
Dan Boneh

CS155

Computer Security
Course overview

Acknowledgments: Lecture slides are from the Computer Security course
taught by Dan Boneh and Zakir Durumeric at Stanford University. When slides
are obtained from other sources, a a reference will be noted on the bottom of
that slide. A full list of references is provided on the last slide.

Dan Boneh

The computer security problem
• Lots of buggy software

• Social engineering is very effective

• Money can be made from finding and exploiting vulns.

1. Marketplace for exploits (gaining a foothold)

2. Marketplace for malware (post compromise)

3. Strong economic and political motivation for using both

current state of computer security

Dan Bonehsource: https://www.cvedetails.com/top-50-products.php?year=2019

Top 10 products by total number of “distinct” vulnerabilities in 2019

Dan Boneh

Vulnerable applications being exploited

Source: Kaspersky Security Bulletin 2020

Browser

Android

Office

Java

Dan Boneh

A global problem

Source: Kaspersky Security Bulletin 2020

Top 10 countries by share of attacked users:

Dan Boneh

Goals for this course

• Understand exploit techniques

– Learn to defend and prevent common exploits

• Understand the available security tools

• Learn to architect secure systems

Dan Boneh

This course
Part 1: basics (architecting for security)

• Securing apps, OS, and legacy code:  
	 sandboxing, access control, and security testing

Part 2: Web security (defending against a web attacker)

• Building robust web sites, understand the browser security model

Part 3: network security (defending against a network attacker)

• Monitoring and architecting secure networks.

Part 4: securing mobile applications

Dan Boneh

Don’t try this at home !

Dan Boneh

Introduction

What motivates
attackers?

… economics

Dan Boneh

Why compromise end user machines? 
 1. Steal user credentials

keylog for banking passwords, corporate passwords, gaming pwds

Example: SilentBanker (and many like it)

Bank
Malware injects

Javascript
Bank sends login page
needed to log in

When user submits
information, also sent to
attacker

User requests login page

Similar mechanism used  
by Zbot, and othersMan-in-the-Browser (MITB)

Dan Boneh

Lots of financial malware

Source: Kaspersky Security Bulletin 2017

• records banking passwords
via keylogger

• spread via spam email and
hacked web sites

• maintains access to PC for
future installs

Dan Boneh

Similar attacks on mobile devices
Example: FinSpy.

• Works on iOS and Android (and Windows)

• once installed: collects contacts, call history, geolocation,  
	 texts, messages in encrypted chat apps, …

• How installed?

– Android pre-2017: links in SMS / links in E-mail

– iOS and Android post 2017: physical access

Dan Boneh

Why own machines: 2. Ransomware

a worldwide problem

• Worm spreads via a vuln.  
in SMB (port 445)

• Apr. 14, 2017: Eternalblue vuln.
released by ShadowBrokers

• May 12, 2017: Worm detected

 (3 weeks to weaponize)

Dan Boneh

W
an

na
Cr

y
 r

an
so

m
w

ar
e

Dan Boneh

Why own machines: 3. Bitcoin Mining

Source: Kaspersky Security Bulletin 2020

Examples:

1. Trojan.Win32.Miner.bbb

2. Trojan.Win32.Miner.ays

3. Trojan.JS.Miner.m

4. Trojan.Win32.Miner.gen

affected users

Dan Boneh

Why compromise end user machines?  
 4. IP address and bandwidth stealing

Attacker’s goal: look like a random Internet user

Use the IP address of infected machine or phone for:

• Spam (e.g. the storm botnet)

	 Spamalytics: 1:12M pharma spams leads to purchase

	 	 	 1:260K greeting card spams leads to infection

• Denial of Service: Services: 1 hour (20$), 24 hours (100$)

• Click fraud (e.g. Clickbot.a)

Dan Boneh

Server-side attacks: why?
(1) Data theft: credit card numbers, intellectual property

– Example: Equifax (July 2017), ≈ 143M “customer” data impacted

• Exploited known vulnerability in Apache Struts (RCE)

– Many many similar attacks since 2000

(2) Political motivation:

– DNC (2015), Ukraine power grid (2015-)

(3) Infect visiting users

Dan Boneh

Result: many server-side Breaches
Typical attack steps:

– Reconnaissance

– Foothold: initial breach

– Internal reconnaissance

– Lateral movement

– Data extraction

– Exfiltration

Security tools available to 
try and stop each step (kill chain)

will discuss tools during course

… but no complete solution

Dan Boneh

Case study: SolarWinds Orion (2020)
SolarWinds Orion: set of monitoring tools used by many orgs.

What happened?

SolarWinds

Customer 1

Customer 18000

⋮

Attack (Feb. 20, 2020): attacker corrupts SolarWinds software update process

sunburst

malware

orion

orion

Large number of infected orgs … not detected until Dec. 2020 .

Orion

software

update

one infected DLL 
SolarWinds.Orion.Core.DLL

Dan Boneh

Sunspot: malware injection
How did attacker corrupt the SolarWinds build process?

• taskhostsvc.exe runs on SolarWinds build system:

– monitors for processes running MsBuild.exe (MS Visual Studio),

– if found, read cmd line args to test if Orion software being built,

– if so:

• replace file InventoryManager.cs with malware version

	 (store original version in InventoryManager.bk)

• when MsBuild.exe exits, restore original file … no trace left

How can an org like SolarWinds detect/prevent this ???

Dan Boneh

Fallout …
Large number of orgs and govt systems exposed for many months

More generally: a supply chain attack

• Software, hardware, or service supplier is compromised

	 ⟹ many compromised customers

• Many examples of this in the past (e.g., Target 2013, …)

• Defenses?

Dan Boneh

Data theft: what is stolen (2012-2015)

Source: California breach notification report, 2015

Dan Boneh

Physical document  
 loss

How companies lose customer data

Source: PrivacyRights.org, 2020

lost/stolen laptops or servers
malware/hacking

Accidental disclosure

How do we have this data?

7%

22%

17% 32%

21%

insider misuse/attack

Dan Boneh

Why compromise web sites: (3) infect users

• Mpack: PHP-based tools installed on compromised web sites

– Embedded as an iframe on infected page

– Infects browsers that visit site

• Features

– management console provides stats on infection rates

– Sold for several 100$

– Customer care can be purchased, one-year support contract

• Impact: 500,000 infected sites (compromised via SQL injection)

– Several defenses: e.g. Google safe browsing

Dan Boneh

Introduction

The Marketplace for 
Vulnerabilities

Dan Boneh

Marketplace for Vulnerabilities
Option 1: bug bounty programs (many)

• Google Vulnerability Reward Program: up to $31,337

• Microsoft Bounty Program: up to $100K

• Apple Bug Bounty program: up to $200K

• Stanford bug bounty program: up to $1K

• Pwn2Own competition: $15K

Option 2:

• Zerodium: up to $2M for iOS, $2.5M for Android (since 2019)

• … many others

Dan Boneh

Marketplace for Vulnerabilities

Source: Zerodium payouts

RCE: remote code execution

LPE: local privilege escalation

SBX: sandbox escape

Dan Boneh

Marketplace for Vulnerabilities

Source: Zerodium payouts

RCE: remote code execution

LPE: local privilege escalation

SBX: sandbox escape

Dan Boneh

Why buy 0days?

https://zerodium.com/faq.html

Dan Boneh

Ken Thompson’s clever Trojan

(CACM Aug. 1984)

Turing award lecture

What code can we trust?

Dan Boneh

What code can we trust?
Can we trust the “login” program in a Linux distribution? (e.g. Ubuntu)

• No! the login program may have a backdoor

	 ⇾ records my password as I type it

• Solution: recompile login program from source code

Can we trust the login source code?

• No! but we can inspect the code, then recompile

Dan Boneh

Can we trust the compiler?
No! Example malicious compiler code:

compile(s) {

if (match(s, “login-program”)) {

compile(“login-backdoor”);

return

}

/* regular compilation */

}

Dan Boneh

What to do?
Solution: 	inspect compiler source code,  
	 then recompile the compiler

Problem: C compiler is itself written in C, compiles itself

What if compiler binary has a backdoor?

Dan Boneh

Thompson’s clever backdoor
Attack step 1: change compiler source code:

compile(s) {

if (match(s, “login-program”)) {

compile(“login-backdoor”);

return

}

if (match(s, “compiler-program”)) {

compile(“compiler-backdoor”);

return

}

/* regular compilation */

}

(*)

Dan Boneh

Thompson’s clever backdoor
Attack step 2:

• Compile modified compiler ⇒ compiler binary

• Restore compiler source to original state

Now: inspecting compiler source reveals nothing unusual

	 … but compiling compiler gives a corrupt compiler binary

Dan Boneh

What can we trust?
I order a laptop by mail. When it arrives, what can I trust on it?

• Applications and/or operating system may be backdoored 
	 ⇒ solution: reinstall OS and applications

• How to reinstall? Can’t trust OS to reinstall the OS. 
	 ⇒ Boot Tails from a USB drive (Debian)

• Need to trust pre-boot BIOS,UEFI code. Can we trust it? 
	 ⇒ No! (e.g. ShadowHammer operation in 2018)

• Can we trust the motherboard? Software updates?

Dan Boneh

So, what can we trust?
Sadly, nothing … anything can be compromised

• but then we can’t make progress

Trusted Computing Base (TCB)

• Assume some minimal part of the system is not compromised

• Then build a secure environment on top of that

	 	 will see how during the course.

Dan Boneh

THE END

Next time: control hijacking vulnerabilities

