Crypto Concepts

Symmetric encryption,

Public key encryption,
and TLS
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Cryptography

|s:
— A tremendous tool for protecting information
— The basis for many security mechanisms

Is not:
— The solution to all security problems
— Reliable unless implemented and used properly
— Something you should try to invent yourself



Goal 1: Secure communication

(protecting data in motion)
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Transport Layer Security / TLS



Transport Layer Security / TLS

Standard for Internet security

— Goal: “.. provide privacy and reliability between two
communicating applications”

Two main parts

1. Handshake Protocol: Establish shared secret key
using public-key cryptography

2. Record Layer: Transmit data using negotiated key

Our starting point: Using a key for encryption and integrity



Goal 2: protected files

(protecting data at rest)

File system

Alice File 1 » Alice

nnnnnnnn
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Goal 2: protected files

(protecting data at rest)

File system

File 1

» Alice

No eavesdropping
No tampering




Building block: symmetric cipher

nonce
/ iy éj Bob
E(k,m,n3=c X i. D(k,c,n)=m
‘ [
k

E, D: cipher  k: secret key (e.g. 128 bits)
m, c: plaintext, ciphertext N: nonce (non-repeating)

Alice

Encryption algorithm is publicly known
= never use a proprietary cipher



Use Cases

Single use key: (one time key)

« Key is only used to encrypt one message
e encrypted email: new key generated for every email
« No need for nonce (setto0)

Multi use key: (many time key)

o Key is used to encrypt multiple messages or multiple files
e TLS: same key used to encrypt many frames

o Use either a unique nonce or a random nonce



First example: One Time Pad (singte use key)
Vernam (1917)

Key:

Plaintext:

Ciphertext:

Encryption: c=E(k, m)=m @ k
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Key:

Plaintext:

Ciphertext:
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Decryption: D(k,c)=c Pk



First example: One Time Pad (singte use key)
Vernam (1917)

Key:

Plaintext:

Ciphertext:

Encryption: c=E(k, m)=m @ k

Decryption: Dk, c)=c@®k =(m P k) Pk=m



One Time Pad (OTP) Security

Shannon (1949):

— OTP is “secure” against one-time eavesdropping

— without key, ciphertext reveals no “information”
about plaintext

Problem: OTP key is as long as the message



St ream Cl p h ers (single use key)

Problem: OTP key is as long as the message
Solution: Pseudo random key -- stream ciphers

| key |
C < PRG(k) ®m
®
[ message |
| ciphertext |

Example: ChaCha20 (one-timeifnononce) key: 128 or 256 bits.



Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:
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Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:
C, < m; @ PRG(k)
C, < m, ® PRG(k)
Eavesdropper does:

c,®c, — m,® m,

Enough redundant information in English that:

m1®m2e m,, m,



Dangers in using stream ciphers

One time key !! “Two time pad” is insecure:

C, < m; @ PRG(k)

¢, < m, ® PRG(K) What if want to use
same key to encrypt
Eavesdropper does: two files?
¢, ®c, — m, ® m,

Enough redundant information in English that:

m® m, — m,, m,



Block ciphers: crypto work horse

n bits n bits
PT Block ————— — CT Block

Key k Bits

Canonical examples:

2. AES: n=128 bits, k =128, 192, 256 bits




Block Ciphers Built by Iteration

v v v v
m—>;~—>;~—>;~n— ---------- —>;—>C
o o oc o

R(k,m): round function

for AES-128: 10 rounds, AES-256:n=14 rounds



AES-NI: AES in hardware (intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
e aesenc, aesenclast: one round of AES

aesenc xmml, xmma2 (result written to xmm1)

\ ) \ )

state  round key
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AES-NI: AES in hardware (intel, AMD, ARM)

New x86 hardware instructions used to implement AES:
e aesenc, aesenclast: one round of AES
aesenc xmml, xmma2 (result written to xmm1)

\ ) \ )

state  round key

« aesdec, aesdeclast: one round of AES
« aeskeygenassist: do AES key expansion

=—> more than 10x speedup over a software AES

—> better security: all AES instructions are constant time



Incorrect use of block ciphers

Electronic Code Book (ECB):

PT- | [ LLLEE| [ [T, ] [ | = = | | | |
cT: | [ [C 1 [ [C, ] [ | == | [ |
Problem:

—if m&=m, then c,=c,



In pictures

An example plaintext

Encrypted with AES in ECB

Dan Boneh



CTR mode encryption (eavesdropping security)

Counter mode with a random IV: (parallel encryption)

m[0]  m[1]

@
E(kIV) E(kIV+1) ...  E(kIV+L)
clo]  c1] ClL]
ciphertext

Why is this secure for multiple messages? See the crypto course (40-675)



A Warning

eavesdropping security is insufficient for most applications

Need also to defend against active (tampering) attacks.
CTR mode is insecure against active attacks!

Next: methods to ensure message integrity



Message Integrity: MACs

« Goal: provide message integrity. No confidentiality.

— ex: Protecting public binaries on disk.

K K

Ao ——
> -




Message Integrity: MACs

« Goal: provide message integrity. No confidentiality.

— ex: Protecting public binaries on disk.

K K

- message m tag
> -

Generate tag:
tag < S(k, m)




Message Integrity: MACs

« Goal: provide message integrity. No confidentiality.

— ex: Protecting public binaries on disk.

K K

- message m tag
> -

Generate tag: Verify tag: 2
tag < S(k, m) V(k, m, tag) = ‘yes’




Construction: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash tunction.
example: SHA-256 ; outputis 256 bits




Construction: HMAC (Hash-MAC)

Most widely used MAC on the Internet.

H: hash tunction.
example: SHA-256 ; outputis 256 bits

Building a MAC out of a hash function:

— Standardized method: HMAC
S(k, msg) = H( k®opad || H( k®ipad || msg) )




Why is this MAC construction secure?

... see the crypto course (40-675)



Combining MAC and ENC (Auth. Enc.)

Encryption key k. MAC key = k;

Option 1: (SSL

Option 1: (SSL) MAC(k;, m) enc kg
Cmsgm o [ omsgm [OMAGH - [

Option 2: (IPsec

Option 2: (IPsec) Enc ke MAC(K;, c)
- = - BB

Option 3: (SSH) enc ke MAC(k;, m)

llllllllllllllllllllllllll
rrrrrrrrrrrrr-1 - —N\ L T L 1L 1 1T 11

llllllllllllllllllllllllll
TrTryrrrrrrrrrrrrvr1 ‘"——/ AL L L L L 1T 1 I T I 1

llllllllllllllllllllllllll




Combining MAC and ENC (Auth. Enc.)

Encryption key k. MAC key = k;

Option 1: (SSL) MAC(k;, m)

enc Kg
B v EeE——
Option 2: (IPsec
always ) Enc ke a2
B = > B
correct
Option 3: (SSH) enc ke MAC(k;, m)

llllllllllllllllllllllllll
IIIIIIIIIIIIIIIIIIIIIIIIII
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AEAD: Auth. Enc. with Assoc. Data

AEAD: encrypted

associated data

authenticated

AES-GCM: CTR mode encryption then MAC
(MAC accelerated via Intel’s PCLMULQDQ instruction)



Summary

Shared secret key:

e Used for secure communication and document encryption

Encryption: (eavesdropping security) [should not be used standalone]
e One-time key: ex: a stream cipher

e Many-time key: ex: AES-CTR with a unique/random nonce

/Integrity: HMAC A

Authenticated encryption: encrypt-then-MAC using AES-GCM
. /




Crypto Concepts

encryption and
compression problems




Encryption and compression: oil and vinegar

HTTP: uses compression to reduce bandwidth

Option 1: first encrypt and then compress

« Does not work ... ciphertext looks like a random string

Option 2: first compress and then encrypt

o Used in many Internet protocols (TLs, HTTP, QUIC, ...)

e Trouble ...



Trouble ... e

Compress-then-encrypt reveals information:

POST /bank.com/buy?id=aapl
Cookie: uid=jhPL8g69684rksfsdg

N

POST /bank.com/buy?id=goog [] ‘
Cookie: uid=jhPL8g69684rksfsdg | '

Second message compresses better than first:
network observer can distinguish the two messages!



Even worse: the CRIME attack o

Goal: steal user’s bank cookie

il
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Even worse: the CRIME attack o

Goal: steal user’s bank cookie

. %

POST /bank.com/buy?id=aapl | [] ‘
Cookie: uid=jhPL8g69684rksfsdg

Javascript

Javascript can issue requests to Bank,
but cannot read Cookie value




Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST/bank.com/buy?id=uid=a | [] ‘
Cookie: uid=jhPL8g69684rksfsdg
)

Javascript

observe ciphertext size




Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST/bank.com/buy?id=uid=b | [] ‘
Cookie: uid=jhPL8g69684rksfsdg
)

Javascript

observe ciphertext size




Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST/bank.com/buy?id=uid=j | ‘
Cookie: uid=jhPL8g69684rksfsdg
)

Javascript

ciphertext slightly shorter

o7

= first character of Cookie is “j




Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST/bank.com/buy?id=uid=ja | [] ‘
Cookie: uid=jhPL8g69684rksfsdg
)

Javascript

observe ciphertext size




Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST/bank.com/buy?id=uid=jh | ‘
Cookie: uid=jhPL8g69684rksfsdg
)

Javascript

ciphertext slightly shorter
= 2nd character of Cookie is “h”




Even worse: the CRIME attack o

Goal: steal user’s bank cookie

POST /bank.com/buy?id=uid=jh
Cookie: uid=jhPL8g69684rksfsdg

3
il

Javascript

Recover entire cookie after
256 x |Cookie| tries

Takes several minutes (simplified)




What to do?

Disable compression !

Use a different compression context for parts
under Javascript control and parts that are not

Change secret (Cookie) after every request



What to do?

Disable compression !

Use a different compression context for parts )
under Javascript control and parts that are not

Change secret (Cookie) after every request

Does not eliminate inherent leakage due to compression



Crypto Concepts

Public key cryptography







(1) Public-key encryption

Tool for managing or generating symmetric keys

Alice
m PK, m)=C, — Bob
g ,/\, = C D(SK,c)=m

Alice
m
E(PK, m,)=c,
« E—Encryption alg. PK — Public encryption key
« D —Decryption alg. SK — Private decryption key

Algorithms E, D are publicly known.




Building block: trapdoor permutations

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk, ©) : a one-way function
— Computing vy = F(pk, x) is easy
— One-way: given random vy, finding x s.t. y=F(pk,x) is difficult




Building block: trapdoor permutations

1. Algorithm KeyGen: outputs pk and sk

2. Algorithm F(pk, ©) : a one-way function
— Computing vy = F(pk, x) is easy
— One-way: given random vy, finding x s.t. y=F(pk,x) is difficult

3. Algorithm F(sk, -) : Invert F(pk, ) using trapdoor SK

Fi(sk, y) = x



Example: RSA

1. KeyGen: generate two equal length primes p, g
set N< pq (3072 bits = 925 digits)
set e<—216+41=65537 ; d< e’ (mody(N))

pk =(N, e) ;o sk=(N, d)

2. RSA(pk, x): X — (x¢ mod N)

Inverting this function is believed to be as hard as factoring N

3. RSAY(pk, y) : y — (y9mod N)



Public Key Encryption with a TDF

KeyGen: generate pk and sk



Public Key Encryption with a TDF

KeyGen: generate pk and sk

Encrypt(pk, m):
— chooserandom x & domain(F) andset k < H(x)
_ ¢, < Flpk,x) , c; < E(k, m) (E: symmetric cipher)

— send c=(c, ¢
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Public Key Encryption with a TDF

Co ¢

KeyGen: generate pk and sk

Encrypt(pk, m):
— chooserandom x & domain(F) andset k < H(x)
_ ¢, < Flpk,x) , c; < E(k, m) (E: symmetric cipher)

— send c=(c, ¢

Decrypt(sk, c=(c,c,) ):  x<= F'(sk,c,) , k<—H(x), m<D(k c,)

security analysis in crypto course




(2) Digital signatures

Goal: bind document to author

* Problem: attacker can copy Alice’s sig from one doc to another

Main idea: make signature depend on document



(2) Digital signatures

Goal: bind document to author

* Problem: attacker can copy Alice’s sig from one doc to another
Main idea: make signature depend on document

Example: signatures from a trapdoor permutation (e.g. RSA)

sign( sk, m) := F*(sk, H(m))

verify(pk, m, sig) := acceptif F(pk, sig) = H(m)




Digital signatures

Only someone who knows sk can sign a message m

Anyone who has pk can verify a (msg, signature) pair

sign( sk, m) := F*(sk, H(m))

verify(pk, m, sig) := acceptif F(pk, sig) = H(m)




Certificates: bind Bob’s ID to a PK

How does Alice (browser) obtain Bob’s public key pkg,, ?

Browser Server Bob CA

Alice

PKca pkea
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Certificates: bind Bob’s ID to a PK

How does Alice (browser) obtain Bob’s public key pkg,, ?

Server Bob

generate
(sk,pk)

pkea

pk and

CA

proot “I am Bob”




Browser

Alice

PKca

Certificates: bind Bob’s ID to a PK

How does Alice (browser) obtain Bob’s public key pkg,, ?

Server Bob

generate
(sk,pk)

pkea

pk and

CA

proot “I am Bob”

issue Cert with sk, :

A

check
proof




Certificates: bind Bob’s ID to a PK

How does Alice (browser) obtain Bob’s public key pkg,, ?

Browser Server Bob CA
Alice generate pk and
(sk,pk) proof “Tam Bob” g
check
PKca pKca issue Cert with sk, : Sl

< Bob’s
verify @ Bob’s ; iﬁl;ey is pk ?

cert ¥ key is pk




Certificates: bind Bob’s ID to a PK

How does Alice (browser) obtain Bob’s public key pkg,, ?

Browser Server Bob CA
Alice generate pk and
(sk,pk) proof “Tam Bob” g
check
PKca pKca issue Cert with sk, : Sl

< Bob’s
verify @Bob’s ; iﬁl;ey is pk q

cert ¥ key is pk

Bob uses Cert for an extended period (e.g. one year)



Sample certificate:

= mail.google.com
j"/'/(/” ‘ Issued by: Google Internet Authority G3
T "-r’ Expires: Wednesday, June 20, 2018 at 6:25:00 AM Pacific
Daylight Time
@ This certificate is valid
Vv Details

Country
State/Province
Locality
Organization
Common Name

Country
Organization
Common Name

Serial Number
Version
Signature Algorithm

us

California
Mountain View
Google Inc
mail.google.com

us
Google Trust Services
Google Internet Authority G3

3495829599616174946
3
SHA-256 with RSA

Algorithm
Parameters
Public Key
Key Size
Key Usage

Signature

Elliptic Curve Public Key ( 1.2.840.10045.2.1)
Elliptic Curve secp256r1 ( 1.2.840.10045.3.1.7 )
65 bytes : 04 D5 63 FC 4D F9 4E 91....

256 bits

Encrypt, Verify, Derive

256 bytes : 3F FE 04 7B BEB0 321D ...

Dan Boneh



Signature schemes used in the real world

RSA signature scheme:
« Fast to verify, but signatures are long
o Often used in certificates

ECDSA, Schnorr, BLS signature schemes:
« Faster to generate signature and more compact than RSA
« Used everywhere, other than web certificates



(3) Key exchange

Goal: Browser and Server want a shared secret, unknown to attacker

>
Browser < Server
>
<
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Goal: Browser and Server want a shared secret, unknown to attacker
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(3) Key exchange

Goal: Browser and Server want a shared secret, unknown to attacker

>
Browser <€ Server
>
(

l t_attacker 27 \

key key




(3) Key exchange

Goal: Browser and Server want a shared secret, unknown to attacker

>
Browser < Server
>
<

I Lattacker ?7? \

k ke
~ Example: Diffie-Hellman key exchange. ’

e Only secure against eavesdropping
« TLS 1.3: enhances Diffie-Hellman key exchange

—> security against an active attacker



Diffie—Hellman key exchange

Alice Bob

Common paint

+ +
- Secret colours 9
3 3

Public transport

(assume that
mixture separation >.<

is expensive) -
Secret colours 9

Common secret

N
\

[https://en.wikipedia.org/wiki/Diffie—Hellman_key exchange]


https://en.wikipedia.org/wiki/Diffie%E2%80%93Hellman_key_exchange

TLS 1.3 session setup (simplified)

Client

Server

nnnnnnnn



TLS 1.3 session setup (simplified)

Client

ClientHello: nonce., KeyShare

Server




TLS 1.3 session setup (simplified)

Client

ClientHello: nonce., KeyShare

ServerHello: nonces , KeyShare, Enc[certs,...]

CertVerify: Enc[Sigg(data)] ,

Finished

Server




TLS 1.3 session setup (simplified)

Client

[\ Diffie-Hellman key exchange

ClientHello: nonce., KeyShare

ServerHello: nonces , KeyShare, Enc[certs,...]

CertVerify: Enc[Sigg(data)] ,

Finished

Server

secret
key




TLS 1.3 session setup (simplified)

{\ Diffie-Hellman key exchange

Client ClientHello: nonce., KeyShare \/ Server
ServerHello: nonces , KeyShare, Enc[certs,...] e —

CertVerify: Enc[Sigg(data)], Finished key

cert
Finished

—

session-keys <= HKDF( DHkey, nonce., nonceq )

Dan Boneh



TLS 1.3 session setup (simplified)

[\ Diffie-Hellman key exchange

Client ClientHello: nonce., KeyShare \/ Server
ServerHello: nonces , KeyShare, Enc[certs,...] e —
CertVerify: Enc[Sigg(data)], Finished key

cert
Finished

—

session-keys <= HKDF( DHkey, nonce., nonceq )

EnchEted AEEIicationData i
Encrxeted AgelicationData

Dan Boneh
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P rO p e rt I e S @ Connection - secure (strong TLS 1.3)

Nonces: prevent replay of an old session Gmail

Forward secrecy: server compromise does not expose old sessions

Some identity protection: certificates are sent encrypted



[ ]
P rO p e rt I e S @ Connection - secure (strong TLS 1.3)

Nonces: prevent replay of an old session Gmail

Forward secrecy: server compromise does not expose old sessions

Some identity protection: certificates are sent encrypted

One sided authentication:
— Browser identifies server using server-cert
— TLS has support for mutual authentication
e requires a client pk/sk and client-cert



Example: Vehicle Safety Comm. (VSC)
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Example: Vehicle Safety Comm. (VSC)

= ) =) = )

< brake

-(((um(i

out of my
way !




Example: Vehicle Safety Comm. (VSC)

) ) e )

< brake

) -((((((u(i way !

Require authenticated (signed) messages from cars.
— Prevent impersonation and DoS on traffic system.

Privacy problem: cars broadcasting signed (x,y, V).




Example: Vehicle Safety Comm. (VSC)

) =) e

< brake

2 -(((um(i way !

Require authenticated (signed) messages from cars.
— Prevent impersonation and DoS on traffic system.

Privacy problem: cars broadcasting signed (x,y, V).

Clean solution: group sigs. Grourp = set of all cars.



Summary: crypto concepts

Symmetric cryptography:
Authenticated Encryption (AE) and message integrity

Public-key cryptography:
Public-key encryption, digital signatures, key exchange

Certificates: bind a public key to an identity using a CA
— Used in TLS to identify server (and possibly client)

Modern crypto: goes far beyond basic encryption and signatures



