CS162
Operating Systems and
Systems Programming

Lecture 9

Sockets, Networking (Con’t)
Scheduling

February 20th, 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Recall: POSIX |/O: Everything (looks like) a “File”

|dentical interface for:
— Devices (terminals, printers, etc.)
— Regular files on disk
— Networking (sockets)
— Local interprocess communication (pipes, sockets)

Based on open(), read(), write(), and close()

Allows simple composition of programs
» find | grep | wc ...
HOWEVER: Not every thing actually IS a file!
— Pipes are only buffered in memory!
— Network sockets only buffered in memory/network!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 2

Recall: POSIX /O Design Patterns

* Open before use

— Access control check, setup happens here
* Byte-oriented

— Least common denominator

— OS responsible for hiding the fact that real devices may not work this way (e.g.
hard drive stores data in blocks)

* Explicit close
* Reads are buffered
— Part of making everything byte-oriented
— Process is blocked while waiting for device
— Let other processes run while gathering result

* Whrites are buffered
— Complete in background (more later on)
— Return to user when data is ““‘handed off” to kernel

* Errors relayed to user in a variety of ways!
— Make sure to check them!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 3

Recall: Device Drivers

* Device Driver: Device-specific code in the kernel that interacts
directly with the device hardware
— Supports a standard, internal interface
— Same kernel I/O system can interact easily with different device drivers
— Special device-specific configuration supported with the 1octl1 () system call

* Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like open (), close (),
read (), write (), i1octl (), strategy ()

» This is the kernel's interface to the device driver

» Top half will start I/O to device, may put thread to sleep until finished
— Bottom half: run as interrupt routine

» Gets input or transfers next block of output

» May wake sleeping threads if I/O now complete

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 4

Recall: Life Cycle of An I/O Request

User
Program

Kernel I/O
Subsystem

Device Driver
Top Half

Device Driver
Bottom Half

Device
Hardware

2/20/2020

request /O

system call

can already

user
process

kernel
I/0 subsystem

satisfy request? yes

send request to device
driver, block process if
appropriate

process request, issue
commands to controller,

configure controller to

block until interrupted

device-controller commands

monitor device,
interrupt when 1/0
completed

kernel
I/0 subsystem

device
driver

interrupt
handler

EEEEEEENNNN IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIinte WIIIIIII

device
controller

/O completed,
input data available, or
output completed

return from system cail

transfer data
(if appropriate) to process,
return completion
or error code

determine which /O
completed, indicate state
change to I/0 subsystem

receive interrupt, store
data in device-driver buffer
if input, signal to unblock
device driver

/O completed,
generate interrupt

Kubiatowicz CS162 ©UCB Fall 2020

Communication between processes

e Can we view flles as communication channels?

write(wfd, wbuf, wlen);

->

—>

n = read(rfd,rbuf,rmax);

* Producer and Consumer of a file may be distinct processes
— May be separated in time (or not)

 However, what if data written once and consumed once?!

— Don't we want something more like a queue!
— Can still look like File 1/O!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 6

Communication Across the world looks like file 1O

write(wfd, wbuf, wlen);

ﬂ/{

P = o

n = read(rfd,rbuf,rmax);

» Connected queues over the Internet
— But what's the analog of open!
— What is the namespace!
— How are they connected in time!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 7

Request Response Protocol

Client (issues requests) Server (performs operations)

write(rqfd, rgbuf, buflen);

—>
. requests ——
\
\ n = read(rfd,rbuf,rmax);
/I
wait | service request
\
\ write(wfd, respbuf, len);
|
v &

e responses

n = read(resfd,resbuf,resmax);

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

Request Response Protocol

Client (issues requests) Server (performs operations)

write(rqfd, rgbuf, buflen);

— f\m

' —>
x \
/ n = read(rfd,rbuf,rmax);
wait | , Service request
\
\ - rite(wfd, respbuf, len);
! responses
% — <
|

k\v
n = read(resfd,resbuf,resmax);

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 9

Client-Server Models

[Client n

* File servers, web, FTPE Databases, ...
* Many clients accessing a common server

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

Server

Client-Server Communication

+ Client “sometimes on” -+ Server is “always on”

— Initiates a request to the — Services requests from
server when interested many client hosts

— E.g., Web browser on your — E.g., Web server for the
laptop or cell phone www.cnn.com Web site

— Doesn’t communicate — Doesn’t initiate contact with
directly with other clients the clients

— Needs to know the server’s — Needs a fixed, well-known
address address

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 |l

Sockets

* Socket: an abstraction of a network I/O queue
— Mechanism for inter-process communication

— Embodies one side of a communication channel
» Same interface regardless of location of other end

» Could be local machine (called “UNIX socket™) or remote machine (called
“network socket")

— First introduced in 4.2 BSD UNIX: big innovation at time
» Now most operating systems provide some notion of socket

* Data transfer like files
— Read / Write against a descriptor

e Over ANY kind of network

— Local to a machine
— Over the internet (TCP/IE UDP/IP)
— OSI, Appletalk, SNA, IPX SIENS, ...

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 12

Silly Echo Server — running example

Client (issues requests) Server (performs operations)

V

)

= read(fd,buf,)|;

n
2.\
Y print
—
write(fdi—;if;);
2 £,)

prT:;;;;]
2/20/2020 ubiatowicz CS162 ©UCB Fall 2020 13

Echo client-server example

void client(int sockfd) {
char sndbuf[MAXIN]; char rcvbuf[MAXOUT];

while (strlen(sndbuf) > 0) {

int n;

getreq(sndbuf, MAXIN); /* prompt */

Write(sockfd, sndbuf, strlen(sndbufal); /* send */

memset (rcvbuf, 0,MAXOUT) ; * clear */
'|n=read(sockfd, rcvbuf, MAXOUT-1); /A receive */
write (STDOUT FILENO, rcvbuf, n); /* ecllo */
getreq(sndbuf, MAXIN); * prompt */
}
e
--1d server (int conso
char regbuf[MAXREQ];
int n;
while (1) {
memset (reqgbuf, 0, MAXREQ);
P = read(consockid, reqgbuf,MAXREQ-1]); /* Recv */
1f (n <= 0) return;
n = write(STDOUT FILENO, regbuf, strlen(regbuf)
[n" = write(consockfd, regbuf, strlen(regbuf))
echo*/
2/20/2020 !

1 Kubiatowicz CS162 ©UCB Fall 2020

*

What assumptions are we making?

* Reliable
— Write to a file => Read it back. Nothing is lost.

— Write to a (TCP) socket => Read from the other side, same.

— Like pipes
* |In order (sequential stream)
— Write X then write Y => read gets X then read gets Y

* When ready?

— File read gets whatever is there at the time. Assumes writing
already took place.

— Like pipes!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

2/20/2020

Socket creation and connection

File systems provide a collection of permanent objects in
structured name space

— Processes open, read/write/close them
— Files exist independent of the processes

Sockets provide a means for processes to communicate
(transfer data) to other processes.

Creation and connection is more complex

Form 2-way pipes between processes
— Possibly worlds away

How do we name them?

How do these completely independent programs know that
the other wants to “talk” to them!?

Kubiatowicz CS162 ©UCB Fall 2020 16

Namespaces for communication over [P

* Hostname
— www.eecs.berkeley.edu

e |P address
— 128.32.244.172 (ipvé?)
 Port Number

— 0-1023 are "“well known™ or “system” ports

» Superuser privileges to bind to one

— 1024 — 49151 are "registered” ports (registry)
» Assigned by IANA for specific services

— 49152-65535 (215+214 to 21e—=1) are "dynamic’ or “private”

» Automatically allocated as “ephemeral Ports™

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 |7

http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xhtml
https://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.txt

Socket Setup over TCP/IP

socket

Client Server

* Special kind of socket: server socket
— Has file descriptor
— Can't read or write
* [wo operations:
1. listen(): Start allowing clients to connect
2. accept (): Create a new socket for a particular client connection

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

Socket Setup over TCP/JE

Server
Socket

new
ocket

Client

* Server Socket: Listens for new connections
— Produces new sockets for each unique connection
— 3-way handshake to establish new connection!

* Things to remember:

— Connection involves 5 values:
[Client Addr, Client Port, Server Addr, Server Port, Protocol]

— Often, Client Port “randomly” assigned
» Done by OS during client socket setup

— Server Port often “well known”
» 80 (web), 443 (secure web), 25 (sendmail), etc
» Well-known ports from 0—1023

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

Web Server using Sockets (in concept)

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
(hosT:\ﬁor‘r)

Connect it to server (host: por"r) ——————— —>|_isfen for Connection

- Accepf sysm

\;onnecﬂon Socket &=PConnection Socket

+“ Mwrite request -~~~ --- oo
I/

"> read request l‘\\\

~.’read response <--------s s o write response » _ '

| |

Close Client Socket Close Connection Socket

/
1
J

v
Close Server Socket

[

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 20

Client-Side of Protocol

char *host_name, port_ name;

// Create a socket

struct addrinfo *server = lookup host(host name, port name);

int sock fd = socket(server->ai_ family, server->ai_socktype,
server->ai_protocol);

// Connect to specified host and port
connect (sock_fd, server->ai_addr, server->ai_addrlen);

// Carry out Client-Server protocol
run_client (sock_ fd);

/* Clean up on termination */
close(sock_£d);

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 21

Client: getting the server address (as addrinfo)

struct addrinfo *lookup host(char *host name, char *port) {

struct addrinfo *server;
struct addrinfo hints;

// Constraints on returned address

memset (&hints, 0, sizeof(hints));
hints.ai_ family = AF_ UNSPEC; // Either IPv4 or IPv6
hints.ai socktype = SOCK_STREAM;// Reliable stream (i.e. TCP)

// Lookup host:port, constrained by hints, return ptr in

server
int rv = getaddrinfo(host_name, port name, &hints, &server);

if (xrv != 0) {
printf ("getaddrinfo failed: %s\n", gai strerror(rv));

return NULL;
}

return server;

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 22

Server Protocol (vl)

// Create socket to listen for client connections

char *port name;

struct addrinfo *server = setup address(port_name);

int server_socket = socket(server->ai_ family, server-
>ai_socktype,server->ai_ protocol);

// Bind socket to specific port
bind(server_ socket, server->ai addr, server->ai_ addrlen);

// Start listening for new client connections
listen(server_socket, MAX OQUEUE);

while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);
serve client (conn_socket);
close (conn_socket) ;

close(server_ socket);

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

Server: getting server addrinfo — for itself

struct addrinfo *setup address(char *port) {
struct addrinfo *server;
struct addrinfo hints;

// Constraints on returned address

memset (&hints, 0, sizeof(hints));

hints.ai_ family = AF_ UNSPEC; // IPv4 or IPv6

hints.ai socktype = SOCK_STREAM;// Reliable stream (i.e. TCP)
hints.ai_flags = AI_PASSIVE; // Address for listening

// Match any local address:port, constrained by hints, return
ptr
int rv = getaddrinfo(NULL, port, &hints, &server);
if (xrv != 0) {
printf ("getaddrinfo failed: %s\n", gai strerror(rv));
return NULL;

}

return server;

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 24

How does the server protect itself?

* |solate the handling of each connection
* By forking it off as another process

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

25

Sockets With Protection

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
(hosT:\ﬁor‘r)
Connect it to server (host: por"r) ------- ‘>LisTen for Connection

: ‘Accept syscall()

Connection Socket ¢=>Connec‘hon Socket
\L Ch"d,/ \’\aren’r

Close Listen Socket

/’ §lwr'i."e r‘equeST _________ r\ead reques'r l’ N Close Connec.ﬁon
(Socket l,
- _’read response + == === =~ “write response * _ -
\L i Wait for child
Close Client Socket Close Connection
‘Socket

Close Server Socket
2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 26

Server Protocol (v2)

// Start listening for new client connections

listen(server_socket, MAX OQUEUE);

while (1) {

// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);

pid_t pid = fork(); //

if (pid == 0) { //
close(server_socket); //
serve_client (conn_socket); //
close(conn_socket); //
exit (EXIT SUCCESS);

} else { //
close(conn_socket); //
wait (NULL); //

}

}

close(server_ socket);

New process for connection
Child process

Doesn’t need server_socket
Serve up content to client
Done with client!

Parent process
Don’'t need client socket
Wait for our (one) child

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 27

Concurrent Server

* Listen will queue requests
 Buffering present elsewhere

* But server waits for each connection to terminate before
initiating the next

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

28

Sockets With Protection and Parallelism

Client Server
Create Server Socket

Create Client Socket Bind it to an Address
(host:jor'f)
Connect it to server (host: por"r) ——————— > Listen for Connection
.. \ ‘l’ \/
\
"~ Accept syscall() \
% v

Connection Socket) Connection Socket
\L Ch"d,/ \’\aren’r

Close Listen Socket

/’ §lwr‘i1'e r‘equeST _________ r\ead r\eques'r l’ N Close Connec.ﬁon
: ' Socket
- _’read response + == === =~ “write resionse ‘o'
Close Client Socket ALEG GEmE Close Server Socket
Socket

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 29

Server Protocol (v3)

// Start listening for new client connections
listen(server_socket, MAX OQUEUE);
signal (SIGCHLD,SIG_IGN); // Prevent zombie children
while (1) {
// Accept a new client connection, obtaining a new socket
int conn_socket = accept(server_socket, NULL, NULL);

pid t pid = fork(); // New process for connection

if (pid == 0) { // Child process
close(server_ socket); // Doesn’t need server_socket
serve_client (conn_socket); // Serve up content to client
close(conn_socket); // Done with client!
exit (EXIT SUCCESS) ;

} else { // Parent process
close(conn_socket); // Don’'t need client socket
// wait (NULL); // Don’t wait (SIGCHLD

// ignored, above)

}

close(server_ socket);

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 30

Goal for Today

'\

if (readyThreads(TCBs)) {
nextTCB = selectThread(TCBs) ;
run(nextTCB);

} else {
run_idle_thread();

}

* Discussion of Scheduling:
— Which thread should run on the CPU next!

* Scheduling goals, policies
ook at a number of different schedulers

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

31

Recall: Scheduling

z ready queue » CPU j
I/O queue < I/O request [«
time slice <
expired
child fork a B
executes child A
interrupt wait for an <
occurs interrupt

o Question: How is the OS to decide which of several tasks to take off
a queue!

* Scheduling: deciding which threads are given access to resources
from moment to moment

— Often, we thir)|< INn terms of CPU time, but could also think about access
to resources like network BW or disk access

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 32

2/20/2020

Scheduling: All About Queues

Kubiatowicz CS162 ©UCB Fall 2020

33

Scheduling Assumptions

CPU scheduling big area of research in early 70's

* Many implicit assumptions for CPU scheduling;

— One program per user

— One thread per program

— Programs are independent
Clearly, these are unrealistic but they simplify the problem so it can
be solved

— For instance: is “fair” about fairness among users or programs?
» If I run one compilation job and you run five, you get five times as much
CPU on many operating systems
The high-level goal: Dole out CPU time to optimize some desired
parameters of system

USER1 USER2 USER3 USERI1 USER2

Time >

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 34

Assumption: CPU Bursts

load store I
add store CPU burs 160 k
read from file
a0 Weighted toward small bursts
wait for I/O 1/0O burst
120
store increment -
index CPU burst} o 100
write to file §
. g 80f
wait for I/O 1/0 burst =
60
load store 40
add store CPU burst]
read from file
20 |
A | | | | |
wait for I/O I/O burst 0 8 16 24 32 40
burst duration (milliseconds)
E——

+ Execution model programs alternate between bursts of CPU and I/O

— Program typically uses the CPU for some period of time, then does I/O,
then uses CPU again

— Each scheduling decision Is about which job to give to the CPU for use
by its next CPU burst

— With timeslicing, thread may be forced to give up CPU before finishing
current CPU burst

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 35

Scheduling Policy Goals/Criteria

* Minimize Response Time
— Minimize elapsed time to do an operation (or job)
— Response time Is what the user sees:
» Time to echo a keystroke in edrtor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World
* Maximize Throughput
— Maximize operations (or jobs) per second

— Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you
only maximized throughput

— Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)
* Fairness
— Share CPU among users in some equitable way

— Fairness Is not minimizing average response time:
» Better average response time by making system less fair

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 36

First-Come, First-Served (FCFS) Scheduling

* First-Come, First-Served (FCFS)

— Also “First In, First Out” (FIFO) or “Run until done”

» In early systems, FCFS meant one program
scheduled until done (including 1/O)

» Now, means keep CPU until thread blocks

* Example: Process Burst Time
P 24
P, 3
P, 3

— Suppose processes arrive in the order: P, , P, , P,
The Gantt Chart for the schedule is:

P, P, P,

0 24 27 30
— Waiting time for P, =0;P, =24,P;=27
— Average waiting time: (0 +24+2/)/3 =17
— Average Completion time: (24 + 27 + 30)/3 = 27

* Convoy effect: short process stuck behind long process
2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 37

Convoy effect

Scheduled Task (process, thread)

o " —— 1 1 1 1 [

o | .
pus)

o £ £ I 1 1 Time
=) I I e e

£ Y .

3 arrivals I I

Q0 [

i -

O

1!

* With FCFS non-preemptive scheduling, convoys of small tasks
tend to builld up when a large one Is running.

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 38

FCFS Scheduling (Cont.)

* Example continued:

— Suppose that processes arrive in order: P2 ,P3 Pl
Now, the Gantt chart for the schedule is:

P, | P, P,

0 3 6 30
— Waiting time for Pl = 6;P2 = 0; P3 = 3

— Average waiting time: (6 + 0 + 3)/3 = 3
— Average Completion time: (3 + 6 + 30)/3 = |3
* |In second case:
— Average waiting time is much better (before it was |7)
— Average completion time is better (before it was 27)
* FIFO Pros and Cons:
— Simple (+)
— Short jobs get stuck behind long ones (-)
» Getting milk, always stuck behind cart full of items!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

39

Round Robin (RR) Scheduling

* FCFS Scheme: Potentially bad for short jobs!
— Depends on submit order

— If you are first in line at supermarket with milk; you don't care
who Is behind you, on the other hand...

* Round Robin Scheme: Preemption!

— Each process gets a small unit of CPU time
(time quantum), usually 10-100 milliseconds

— After quantum expires, the process Is preempted
and added to the end of the ready queue.

— n processes In ready queue and time quantum is g =

» Each process gets |/n of the CPU time
» In chunks of at most g time units
» No process waits more than (n-1)g time units

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 40

RR Scheduling (Cont.)

* Performance
— g large = FCFS
— g small = Interleaved (really small = hyperthreading?)

— g must be large with respect to context switch, otherwise
overhead is too high (all overhead)

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

41

Example of RR with Time Quantum = 20

o Example: Process Burst Time
P, 53
P, 8
P, 68
P, 24

— The Gantt chart is;

P, P, [P P, [Py [P P, Py [P [Py
O 20 28 48 68 88 108 112 125 145 153

— Waiting time for P, =(68-20)+(112-88)=72
P,=(20-0)=20
P.=(28-0)+(88-48)+(125-108)=85
P,=(48-0)+(108-68)=88

— Average waiting time = (/2+20+85+88)/4=66/4

— Average completion time = (125+28+153+112)/4 = 1042

 Thus, Round-Robin Pros and Cons:
— Better for short jobs, Fair (+)

20n026" Context-switching time adds up for long jobs () ©

Round-Robin Discussion

* How do you choose time slice!
— What if too big?
» Response time suffers
— What if infinite ()7
» Get back FIFO
— What if time slice too small?
» Throughput suffers!
* Actual choices of timeslice:
— Inrtially, UNIX timeslice one second:
» Worked ok when UNIX was used by one or two people.

» What If three compilations going on? 3 seconds to echo each
keystroke!

— Need to balance short-job performance and long-job throughput:
» Typical time slice today is between [0ms — [00ms
» Typical context-switching overhead is O.Ims — [ms
» Roughly 1% overhead due to context-switching

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 43

Comparisons between FCFS and Round Robin

* Assuming zero-cost context-switching time, is RR always better than
FCFS?

* Simple example: |0 jobs, each take 100s of CPU time
RR scheduler quantum of |s
All jobs start at the same time

* Completion Times: Job # FIFO RR
100 291

) 200 992

9 900 999
10 1000 1000

— Both RR and FCEFS finish at the same time

— Average response time is much worse under RR!
» Bad when all jobs same length

* Also: Cache state must be shared between all jobs with RR but can be
devoted to each job with FIFO

— Total time for RR longer even for zero-cost switch!
2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 44

Earlier Example wit

n Different Time Quantum

O 8 32 85 |53
Quantum P, P, P, P, Average
Best FCFS 32 0 85 8 314
Q=1 84 22 85 57 62
=5 82 20 85 58 61
Wait Q -
' Q=8 80 8 85 56 574
Time
Q=10 82 10 85 68 614
Q=20 72 20 85 88 66'/4
Worst FCFS 68 |45 0 121 83>
Best FCFS 85 8 |53 32 69>
Q=1 |37 30 |53 8| 1002
c - Q=5 |35 28 |53 82 99>
Ti;“;P ction 1~ =g 133 16 153 80 95'
Q=10 135 |8 |53 92 99>
Q=20 |25 28 |53 112 104!/,
Worst FCFS 121 |53 68 145 1213%

2/20/2020

Kubiatowicz CS162 ©UCB Fall 2020

45

Handling Differences in Importance: Strict Priority Scheduling

Priority 3 [—{job | |=»ljob2 [=P{job 3
Priority 2 [==pi]ob 4
Priority |

Priority 0 [==>|job5 f=P{job6 [=»job 7

* Execution Plan
— Always execute highest-priority runable jobs to completion
— Each queue can be processed in RR with some time-quantum

* Problems:
— Starvation:
» Lower priority jobs don't get to run because higher priority jobs

— Deadlock: Priority Inversion

» Not strictly a problem with priority scheduling, but happens when low priority task has
lock needed by high-priority task

» Usually involves third, intermediate priority task that keeps running even though high-
priority task should be running

* How to fix problems?

— Dynamic priorities — adjust base-level priority up or down based on heuristics
about interactivity, locking, burst behavior, etc. ..

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 46

Scheduling Fairness

* \What about fairness?

— Strict fixed-priority scheduling between queues Is unfair (run
highest, then next, eto):

» long running jobs may never get CPU

» Urban legend: In Multics, shut down machine, found |0-year
old job = Ok, probably not...

— Must give long-running jobs a fraction of the CPU even when
there are shorter jobs to run

— Tradeoft: fairness gained by hurting avg response time!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 47

Scheduling Fairness

* How to implement fairness?
— Could give each queue some fraction of the CPU
» What it one long-running job and 100 short-running ones?

» Like express lanes in a supermarket—sometimes express
lanes get so long, get better service by going into one of the
other lines

— Could increase priority of jobs that don't get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities!

» And, as system gets overloaded, no job gets CPU time, so
everyone increases Iin priority=>Interactive jobs suffer

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 48

Lottery Scheduling

* Yet another alternative: Lottery Scheduling
— Give each job some number of lottery tickets

— On each time slice, randomly pick a winning ticket

— On average, CPU time Is proportional to number of tickets
given to each job

* How to assign tickets!

— To approximate SRTF, short running jobs get more, long
running jobs get fewer

— To avoid starvation, every job gets at least one ticket
(everyone makes progress)

* Advantage over strict priority scheduling: behaves gracefully as
load changes

— Adding or deleting a job affects all jobs proportionally,
independent of how many tickets each job possesses

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 49

Lottery Scheduling Example (Cont.)

* Lottery Scheduling Example
— Assume short jobs get |0 tickets, long jobs get | ticket

short jobs/ % of CPU each | % of CPU each
long jobs short jobs gets | long jobs gets
/1 91% 9%
0/2 N/A 50%
2/0 50% N/A
10/1 9.9% 0.99%
— W 1710 50% 5%
re

™

» If load average is 100, hard to make progress
» One approach: log some user out

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

50

How to Evaluate a Scheduling algorithm?

* Deterministic modeling

— takes a predetermined workload and compute the performance
of each algorithm for that workload

* Queueing models
— Mathematical approach for handling stochastic workloads
* Implementation/Simulation:

— Build system which allows actual algorithms to be run against
actual data — most flexible/general

. _ performance
simulation —> statistics
r,—_‘ for FCFS
FCFS
GREES
o 218
actual CPU 12 performance
process —==(lI/0 112 =) Simulation =P statistics
execution CRUD for SJF
e 4y
CPU 173 -
trace tape
. ' performance
simulation —> statistics
forRR (g= 14
RR (g = 14)

2/20/2020 Kubiatowicz CS162 ©UCH Fall 2020 51

How to Handle Simultaneous
Mix of Diff Types of Apps?

* Consider mix of interactive and high throughput apps:
— How to best schedule them?
— How to recognize one from the other?
» Do you trust app to say that it is “interactive™
— Should you schedule the set of apps identically on servers, workstations, pads,
and cellphones?
* For instance, is Burst Time (observed) useful to decide which application gets
CPU time!?
— Short Bursts = Interactivity = High Priority?

* Assumptions encoded into many schedulers:
— Apps that sleep a lot and have short bursts must be interactive apps — they
should get high priority
— Apps that compute a lot should get low(er?) priority, since they won't notice
intermittent bursts from interactive apps

* Hard to characterize apps:
— What about apps that sleep for a long time, but then compute for a long time!?

— Or, what about apps that must run under all circumstances (say periodically)

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 52

What if we Knew the Future!

Could we always mirror best FCFS? S

Shortest Job First (SJF): r; @)
— Run whatever job has least amount of ' 747 v\
computation to do W;

— Sometimes called “Shortest Time to Completion First” (STCF)
Shortest Remaining Time First (SRTF):

— Preemptive version of SJF: if job arrives and has a shorter time to
completion than the remaining time on the current job, immediately
preempt CPU

— Sometimes called “Shortest Remaining Time to Completion
First” (SRTCF)

These can be applied to whole program or current CPU burst

— Idea is to get short jobs out of the system
— Big effect on short jobs, only small effect on long ones
— Result Is better average response time

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 53

Discussion

* SJF/SRTF are the best you can do at minimizing average response
time
— Provably optimal (SJF among non-preemptive, SRTF among
preemptive)
— Since SRTF is always at least as good as SJF, focus on SRTF

* Comparison of SRTF with FCFS

— What If all jobs the same length?

» SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the
same length)

— What If jobs have varying length?
» SRTF: short jobs not stuck behind long ones

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 54

Example to illustrate benefits of SRTF

AorB C

IR
— —

I—>

Cs (Cs (C’s
/o /O 1/O

* Three jobs:

— A, B: both CPU bound, run for week
C: 1/O bound, loop Ims CPU, 9ms disk /O

— If only one at a time, C uses 90% of the disk, A or B could use 100%
of the CPU

* With FCFS:

— Once A or B get in, keep CPU for two weeks

* What about RR or SRTF?

— Easier to see with a timeline

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 55

SRTF Example continued:,

Disk Utilization:
C A B 9/201 ~ 4.5%
| I

1
| I | .
Cs RR 100ms time slice Disk Utilization:
/O ~90% but lots of
CABAB... C wakeups!)
HOLL I
i 1 . .
—_— RR Ims time slice
C’s C’s
Voo Disk Utilization:
CA A A 90%
| I
||
—_— SRTF
Cs C(C’s
/O 1/O

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 56

SRTF Further discussion

Starvation
— SRTF can lead to starvation if many small jobs!
— Large jobs never get to run

Somehow need to predict future
— How can we do this?

— Some systems ask the user
» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

— But: hard to predict job’s runtime even for non-malicious users

Bottom line, can't really know how long job will take

— However, can use SRTF as a yardstick
for measuring other policies

— Optimal, so can't do any better

SRTF Pros & Cons
— Optimal (average response time) (+)
— Hard to predict future (-)
— Unfair (-)

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 57

Predicting the Length of the Next CPU Burst

» Adaptive: Changing policy based on past behavior
— CPU scheduling, in virtual memory, in file systems, etc
— Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn't help

* Example: SRTF with estimated burst length

— Use an estimator function on previous bursts:
Let tn-1,tn-2, tn-3, etc. be previous CPU burst lengths.
Estimate next burst Tn = f(tn-1,tn-2,tn-3, ...)

— Function f could be one of many different time series estimation schemes
(Kalman filters, etc)

— For instance, ok
exponential averaging 10 /’
tn = atn- 1 +(1-a)Tn-| of
with (O<asl|) a L

CPU burst (t) 6 4 6 4 13 13 13

'quess” (t) 10 8 6 6 5 9 11 12

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 58

Multi-Level Feedback Scheduling

> quantum = 8

Ll ong-Running Compute
Tgsks Demoted to

—
quantum = 16 _|// LOW P”O”ty

L»f FCFS -

* Another method for exploiting past behavior (first use in CTSS)

— Multiple queues, each with different priority
» Higher priority queues often considered “foreground” tasks

— Each queue has its own scheduling algorithm
» e.g. foreground — RR, background — FCFS

» Sometimes multiple RR priorities with quantum increasing exponentially (highest:
| ms, next: 2ms, next: 4ms, etc)

* Adjust each job’s priority as follows (detalls vary)
— Job starts in highest priority queue
— If timeout expires, drop one level
— If timeout doesn't expire, push up one level (or to top)

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 59

Scheduling Details

> quantum = 8
\4oqg-Running Compute
A asks Demoted to
quantum = 16 -_|// LOW P”O”ty
L’f ECES -

* Result approximates SRTF:
— CPU bound jobs drop like a rock

— Short-running I/O bound jobs stay near top

* Scheduling must be done between the queues
— Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.
— Time slice:

» each queue gets a certain amount of CPU time
» e.g, /0% to highest, 20% next, 10% lowest

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 60

Scheduling Details

> quantum = 8
\4oqg-Running Compute
asks Demoted to
quantum = 16 -_|// LOW P”O”ty
L»f FCFsS -

 Countermeasure: user action that can foil intent of
the OS designers

— For multilevel feedback, put in a bunch of meaningless I/O to keep
job’s priority high

— Of course, If everyone did this, wouldn't work!

* Example of Othello program:

— Playing against competitor; so key was to do computing at higher
priority the competitors.

» Put in printf’s, ran much faster!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 6l

Case Study: Linux O(l) Scheduler

Kernel/Realtime Tasks User Tasks

0] 100 139

* Priority-based scheduler: 140 priorities
— 40 for “user tasks” (set by "nice”’), 100 for “Realtime/Kernel”
— Lower priority value = higher priority (for nice values)
— Highest priority value = Lower priority (for realtime values)
— All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level
* [wo separate priority queues: ‘active” and “expired”

— All tasks in the active queue use up their timeslices and get placed on the
expired queue, after which queues swapped

* Timeslice depends on priority — linearly mapped onto timeslice range

— Like a multi-level queue (one queue per priority) with different timeslice at
each level

— Execution split into “Timeslice Granularity” chunks — round robin through
priority

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 62

O(1) Scheduler Continued

* Heuristics
— User-task priority adjusted £5 based on heuristics
» p->sleep_avg = sleep_time — run_time
» Higher sleep_avg = more I/O bound the task, more reward (and vice versa)
— Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time

» |C s used to provide hysteresis to avoid changing interactivity for temporary
changes in behavior

— However, “interactive tasks” get special dispensation
» To try to maintain interactivity

» Placed back into active queue, unless some other task has been starved for too
long. ..

* Real-Time Tasks
— Always preempt non-RT tasks
— No dynamic adjustment of priorities

— Scheduling schemes:
» SCHED_FIFO: preempts other tasks, no timeslice limit

» SCHE{D_RR: preempts normal tasks, RR scheduling amongst tasks of same
priority

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 63

Linux Completely Fair Scheduler (CFS)

* First appeared in 2.6.23, modified in 2.6.24

* "CFS doesn't track sleeping time and doesn't use heuristics to
identify interactive tasks—it just makes sure every process gets a
fair share of CPU within a set amount of time given the number of
runnable processes on the CPU.”

* Inspired by Networking “Fair Queueing”
— Each process given their fair share of resources

— Models an "ideal multrtasking processor” in which N processes
execute simultaneously as if they truly got |/N of the processor

» Tries to give each process an equal fraction of the processor

— Priorities reflected by weights such that increasing a task’s priority by
| always gives the same fractional increase in CPU time — regardless
of current priority

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 64

Real-Time Scheduling (RTY)

 Efficiency is important but predictability is essential:
— We need to predict with confidence worst case response times for systems

— In RTS, performance guarantees are:
» Task- and/or class centric and often ensured a priori

— In conventional systems, performance is:
» System/throughput oriented with post-processing (... wait and see ...)

— Real-time Is about enforcing predictability, and does not equal fast computing!!!

* Hard Real-Time

— Attempt to meet all deadlines

— EDF (Earliest Deadline First), LLF (Least Laxity First),
RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)

* Soft Real-Time
— Attempt to meet deadlines with high probability
— Minimize miss ratio / maximize completion ratio (firm real-time)

— Important for multimedia applications
— CBS (Constant Bandwidth Server)

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 65

Example:Workload Characteristics

 Tasks are preemptable, independent with arbitrary arrival (=release)
times

* Tasks have deadlines (D) and known computation times (C)
* Example Setup:

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 66

2/20/2020

Example: Round-Robin Scheduling Doesn’t Work

Tl

T3

T4

Missed

deadline!!

ﬁ

—]
o

Time — ™ X >

Kubiatowicz CS162 ©UCB Fall 2020

67

Earliest Deadline First (EDF)

* Tasks periodic with period P and computation C in each period: (P,
C,) for each task i

* Preemptive priority-based dynamic scheduling:

— Each task is assigned a (current) priority based on how close the
absolute deadline is (i.e. DI*! = D! + Pfor each task!)

— The scheduler always schedules the active task with the closest absolute
deadline

Tl=(4’1). — i M — i - | i -
r-col N | BN !
=021 I i B -+

0 " 10 |5
G
Schedulable when 2 — |1 <1
' o \ i

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 68

A Final Word On Scheduling

* When do the details of the scheduling policy and fairness really

matter?
— When there aren’t enough resources to go around

* When should you simply buy a faster computer?

— (Or network link, or expanded highway, or ...)

— One approach: Buy it when it will pay
for itself in improved response time

» Perhaps you'recfayin for worse response
time In reduced productivity, customer angst,
etc...

» Might think that you should buy a faster X
when Xis utilized 100%, but usually, response
time goes to infinity as utilization=>100%

asuodsoy

Utilization

%00 |

* An interesting implication of this curve:

— Most scheduling algorithms work fine in the “linear’” portion of the load

curve, fail otherwise
— Argues for buying a faster X when hit “knee” of curve

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020

69

Summary (| of 2)
* Round-Robin Scheduling:

— Give each thread a small amount of CPU time when it executes; cycle
between all ready threads

— Pros: Better for short jobs

* Shortest Job First (S5)F)/Shortest Remaining Time First (SRTF):

— Run whatever job has the least amount of computation to do/least
remaining amount of computation to do

— Pros: Optimal (average response time)
— Cons: Hard to predict future, Unfair
* Multi-Level Feedback Scheduling:
— Multiple queues of different priorities and scheduling algorithms

— Automatic promotion/demotion of process priority in order to
approximate SJF/SRTF

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 70

Summary (2 of 2)

* Lottery Scheduling:

— Give each thread a priority-dependent number of tokens (short
tasks=>more tokens)

e Linux CFS Scheduler: Fair fraction of CPU

— Approximates a “ideal” multitasking processor
* Realtime Schedulers such as EDF
— Guaranteed behavior by meeting deadlines
— Realtime tasks defined by tuple of compute time and period

— Schedulability test: is it possible to meet deadlines with proposed set of
processes!

2/20/2020 Kubiatowicz CS162 ©UCB Fall 2020 71

