC key = kI

Option 1: (SSL)

Option 2: (IPsec)

Option 3: (SSH)

msg m msg m MAC
enc kEMAC(kI, m)

msg m
Enc kE

MAC
MAC(kI, c)

msg m
enc kE

MAC
MAC(kI, m)

Combining MAC and ENC (Auth. Enc.)

	 	 Encryption key kE. MAC key = kI

Option 1: (SSL)

Option 2: (IPsec)

Option 3: (SSH)

msg m msg m MAC
enc kEMAC(kI, m)

msg m
Enc kE

MAC
MAC(kI, c)

msg m
enc kE

MAC
MAC(kI, m)

always 
correct

AEAD: Auth. Enc. with Assoc. Data

AES-GCM: CTR mode encryption then MAC

	 	 	 (MAC accelerated via Intel’s PCLMULQDQ instruction)

AEAD:

encrypted dataassociated data

authenticated

encrypted

Summary
Shared secret key:

• Used for secure communication and document encryption

Encryption: (eavesdropping security) [should not be used standalone]

• One-time key: ex: a stream cipher

• Many-time key: ex: AES-CTR with a unique/random nonce

Integrity: HMAC

Authenticated encryption: encrypt-then-MAC using AES-GCM

Dan Boneh

Crypto Concepts

encryption and
compression problems

Encryption and compression: oil and vinegar

HTTP: uses compression to reduce bandwidth

Option 1: first encrypt and then compress

• Does not work … ciphertext looks like a random string

Option 2: first compress and then encrypt

• Used in many Internet protocols (TLS, HTTP, QUIC, …)

• Trouble …

Trouble … [Kelsey’02]

Compress-then-encrypt reveals information:

POST /bank.com/buy?id=aapl

Cookie: uid=jhPL8g69684rksfsdg

POST /bank.com/buy?id=goog

Cookie: uid=jhPL8g69684rksfsdg

Second message compresses better than first:

	 	 network observer can distinguish the two messages!

Even worse: the CRIME attack [RD’2012]

Goal: steal user’s bank cookie

(simplified)

Even worse: the CRIME attack [RD’2012]

Javascript

Goal: steal user’s bank cookie

(simplified)

Even worse: the CRIME attack [RD’2012]

Javascript

Goal: steal user’s bank cookie

Javascript can issue requests to Bank,

but cannot read Cookie value

(simplified)

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=aapl

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

Javascript can issue requests to Bank,

but cannot read Cookie value

(simplified)

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=a

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=b

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=j

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

ciphertext slightly shorter

 ⇒ first character of Cookie is “j”

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=ja

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

observe ciphertext size

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=jh

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

ciphertext slightly shorter

 ⇒ 2nd character of Cookie is “h”

Even worse: the CRIME attack [RD’2012]

POST /bank.com/buy?id=uid=jh

Cookie: uid=jhPL8g69684rksfsdg

Javascript

Goal: steal user’s bank cookie

Recover entire cookie after 
	 	 256 × |Cookie| tries

Takes several minutes (simplified)

What to do?
• Disable compression ☹️

• Use a different compression context for parts  
under Javascript control and parts that are not

• Change secret (Cookie) after every request

What to do?
• Disable compression ☹️

• Use a different compression context for parts  
under Javascript control and parts that are not

• Change secret (Cookie) after every request

Does not eliminate inherent leakage due to compression

Dan Boneh

Crypto Concepts

Public key cryptography

(1) Public-key encryption
Tool for managing or generating symmetric keys

• E – Encryption alg.	 PK – Public encryption key

• D – Decryption alg.	 SK – Private decryption key

Algorithms E, D are publicly known.

Alice1
Em1 E(PK, m1)=c1

Bob

D
c D(SK,c)=m

Alice2
Em2 E(PK, m2)=c2

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk, ⋅) : a one-way function
– Computing y = F(pk, x) is easy
– One-way: given random y, finding x s.t. y = F(pk,x) is difficult

Building block: trapdoor permutations

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk, ⋅) : a one-way function
– Computing y = F(pk, x) is easy
– One-way: given random y, finding x s.t. y = F(pk,x) is difficult

3. Algorithm F-1(sk, ⋅) : Invert F(pk, ⋅) using trapdoor SK

	 	 	 F-1(sk, y) = x

Building block: trapdoor permutations

Example: RSA
1. KeyGen:	 generate two equal length primes p, q

	 set N ← p⋅q (3072 bits ≈ 925 digits)

	 set e ← 216+1 = 65537 ; d ← e-1 (mod ϕ(N))

	 pk = (N, e) ; sk = (N, d)

2. RSA(pk, x) :	 x → (xe mod N)

	 Inverting this function is believed to be as hard as factoring N

3. RSA-1(pk, y) :	 y → (yd mod N)

Public Key Encryption with a TDF
KeyGen: generate pk and sk

Public Key Encryption with a TDF
KeyGen: generate pk and sk

Encrypt(pk, m):
– choose random x ∈ domain(F) and set k ← H(x)

– c0 ← F(pk, x) , c1 ← E(k, m)	 (E: symmetric cipher)

– send c = (c0, c1)

Public Key Encryption with a TDF
KeyGen: generate pk and sk

Encrypt(pk, m):
– choose random x ∈ domain(F) and set k ← H(x)

– c0 ← F(pk, x) , c1 ← E(k, m)	 (E: symmetric cipher)

– send c = (c0, c1)

c0 c1

Public Key Encryption with a TDF
KeyGen: generate pk and sk

Encrypt(pk, m):
– choose random x ∈ domain(F) and set k ← H(x)

– c0 ← F(pk, x) , c1 ← E(k, m)	 (E: symmetric cipher)

– send c = (c0, c1)

Decrypt(sk, c=(c0,c1)): x ← F-1(sk, c0) , k ← H(x) , m ← D(k, c1)

c0 c1

Public Key Encryption with a TDF
KeyGen: generate pk and sk

Encrypt(pk, m):
– choose random x ∈ domain(F) and set k ← H(x)

– c0 ← F(pk, x) , c1 ← E(k, m)	 (E: symmetric cipher)

– send c = (c0, c1)

Decrypt(sk, c=(c0,c1)): x ← F-1(sk, c0) , k ← H(x) , m ← D(k, c1)

security analysis in crypto course

c0 c1

(2) Digital signatures
Goal: 	 bind document to author

• Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

(2) Digital signatures
Goal: 	 bind document to author

• Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from a trapdoor permutation (e.g. RSA)

sign(sk, m) := F-1 (sk, H(m))

verify(pk, m, sig) := accept if F(pk, sig) = H(m)

Digital signatures
Goal: 	 bind document to author

• Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document

Example: signatures from a trapdoor permutation (e.g. RSA)

sign(sk, m) := F-1 (sk, H(m))

verify(pk, m, sig) := accept if F(pk, sig) = H(m)

• Only someone who knows sk can sign a message m

• Anyone who has pk can verify a (msg, signature) pair

Certificates: bind Bob’s ID to a PK
How does Alice (browser) obtain Bob’s public key pkBob ?

CABrowser 
Alice

skCA

Server Bob

pkCA pkCA

Certificates: bind Bob’s ID to a PK
How does Alice (browser) obtain Bob’s public key pkBob ?

CA
pk and

proof “I am Bob”

Browser 
Alice

skCA

generate

 (sk,pk)

Server Bob

pkCA pkCA

Certificates: bind Bob’s ID to a PK
How does Alice (browser) obtain Bob’s public key pkBob ?

CA
pk and

proof “I am Bob”

Browser 
Alice

skCA

check

proofissue Cert with skCA :

Bob’s  
key is pk

generate

 (sk,pk)

Server Bob

pkCA pkCA

Certificates: bind Bob’s ID to a PK
How does Alice (browser) obtain Bob’s public key pkBob ?

CA
pk and

proof “I am Bob”

Browser 
Alice

skCA

check

proofissue Cert with skCA :

Bob’s  
key is pkBob’s  

key is pk

generate

 (sk,pk)

Server Bob

pkCA

verify

cert

pkCA

Certificates: bind Bob’s ID to a PK
How does Alice (browser) obtain Bob’s public key pkBob ?

CA
pk and

proof “I am Bob”

Browser 
Alice

skCA

check

proofissue Cert with skCA :

Bob’s  
key is pkBob’s  

key is pk

generate

 (sk,pk)

Server Bob

pkCA

verify

cert

Bob uses Cert for an extended period (e.g. one year)

pkCA

Dan Boneh

Sample certificate:

Signature schemes used in the real world

RSA signature scheme:

• Fast to verify, but signatures are long

• Often used in certificates

ECDSA, Schnorr, BLS signature schemes:

• Faster to generate signature and more compact than RSA

• Used everywhere, other than web certificates

(3) Key exchange

ServerBrowser

Goal: Browser and Server want a shared secret, unknown to attacker

(3) Key exchange

ServerBrowser

Goal: Browser and Server want a shared secret, unknown to attacker

key key

(3) Key exchange

ServerBrowser

Goal: Browser and Server want a shared secret, unknown to attacker

attacker ??
key key

(3) Key exchange

ServerBrowser

Goal: Browser and Server want a shared secret, unknown to attacker

Example: Diffie-Hellman key exchange.

• Only secure against eavesdropping

• TLS 1.3: enhances Diffie-Hellman key exchange  

	 	 ⟹ security against an active attacker

attacker ??
key key

Diffie–Hellman key exchange

[https://en.wikipedia.org/wiki/Diffie–Hellman_key_exchange]

https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

Dan Boneh

TLS 1.3 session setup (simplified)

Client Server

secret

key

certS

Dan Boneh

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShareClient Server

secret

key

certS

Dan Boneh

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…] 

CertVerify: Enc[SigS(data)] , Finished

Client Server

secret

key

certS

Dan Boneh

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…] 

CertVerify: Enc[SigS(data)] , Finished

Client Server

secret

key

certS

Diffie-Hellman key exchange

Dan Boneh

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…] 

CertVerify: Enc[SigS(data)] , Finished

Client Server

secret

key

Finished

session-keys ← HKDF(DHkey, nonceC , nonceS)

certS

Diffie-Hellman key exchange

Dan Boneh

TLS 1.3 session setup (simplified)

ClientHello: nonceC , KeyShare

ServerHello: nonceS , KeyShare, Enc[certS,…] 

CertVerify: Enc[SigS(data)] , Finished

Client Server

secret

key

Finished

session-keys ← HKDF(DHkey, nonceC , nonceS)

certS

Encrypted ApplicationData

Encrypted ApplicationData

Diffie-Hellman key exchange

Properties

Nonces: prevent replay of an old session

Forward secrecy: server compromise does not expose old sessions

Some identity protection: certificates are sent encrypted

Gmail

Properties

Nonces: prevent replay of an old session

Forward secrecy: server compromise does not expose old sessions

Some identity protection: certificates are sent encrypted

One sided authentication:
– Browser identifies server using server-cert
– TLS has support for mutual authentication

• requires a client pk/sk and client-cert

Gmail

Advanced Computer Security Certificate
Program

Copyright 2007 Stanford University
51

Example: Vehicle Safety Comm. (VSC)

Car 1 Car 2 Car 3 Car 41.

2. Car

Advanced Computer Security Certificate
Program

Copyright 2007 Stanford University
51

Example: Vehicle Safety Comm. (VSC)

Car 1 Car 2 Car 3 Car 4

brake
1.

2. Car

Advanced Computer Security Certificate
Program

Copyright 2007 Stanford University
51

Example: Vehicle Safety Comm. (VSC)

Car 1 Car 2 Car 3 Car 4

brake
1.

2. Car Ambulance

out of my
way !!

Advanced Computer Security Certificate
Program

Copyright 2007 Stanford University
51

Example: Vehicle Safety Comm. (VSC)

Car 1 Car 2 Car 3 Car 4

brake
1.

2. Car Ambulance

out of my
way !!

 Require authenticated (signed) messages from cars.

− Prevent impersonation and DoS on traffic system.

Privacy problem: cars broadcasting signed (x,y, v).

Advanced Computer Security Certificate
Program

Copyright 2007 Stanford University
51

Example: Vehicle Safety Comm. (VSC)

Car 1 Car 2 Car 3 Car 4

brake
1.

2. Car Ambulance

out of my
way !!

 Require authenticated (signed) messages from cars.

− Prevent impersonation and DoS on traffic system.

Privacy problem: cars broadcasting signed (x,y, v).

Clean solution: group sigs. Group = set of all cars.

Summary: crypto concepts
Symmetric cryptography:

	 Authenticated Encryption (AE) and message integrity

Public-key cryptography:

	 Public-key encryption, digital signatures, key exchange

Certificates: bind a public key to an identity using a CA

– Used in TLS to identify server (and possibly client)

Modern crypto: goes far beyond basic encryption and signatures

