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Review: Magnetic Disks

• Cylinders: all the tracks under the  
head at a given point on all surface

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head
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Flash Memory (Con’t)

• Data read and written in page-sized chunks (e.g. 4K)
– Cannot be addressed at byte level
– Random access at block level for reads (no locality advantage)
– Writing of new blocks handled in order (kinda like a log)

• Before writing, must be erased (256K block at a time)
– Requires free-list management
– CANNOT write over existing block (Copy-on-Write is normal case)
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Recall: SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Wear-out happens because of writing 

2007 perspective (Storage Newsletter) 2019 perspective 
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Recall: I/O Performance

• Performance of I/O subsystem
– Metrics: Response Time, Throughput 
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n )
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior :
– Can lead to big increases of latency as utilization increases
– Solutions?

Response Time = Queue + I/O device service time
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A Simple Deterministic World

• Assume requests arrive at regular intervals, take a fixed time to 
process, with plenty of time between …

• Service rate (μ = 1/TS)  - operations per second
• Arrival rate: (λ =  1/TA) - requests per second 
• Utilization: U = λ/μ , where λ < μ

Queue Serverarrivals departures

TQ TS

TA TA TA

TSTq
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A Ideal Linear World

Offered Load  (TS/TA)

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

time

Q
ue

ue
 d

el
ay



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  7

A Ideal Linear World

• What does the queue wait time look like during overload?
– Grows unbounded at a rate ~ (TS/TA) till request rate subsides
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Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures
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Reality: A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but:

– Almost all of the requests experience large queue delays
– Even though average utilization is low!

Queue Serverarrivals departures
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• Elegant mathematical framework if you start with exponential 
distribution

– Probability density function of a continuous random variable with a 
mean of 1/λ

– f(x) = λe-λx

– “Memoryless”
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Background:  
General Use of Random Distributions

• Server spends variable time (T) with customers
– Mean (Average) m = Σp(T)×T
– Variance (stddev2) σ2 = Σp(T)×(T-m)2 = Σp(T)×T2-m2

– Squared coefficient of variance: C = σ2/m2 
Aggregate description of the distribution

• Important values of C:
– No variance or deterministic ⇒ C=0 
– “Memoryless” or exponential ⇒ C=1 

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates) 

are well described as memoryless 
– Disk response times C ≈ 1.5  (majority seeks < average)

Mean 
(m)

mean

Memoryless

Distribution
of service times

σ
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DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state behavior ⇒ Arrival 

rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution

Queue

C
ontroller

Disk
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Little’s Law

• In any stable system 
– Average arrival rate = Average departure rate 

• The average number of jobs/tasks in the system (N) is equal to 
arrival time / throughput (λ) times the response time (L) 

– N (jobs) = λ (jobs/s) x L (s)
• Regardless of structure, bursts of requests, variation in service

– Instantaneous variations, but it washes out in the average
– Overall, requests match departures

arrivals departuresN
λ

L
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Example

λ = 1 
L = 5

0 1 2 3 4 5 6 7 8 169 10 11 12 13 14 15 time

Jobs

L = 5

N = 5 jobs

A: N = λ x L 
• E.g., N = λ x L = 5 
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A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– λ: mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser 

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = λ × Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”): 

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
 λ

Queue Server
Service Rate

 µ=1/Tser
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Why unbounded response time?

• Assume deterministic arrival process and service time
– Possible to sustain utilization = 1 with bounded response time!

time

arrival  
time

service 
time
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Why unbounded response time?

• Assume stochastic arrival process 
(and service time)

– No longer possible to achieve  
utilization = 1 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So cannot achieve u = 1!
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A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions: 
– How utilized is the disk? 

» Ans: server utilization, u = λTser
– What is the average time spent in the queue? 

» Ans: Tq
– What is the number of requests in the queue? 

» Ans: Lq
– What is the avg response time for disk request? 

» Ans: Tsys = Tq + Tser
• Computation:
λ (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = λ x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)  

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = λ x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms  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Queuing Theory Resources

• Resources page contains Queueing Theory Resources (under 
Readings):

– Scanned pages from Patterson and Hennessy book that gives further 
discussion and simple proof for general equation: https://
cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf 

– A complete website full of resources: http://web2.uwindsor.ca/math/hlynka/
qonline.html 

https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
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Optimize I/O Performance

• How to improve performance?
– Make everything faster ☺
– More Decoupled (Parallelism) systems

» multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
– Do other useful work while waiting

• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time =  
Queue + I/O device service time
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I/O Scheduling Discussion

• What happens when two processes are accessing storage in 
different regions of the disk ?

• What can the driver do?
• How can buffering help?
• What about non-blocking I/O?
• Or threads with blocking I/O?
• What limits how much reordering the OS can do?
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When is Disk Performance Highest?

• When there are big sequential reads, or
• When there is so much work to do that they can be piggy backed 

(reordering queues—one moment)

• OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?
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Disk Scheduling (1/2)
• Disk can do only one request at a time; What order do you choose to 

do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be  

to random spots on the disk ⇒ Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include  

rotational delay in calculation, since  
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but  
may lead to starvation
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Disk Scheduling (2/2)
• Disk can do only one request at a time; What order do you choose to 

do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest request in 
the direction of travel
– No starvation, but retains flavor of SSTF
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Disk Scheduling (2/2)
• Disk can do only one request at a time; What order do you choose to 

do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle
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Recall: How do we Hide I/O Latency?
• Blocking Interface: “Wait”

– When request data (e.g., read() system call), put process to sleep 
until data is ready

– When write data (e.g., write() system call), put process to sleep 
until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes 

successfully transferred to kernel
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When requesting data, take pointer to user’s buffer, return 

immediately; later kernel fills buffer and notifies user
– When sending data, take pointer to user’s buffer, return 

immediately; later kernel takes data and notifies user 
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From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index, 
Typically 4 KB

Hardware 
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block
Phys Index., 

4KB

Sector(s)Sector(s)

Erasure Page
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I/O & Storage Layers

High Level I/O 

Low Level I/O 
Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Operations, Entities and Interface

file_open, file_read, … on struct file * & void *

we are here …
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Recall: C Low level I/O
• Operations on File Descriptors – as OS object representing the 

state of a file
– User has a “handle” on the descriptor 

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int create (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, …)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
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Recall: C Low Level Operations

• When write returns, data is on its way to disk and can be read, 
but it may not actually be permanent!

ssize_t read (int filedes, void *buffer, size_t maxsize)
 - returns bytes read, 0 => EOF, -1 => error
ssize_t write (int filedes, const void *buffer, size_t size)
 - returns bytes written
off_t lseek (int filedes, off_t offset, int whence)
 - set the file offset
   * if whence == SEEK_SET: set file offset to “offset”
   * if whence == SEEK_CRT: set file offset to crt location + 
“offset”
   * if whence == SEEK_END: set file offset to file size + “offset”
int fsync (int fildes) 
 – wait for i/o of filedes to finish and commit to disk
void sync (void) – wait for ALL to finish and commit to disk
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Building a File System

• File System: Layer of OS that transforms block interface of disks (or 
other block devices) into Files, Directories, etc.

• File System Components
– Naming: Interface to find files by name, not by blocks
– Disk Management: collecting disk blocks into files
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite crashes, 

media failures, attacks, etc.
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Recall: User vs. System View of a File

• User’s view: 
– Durable Data Structures

• System’s view (system call interface):
– Collection of Bytes (UNIX)
– Doesn’t matter to system what kind of data structures you 

want to store on disk!
• System’s view (inside OS):

– Collection of blocks (a block is a logical transfer unit, while a 
sector is the physical transfer unit)

– Block size ≥ sector size; in UNIX, block size is 4KB
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Translating from User to Systems View

• What happens if user says: "give me bytes 2 – 12?"
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File  
(Bytes)
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Disk Management Policies

• Basic entities on a disk:
– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• Access disk as linear array of sectors.  Two Options: 
– Identify sectors as vectors [cylinder, surface, sector], sort in cylinder-

major order, not used anymore
– Logical Block Addressing (LBA): Every sector has integer address 

from zero up to max number of sectors
– Controller translates from address ⇒ physical position

» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk
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What does the file system need?

• Track free disk blocks
– Need to know where to put newly written data

• Track which blocks contain data for which files
– Need to know where to read a file from

• Track files in a directory
– Find list of file's blocks given its name

• Where do we maintain all of this?
– Somewhere on disk
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Data Structures on Disk
• Different than data structures in memory
• Access a block at a time

– Can't efficiently read/write a single word
– Have to read/write full block containing it
– Ideally want sequential access patterns

• Durability
– Ideally, file system is in meaningful state upon shutdown
– This obviously isn't always the case…
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Designing a File System …

• What factors are critical to the design choices?
• Durable data store => it’s all on disk
• (Hard) Disks Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the actual file 
resource are, in advance

• Size is determined as they are used !!!
– Can write to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to allocate / free blocks 
– Such that access remains efficient
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Components of a File System

File path

Directory 
Structure

File Index 
Structure

File number
“inumber”

…

Data blocks

“inode”

One Block = multiple sectors
Ex: 512 sector,  4K block
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Components of a file system

• Open performs Name Resolution
– Translates pathname into a “file number”

» Used as an “index” to locate the blocks
– Creates a file descriptor in PCB within kernel
– Returns a “handle” (another integer) to user process

• Read, Write, Seek, and Sync operate on handle
– Mapped to file descriptor and to blocks

file name
offset directory

file number
offset

Index 
structure

Storage block
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Directories
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Directory
• Basically a hierarchical structure

• Each directory entry is a collection of
– Files
– Directories

» A link to another entries

• Each has a name and attributes
– Files have data

• Links (hard links) make it a DAG, not just a tree
– Softlinks (aliases) are another name for an entry
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File

• Named permanent storage
• Contains

– Data
» Blocks on disk somewhere

– Metadata (Attributes)
» Owner, size, last opened, …
» Access rights

•R, W, X
•Owner, Group, Other (in Unix systems)
•Access control list in Windows system

…

Data blocks
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• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

In-Memory File System Structures
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• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes 

In-Memory File System Structures
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Our first filesystem: FAT (File Allocation Table)
• The most commonly used filesystem in the world!
• Assume (for now) we have a  

way to translate a path to  
a “file number”

– i.e., a directory structure
• Disk Storage is a collection of Blocks

– Just hold file data (offset o = < B, x >)
• Example: file_read 31, < 2, x >

– Index into FAT with file number
– Follow linked list to block
– Read the block from disk  

into memory

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory
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• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• File offset (o = < B, x >)
• Follow list to get block #
• Unused blocks ⬄ Marked free (no 

ordering, must scan to find)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

free

31:

File number
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• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• File offset (o = < B, x > )
• Follow list to get block #
• Unused blocks ⬄ Marked free (no 

ordering, must scan to find)
• Ex: file_write(31, < 3, y >)

– Grab free block
– Linking them into file

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

memory

FAT Properties

File 31, Block 3

free

31:

File number
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• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• Grow file by allocating free blocks  

and linking them in
• Ex: Create file, write, write

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

File 63, Block 1

File 63, Block 063:

free
31:

File 1 number

File 2 number
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File 31, Block 3

• FAT32 (32 instead of 12 bits) used in Windows, USB drives,  
SD cards, … 

• Where is FAT stored?
– On Disk, on boot cache in memory, 

second (backup) copy on disk
• What happens when you format a disk?

– Zero the blocks, Mark FAT entries “free”
• What happens when you  

quick format a disk?
– Mark all entries in FAT as free

• Simple
– Can implement in  

device firmware

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Assessment

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number
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File 31, Block 3

• Time to find block (large files) ??

• Block layout for file ???

• Sequential Access ???

• Random Access ???

• Fragmentation ???
– MSDOS defrag tool

• Small files ???

• Big files ???

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Assessment – Issues 

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number
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What about the Directory?

• Essentially a file containing  
<file_name: file_number> mappings

• Free space for new entries

• In FAT: file attributes are kept in directory (!!!)

• Each directory a linked list of entries

• Where do you find root directory ( “/” )?
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Directory Structure (cont’d)

• How many disk accesses to resolve “/my/book/count”?
– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs.  Search linearly – ok since directories 
typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer to a 
directory (inode) used for resolving file names

– Allows user to specify relative filename instead of absolute path (say 
CWD=“/my/book” can resolve “count”)
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Many Huge FAT Security Holes!

• FAT has no access rights

• FAT has no header in the file blocks

• Just gives an index into the FAT 
– (file number = block number)
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Summary

• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency → ∞ 

Tq = Tser × ½(1+C)  × u/(1 – u))  

• File System:
– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header, called “inode”
• File Allocation Table (FAT) Scheme

– Linked-list approach 
– Very widely used: Cameras, USB drives, SD cards
– Simple to implement, but poor performance and no security 

• Look at actual file access patterns – many small files, but large files take up 
all the space!


