
Security Principles and OS Security
CS155 Computer and Network Security

Acknowledgments: Lecture slides are from the Computer Security course taught
by Dan Boneh and Zakir Durumeric at Stanford University. When slides are
obtained from other sources, a a reference will be noted on the bottom of that
slide. A full list of references is provided on the last slide.

Vulnerabilities are Inevitable
Any single buffer overflow, use-after-free, or null pointer
dereference might allow an attacker to run malicious code

We’re getting better at finding and preventing bugs, but
vulnerabilities are still common. There will always be bugs.

Example: In January 2021, Qualys discovered a heap overflow
in sudo that allows users to run programs with the security
privileges of another user. The bug was introduced in 2011
(CVE-2021-3156) and affected Linux, Mac OS, and BSD.

Even Safe Languages have Bugs!

Python language is written in C and has itself had vulnerabilities

CVE-2016-5636: Integer overflow in the get_data function
allows attackers to trigger a heap-based buffer overflow in
zipimport.c by specifying a negative data size

Bug could be triggered inside of interpreted Python scripts

Systems must be designed to be
resilient in the face of both software
vulnerabilities and malicious users

Defense in Depth
Systems should be built with security protections at multiple layers

Example: What if there’s a vulnerability in Chrome’s Javascript interpreter?

• Chrome should prevent malicious website from accessing other tabs

• OS should prevent access to other processes  

(e.g., Password Manager)

• HW should prevent permanent malware  

installation in device firmware

• Network should prevent malware  

from infecting nearby computers

Defense in Depth
Systems should be built with security protections at multiple layers

Example: What if there’s a vulnerability in Chrome’s Javascript interpreter?

• Chrome should prevent malicious website from accessing other tabs

• OS should prevent access to other processes  

(e.g., Password Manager)

• HW should prevent permanent malware  

installation in device firmware

• Network should prevent malware  

from infecting nearby computers

Principles of Secure Systems

 ✓ Defense in depth

 ✓ Principle of least privilege

 ✓ Privilege separation

 ✓ Open design (Kerckhoffs's principle)

 ✓ Keep it simple

Least Privilege

Users should only have access to the data
and resources needed to perform routine,
authorized tasks 

Real World Examples:
• Faculty can only change grades for

classes they teach

• Only employees with background checks

have access to classified documents

Least Privilege (2)
Faculty can only change grades for classes they teach.

 

Who are we really protecting against?
• Faculty themselves — curious or even 

malicious — could cause widespread  
damage

• External attackers — a student would  
need to own only the single least secure 
faculty member on campus — huge  
attack surface

Privilege Separation

Least Privilege requires dividing a system
into parts to which we can limit access

Known as Privilege Separation

Segmenting a system into components with
the least privilege needed can prevent an
attacker from taking over the entire system

Security Subjects
Least privilege and privilege separation apply to more than just users!

- UNIX: A User should only be able to read their own files

- UNIX: A Process should not be able to read another process’s memory

- Mobile: An App should not able to edit another app’s data

- Web: A Domain should only be able to read its own cookies

- Networking: Only trusted a Host should be able to access file server

Least Privilege: Users Subjects should only have access to access the
data and resources needed to perform routine, authorized tasks

Security Policies
Subject (Who?): acting system principals (e.g., user, app, process)

Object (What?): protected resources (e.g., memory, files, HW devices)
Operation (How?): how subjects operate on objects (e.g., read, delete)
 

Example Security Policies:

- UNIX: A User should not be able to delete other users’ files

- UNIX: A Process should not be able to read another process’s memory

- Mobile: An App should only be able to edit its own data

- Web: A Domain should not be able to read another domain’s cookies

UNIX Security Model

UNIX Security Model
Subjects (Who?)

 - Users, processes

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations (How?)

 - Read, Write, Execute

UNIX Security Model
Subjects (Who?)

 - Users, processes

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations (How?)

 - Read, Write, Execute

UNIX Security Model
Subjects (Who?)

 - Users, processes

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations (How?)

 - Read, Write, Execute

UNIX Security Model
Subjects (Who?)

 - Users, processes

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations (How?)

 - Read, Write, Execute

UNIX Security Model
Subjects (Who?)

 - Users, processes

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations (How?)

 - Read, Write, Execute

UNIX Security Model
Subjects (Who?)

 - Users, processes

Objects (What?)

 - Files, directories

 - Files: sockets, pipes, hardware devices, kernel objects, process data

Access Operations (How?)

 - Read, Write, Execute

Users
UNIX systems have many accounts

- Service accounts

- Used to run background processes (e.g., web server)

- User accounts

- Typically tied to a specific human

Every user has a unique integer ID — User ID — UID

UID 0 is reserved for special user root that has access to everything
 - Many system operations can only run as root

Example Users
You can view the users on your system by looking at /etc/passwd:

root:x:0:0:root:/root:/bin/bash  

www-data:x:33:33:www-data:/var/www:/usr/sbin/nologin

backup:x:34:34:backup:/var/backups:/usr/sbin/nologin

systemd-resolve:x:101:103:,,,:/run/systemd/resolve:/usr/sbin/nologin 

zakir:x:1001:1001:Zakir Durumeric,,,:/home/zakir:/bin/bash

dabo:x:1009:1009:Dan Boneh,,,:/home/dabo:/usr/sbin/nologin

Groups
UNIX has also groups — collections of users who can share files and
other system resources

Every group has a group ID (GID) and name

File Ownership
All Linux resources — sockets, devices, files — are managed as files

All files and directories have a single user owner and group owner

zakir@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 zakir cs155-tas 4096 Apr 2 15:56 homework
d rwx rwx --- 5 zakir cs155-instr 4096 Apr 2 15:56 grades
d rwx rwx r-x 11 zakir cs155-tas 4096 Dec 28 21:09 lectures
- rwx r-x r-- 1 zakir dabo 0 Apr 11 04:15 test.py

User Owner Group Owner

Access Control
Three subjects have access to a file: user owner, group owner, other

Subjects can have three operations: read, write, execute

Owner can change permissions and group. Root can change user ownership.

zakir@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 zakir cs155-tas 4096 Apr 2 15:56 homework
d rwx rwx --- 5 zakir cs155-instr 4096 Apr 2 15:56 grades
d rwx rwx r-x 11 zakir cs155-tas 4096 Dec 28 21:09 lectures
- rwx r-x r-- 1 zakir dabo 0 Apr 11 04:15 test.py

User GroupGroup
User Other

Access Control Example 1
zakir@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 zakir cs155-tas 4096 Apr 2 15:56 homework
d rwx rwx --- 5 zakir cs155-instr 4096 Apr 2 15:56 grades
d rwx rwx r-x 11 zakir cs155-tas 4096 Dec 28 21:09 lectures
- rwx r-x r-- 1 zakir dabo 0 Apr 11 04:15 test.py

User GroupGroup
User Other

Q: What Drew (member of cs155-tas) do to homework?

Access Control Example 2
zakir@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 zakir cs155-tas 4096 Apr 2 15:56 homework
d rwx rwx --- 5 zakir cs155-instr 4096 Apr 2 15:56 grades
d rwx rwx r-x 11 zakir cs155-tas 4096 Dec 28 21:09 lectures
- rwx r-x r-- 1 zakir dabo 0 Apr 11 04:15 test.py

User GroupGroup
User Other

Q: If a student has access to this server,  
which files can they access?

Access Control Lists (ACLs)
UNIX’s permission model is a simple implementation of a generic access
control strategy known as Access Control Lists (ACLs)

hw/

Dan read/write

Zakir read/write

Amelie read

Every object has an ACL that identifies what
operations subjects can perform.

Each access to an object is checked against
the object’s ACL.

Role Based Access Control (RBAC)
Access control matrices can grow complex as number of subjects, objects,
and possible operations grow.

Observation: Users change more often than roles

hw/ exams/ grades/ lectures/

cs155-instr r/w r/w r/w r/w

cs155-tas r/w read — r/w

cs155-students read — — read

cs-students — — — read

UNIX Processes

Processes
Processes are isolated

• Processes cannot access each other’s memory

Processes run as a specific user

• When you run a process, it runs with your UID’s permissions

• Process can access any files that the UID has access to

• Processes run by the same UID have the same permissions

Processes started by root can can reduce their privileges by changing
their UID to a less privileged UID

Process Example

When you run a command, it runs with all of your privileges because your
shell runs as your user account and forks to start the command

When any process forks, it inherits its parents UID

zakir@scratch-01:~$ ls -l

total 8

d rwx rwx --- 5 zakir cs155-tas 4096 Apr 2 15:56 homework
d rwx rwx --- 5 zakir cs155-instr 4096 Apr 2 15:56 grades

Process User IDs

Every process has three different User IDs:

Effective User ID (EUID)
 - Determines the permissions for process 
Real User ID (RUID)
 - Determines the user that started the process 

Saved User ID (SUID)
 - EUID prior to change

]Typically same value

(user who started process)

Changing User IDs

root can change EUID/RUID/SUID to arbitrary values

Unprivileged users can change EUID to only RUID or SUID

 setuid(x):

 Effective User ID (EUID)

 Real User ID (RUID)

 Saved User ID (SUID)

=> x

=> x

=> x

Reducing Privilege through setuid
Apache Web Server must start as root because only root can create
a socket that listens on port 80 (a privileged port)

Without any privilege reduction, any Apache bug would result in the
attacker having unrestricted server access

Instead, Apache creates children using the following scheme:

 if (fork() == 0) {

 int sock = socket(“:80”);

 setuid(getuid(“www-data”));

 }

Temporarily Changing UID
Remember: unprivileged users can change EUID back to the RUID or SUID

setuid(x):
 Effective UID => x

 Real UID => x

 Saved UID => x

seteuid(x):

 Effective UID => x

 Real UID (no change)

 Saved UID (no change)

EUID = RUID =SUID = 0

seteuid(100);

EUID=100; RUID/SUID=0;

<perform dangerous operation>

setuid(0)

EUID = RUID = SUID = 0

SSH Example

Suppose SSH runs as root and runs the following code:

if (authenticate(uid, pwd) == S_SUCCESS) {

 if (fork() == 0) {

 seteuid(uid);

 exec(“/bin/bash”);

 }

}

SSH Example — Vulnerable

Suppose SSH runs as root and runs the following code:

if (authenticate(uid, pwd) == S_SUCCESS) {

 if (fork() == 0) {

 seteuid(uid);

 exec(“/bin/bash”);

 }

}

EUID := uid, RUID and SUID unchanged

Attack: user can call setuid(0)  
to become root because SUID == 0

SSH Example — Correct Syscall
Suppose SSH runs as root and runs the following code:

if (authenticate(uid, pwd) == S_SUCCESS) {

 if (fork() == 0) {

 seteuid(uid);

 setuid(uid);

 exec(“/bin/bash”);

 }

}

EUID := uid, RUID := uid, SUID := uid

User cannot change UID

UNIX Process Tree
Main system process starts as root and forks

Output of pstree -u  

systemd─┬─accounts-daemon───2*[{accounts-daemon}]

 ├─lighttpd(www-data)

 ├─rsyslogd(syslog)───3*[{rsyslogd}]

 ├─screen(zakir)───bash─┬─zdns───82*[{zdns}]

 │ └─ziterate

 ├─sshd─┬─sshd───sshd(zakir)───bash───pstree

 │ └─sshd───sshd(dabo)───bash

 ├─systemd-resolve(systemd-resolve)

SETUID Bit — Elevating Privileges

The passwd utility allows you to change your password by updating
password /etc/shadow — a file that only root can read/write

Normally, this would not be possible. Remember: executables run with
the privilege of the executing user — and your account can’t access

UNIX allows you to set EUID of an executable to be the file owner
rather than the executing user.

SETUID on passwd

setuid

Q: How does passwd know which user it should  
allow the caller change the password for?

setuid vs. setuid (🙀)

setuid syscall (in code):  
Allows caller to change
User IDs of the process

setuid(x):
 Effective UID => x

 Real UID => x

 Saved UID => x

setuid bit on Executable 
Execution runs as owner
and group of executable
rather than the calling user

Becoming Root User
System configuration files are owned by root

Important system processes run as root

Sometimes, you as a user, need to "become" root to fix problems

sudo: run a single command as root (requires you to be blessed)

su: allows you to become root by knowing its password

sudo su: become root without their password

Worst privilege separation ever?

Traditional UNIX distinguished between privileged processes (EUID == 0)
and unprivileged processes (EUID != 0)

Privileged processes bypass all kernel permission checks, while unprivileged
processes are subject to full permission checking

Lots of utilities — like ping — depend on setuid

Exceptionally dangerous — a bug in many utilities can lead to compromise

Linux Capabilities

Capabilities segment root powers into components, such that if a program
that has one or more capabilities is compromised, damage is limited

CAP_KILL
Bypass permission checks for sending signals

CAP_NET_BIND_SERVICE
Bind a socket to privileged ports (port < 1024).

CAP_SYS_PTRACE
Trace arbitrary processes using ptrace

Overview of UNIX Security Mechanisms

Pros
 + Simple model provides protection for most situations

 + Flexible enough to make most simple systems possible in practice

Cons
 - ACLs are coarse grained — doesn’t account for enterprise complexity

 - ACLs don’t handle different applications within a single user account

 - Nearly all system operations require root access — people are sloppy

Windows Security Model

Flexible ACLs
Windows has complex access
control options

Objects have full ACLs — possibility
for fine grained permissions

Users can be member of multiple
groups, groups can be nested

ACLs support Allow and Deny rules

Object Security Desriptors
Every object has a security descriptor

 - Specifies who can perform what and audit rules

Contains

 - Security identifiers (SIDs) for the owner and primary group of an object.

 - Discretionary ACL (DACL): access rights allowed users or groups.

 - System ACL (SACL): types of attempts that generate audit records

Tokens

Every process has a set of tokens — its “security context”

- ID of user account

- ID of groups

- ID of login session

- List of OS privileges held by user/groups

- List of restrictions

 

Impersonation token can be used temporarily to adopt a different context  

Access Request

When a process wants to access an
object, it presents its set of security
tokens (security context)

Windows checks whether the security
context has access to the object based
on the object’s security descriptor

Group1: Administrators
Group2: Poets

Control flags

Group SID
DACL Pointer
SACL Pointer

Deny
Poets
Read, Write
Allow
Mark
Read, Write

Owner SID

Revision Number

Access token

Security
descriptor

User: Mark

Capabilities vs. ACLs

Capabilities: subject presents an unforgeable ticket
that grants access to an object. System doesn’t
care who subject is, just that they have access

ACL: system checks where subject is on list of
users with access to the object

Weak Protection on Desktops

Relying on user permission provides user with little protection against
malicious applications

Malicious application running as you has access to all of your files

Adobe Acrobat can edit, delete, and encrypt/ransom all of your data

Mac OS App Sandbox

Mac OS now sandboxes many applications and mediates access to:

- Hardware (Camera, Microphone, USB, Printer)

- Network Connections (Inbound or Outbound)

- App Data (Calendar, Location, Contacts)

- User Files (Downloads, Pictures, Music, Movies, User Selected Files)

Access to any resource not explicitly requested in the project definition is
rejected by the system at run time.

Android Process Isolation

Android uses Linux and its own kernel application sandbox for isolation

Each application runs with its own UID in its own VM

 - Apps cannot interact with one another

 - Limit access to system resources (decided at installation time)

Reference monitor checks permissions on intercomponent communication

Chrome Security
Architecture

Modern Chrome Architecture

Pre 2006 Modern

Chrome Processes
Browser Process 
Controls "chrome" part of the application  
like address bar and, bookmarks. Also  
handles the invisible, privileged parts of a  
web browser like network requests.

Renderer Process 
Controls anything inside of the tab where  
a website is displayed.

Plugin Process 
Controls any plugins used by the website, for example, flash.

GPU Process 
Handles GPU tasks in isolation from other processes. It is separated into different process
because GPUs handles requests from multiple apps and draw them in the same surface

Process-Based Site Isolation

Chrome Architecture

Broker (Main Browser) 
Privileged controller/supervisor of the
activities of the sandboxed processes

Renderer's only access to the network is via
its parent browser process and file system
access can be restricted

Restricted Security Context

Chrome calls CreateRestrictedToken to create a token that has a
subset of the user’s privileges.

Assigns the token the user and group S-1-0-0 Nobody. Removes access
to nearly every system resource.

As long as the disk root directories have non-null security, no files (even with
null ACLs) can be accessed

No network access (on Vista and later)

Windows Job Object

Renderer runs as a “Job” object rather than an interactive process.

Eliminates access to:

 - desktop and display settings

 - clipboard

 - creating subprocesses

 - access to global atoms table

Alternate Windows Desktop

Windows on the same desktop are effectively in the same security context
because the sending and receiving of window messages is not subject to
any security checks.

Sending messages across desktops is not allowed.

Chrome creates an additional desktop for target processes

Isolates the sandboxed processes from snooping in the user's interactions

Windows Integrity Levels

Windows Vista introduced concept of integrity levels to ease development

 - untrusted, low, medium, high, system

Most processes run at medium level

Low-integrity level has limited scope, e.g., can read but cannot write files

Principles of Secure Systems

 ✓ Defense in depth

 ✓ Principle of least privilege

 ✓ Privilege separation

 ✓ Open design

 ✓ Keep it simple

Open Design

“The security of a mechanism should not depend on the
secrecy of its design or implementation.”

If the details of the mechanism leaks (through reverse
engineering, dumpster diving or social engineering), then it is
a catastrophic failure for all the users at once.

If the secrets are abstracted from the mechanism, e.g., inside
a key, then leakage of a key only affects one user.

Kerckhoff’s Principle

“a crypto system should be secure even if everything about
the system, except the key, is public knowledge.”

 - Auguste Kerckhof

Principles of Secure Systems

 ✓ Defense in depth

 ✓ Principle of least privilege

 ✓ Privilege separation

 ✓ Open design

 ✓ Keep it simple

Security Principles and OS Security
CS155 Computer and Network Security

