
CS162  
Operating Systems and 
Systems Programming 

Lecture 18  
  

Queueing Theory,  
Disk scheduling & File Systems

April 2nd, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course 
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.  
When slides are obtained from other sources, a  a reference will be noted on 
the bottom of that slide, in which case a full list of references is provided on the 
last slide.



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  2

Review: Magnetic Disks

• Cylinders: all the tracks under the  
head at a given point on all surface

• Read/write data is a three-stage process:
– Seek time: position the head/arm over the proper track
– Rotational latency: wait for desired sector to rotate under r/w head
– Transfer time: transfer a block of bits (sector) under r/w head

Sector
Track

Cylinder
Head

Platter

Software 
Queue 
(Device Driver)

H
ardw

are 
C

ontroller

 Media Time 
(Seek+Rot+Xfer)

R
equest

R
esult

Disk Latency = Queueing Time + Controller time + 
                        Seek Time + Rotation Time + Xfer Time



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  3

Flash Memory (Con’t)

• Data read and written in page-sized chunks (e.g. 4K)
– Cannot be addressed at byte level
– Random access at block level for reads (no locality advantage)
– Writing of new blocks handled in order (kinda like a log)

• Before writing, must be erased (256K block at a time)
– Requires free-list management
– CANNOT write over existing block (Copy-on-Write is normal case)



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  4

Recall: SSD Summary
• Pros (vs. hard disk drives):

– Low latency, high throughput (eliminate seek/rotational delay)
– No moving parts: 

» Very light weight, low power, silent, very shock insensitive
– Read at memory speeds (limited by controller and I/O bus)

• Cons
– Small storage (0.1-0.5x disk), expensive (3-20x disk)

» Hybrid alternative: combine small SSD with large HDD
– Wear-out happens because of writing 

2007 perspective (Storage Newsletter) 2019 perspective 



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  5

Recall: I/O Performance

• Performance of I/O subsystem
– Metrics: Response Time, Throughput 
– Effective BW per op = transfer size / response time

» EffBW(n) = n / (S + n/B) = B / (1 + SB/n )
– Contributing factors to latency:

» Software paths (can be loosely modeled by a queue)
» Hardware controller
» I/O device service time

• Queuing behavior :
– Can lead to big increases of latency as utilization increases
– Solutions?

Response Time = Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

100%

Response
Time (ms)

Throughput  (Utilization)
                   (% total BW)

0

100

200

300

0%



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  6

A Simple Deterministic World

• Assume requests arrive at regular intervals, take a fixed time to 
process, with plenty of time between …

• Service rate (μ = 1/TS)  - operations per second
• Arrival rate: (λ =  1/TA) - requests per second 
• Utilization: U = λ/μ , where λ < μ

Queue Serverarrivals departures

TQ TS

TA TA TA

TSTq



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  7

A Ideal Linear World

Offered Load  (TS/TA)

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

time

Q
ue

ue
 d

el
ay



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  7

A Ideal Linear World

• What does the queue wait time look like during overload?
– Grows unbounded at a rate ~ (TS/TA) till request rate subsides

Offered Load  (TS/TA)

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

time

Q
ue

ue
 d

el
ay

D
el

iv
er

ed
 T

hr
ou

gh
pu

t

0 1

1

Offered Load  (TS/TA)

Empty Queue

Saturation

Unbounded

time

Q
ue

ue
 d

el
ay



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  8

Reality: A Bursty World

• Requests arrive in a burst, must queue up till served
• Same average arrival time, but:

– Almost all of the requests experience large queue delays
– Even though average utilization is low!

Queue Serverarrivals departures

TQ TS

Q depth

Server

Arrivals



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  9

• Elegant mathematical framework if you start with exponential 
distribution

– Probability density function of a continuous random variable with a 
mean of 1/λ

– f(x) = λe-λx

– “Memoryless”

0

0.25

0.5

0.75

1

0 2.5 5 7.5 10

Likelihood of an event occurring 
is independent of how long we’ve 
been waiting

So how do we model the burstiness of arrival?

x (λ)



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  9

• Elegant mathematical framework if you start with exponential 
distribution

– Probability density function of a continuous random variable with a 
mean of 1/λ

– f(x) = λe-λx

– “Memoryless”

0

0.25

0.5

0.75

1

0 2.5 5 7.5 10

Likelihood of an event occurring 
is independent of how long we’ve 
been waiting

So how do we model the burstiness of arrival?

x (λ)

mean arrival interval (1/λ)



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  9

• Elegant mathematical framework if you start with exponential 
distribution

– Probability density function of a continuous random variable with a 
mean of 1/λ

– f(x) = λe-λx

– “Memoryless”

0

0.25

0.5

0.75

1

0 2.5 5 7.5 10

Likelihood of an event occurring 
is independent of how long we’ve 
been waiting

So how do we model the burstiness of arrival?

Lots of short arrival intervals 
(i.e., high instantaneous rate)

x (λ)

mean arrival interval (1/λ)



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  9

• Elegant mathematical framework if you start with exponential 
distribution

– Probability density function of a continuous random variable with a 
mean of 1/λ

– f(x) = λe-λx

– “Memoryless”

0

0.25

0.5

0.75

1

0 2.5 5 7.5 10

Likelihood of an event occurring 
is independent of how long we’ve 
been waiting

So how do we model the burstiness of arrival?

Lots of short arrival intervals 
(i.e., high instantaneous rate)

Few long gaps (i.e., low 
instantaneous rate)

x (λ)

mean arrival interval (1/λ)



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  10

Background:  
General Use of Random Distributions

• Server spends variable time (T) with customers
– Mean (Average) m = Σp(T)×T
– Variance (stddev2) σ2 = Σp(T)×(T-m)2 = Σp(T)×T2-m2

– Squared coefficient of variance: C = σ2/m2 
Aggregate description of the distribution

• Important values of C:
– No variance or deterministic ⇒ C=0 
– “Memoryless” or exponential ⇒ C=1 

» Past tells nothing about future
» Poisson process – purely or completely random process
» Many complex systems (or aggregates) 

are well described as memoryless 
– Disk response times C ≈ 1.5  (majority seeks < average)

Mean 
(m)

mean

Memoryless

Distribution
of service times

σ



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  11

DeparturesArrivals
Queuing System

Introduction to Queuing Theory

• What about queuing time??
– Let’s apply some queuing theory
– Queuing Theory applies to long term, steady state behavior ⇒ Arrival 

rate = Departure rate

• Arrivals characterized by some probabilistic distribution

• Departures characterized by some probabilistic distribution

Queue

C
ontroller

Disk



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  12

Little’s Law

• In any stable system 
– Average arrival rate = Average departure rate 

• The average number of jobs/tasks in the system (N) is equal to 
arrival time / throughput (λ) times the response time (L) 

– N (jobs) = λ (jobs/s) x L (s)
• Regardless of structure, bursts of requests, variation in service

– Instantaneous variations, but it washes out in the average
– Overall, requests match departures

arrivals departuresN
λ

L



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  13

Example

λ = 1 
L = 5

0 1 2 3 4 5 6 7 8 169 10 11 12 13 14 15 time

Jobs

L = 5

N = 5 jobs

A: N = λ x L 
• E.g., N = λ x L = 5 



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  14

A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– λ: mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser 

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = λ × Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”): 

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
 λ

Queue Server
Service Rate

 µ=1/Tser



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  15

A Little Queuing Theory: Some Results
• Assumptions:

– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:
– λ: mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser 

• Parameters we wish to compute:
– Tq: Time spent in queue
– Lq: Length of queue = λ × Tq (by Little’s law)

• Results:
– Memoryless service distribution (C = 1): (an “M/M/1 queue”):

» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”): 

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
 λ

Queue Server
Service Rate

 µ=1/Tser

Why does response/queueing 
delay grow unboundedly even 
though the utilization is < 1 ?

100%

Response
Time (ms)

Throughput  (Utilization)
                   (% total BW)

0

100

200

300

0%



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  16

Why unbounded response time?

• Assume deterministic arrival process and service time
– Possible to sustain utilization = 1 with bounded response time!

time

arrival  
time

service 
time



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  17

Why unbounded response time?

• Assume stochastic arrival process 
(and service time)

– No longer possible to achieve  
utilization = 1 

100%

Response
Time (ms)

Throughput  (Utilization)
                   (% total BW)

0

100

200

300

0%

time

This wasted time can never 
be reclaimed!  
So cannot achieve u = 1!



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  18

A Little Queuing Theory: An Example
• Example Usage Statistics:

– User requests 10 x 8KB disk I/Os per second
– Requests & service exponentially distributed (C=1.0)
– Avg. service = 20 ms (From controller+seek+rot+trans)

• Questions: 
– How utilized is the disk? 

» Ans: server utilization, u = λTser
– What is the average time spent in the queue? 

» Ans: Tq
– What is the number of requests in the queue? 

» Ans: Lq
– What is the avg response time for disk request? 

» Ans: Tsys = Tq + Tser
• Computation:
λ (avg # arriving customers/s) = 10/s
Tser (avg time to service customer) = 20 ms (0.02s)
u (server utilization) = λ x Tser= 10/s x .02s = 0.2
Tq (avg time/customer in queue) = Tser x u/(1 – u)  

= 20 x 0.2/(1-0.2) = 20 x 0.25 = 5 ms (0 .005s)
Lq (avg length of queue) = λ x Tq=10/s x .005s = 0.05
Tsys (avg time/customer in system) =Tq + Tser= 25 ms  
 



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  19

Queuing Theory Resources

• Resources page contains Queueing Theory Resources (under 
Readings):

– Scanned pages from Patterson and Hennessy book that gives further 
discussion and simple proof for general equation: https://
cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf 

– A complete website full of resources: http://web2.uwindsor.ca/math/hlynka/
qonline.html 

https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html


4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  20

Optimize I/O Performance

• How to improve performance?
– Make everything faster ☺
– More Decoupled (Parallelism) systems

» multiple independent buses or controllers
– Optimize the bottleneck to increase service rate

» Use the queue to optimize the service
– Do other useful work while waiting

• Queues absorb bursts and smooth the flow
• Admissions control (finite queues)

– Limits delays, but may introduce unfairness and livelock

Response Time =  
Queue + I/O device service time

User
Thread

Queue
[OS Paths]

C
ontroller

I/O
device

100%

Response
Time (ms)

Throughput  (Utilization)
(% total BW)

0

100

200

300

0%



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  21

I/O Scheduling Discussion

• What happens when two processes are accessing storage in 
different regions of the disk ?

• What can the driver do?
• How can buffering help?
• What about non-blocking I/O?
• Or threads with blocking I/O?
• What limits how much reordering the OS can do?



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  22

When is Disk Performance Highest?

• When there are big sequential reads, or
• When there is so much work to do that they can be piggy backed 

(reordering queues—one moment)

• OK to be inefficient when things are mostly idle
• Bursts are both a threat and an opportunity
• <your idea for optimization goes here>

– Waste space for speed?



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  23

Disk Scheduling (1/2)
• Disk can do only one request at a time; What order do you choose to 

do queued requests?

• FIFO Order
– Fair among requesters, but order of arrival may be  

to random spots on the disk ⇒ Very long seeks
• SSTF: Shortest seek time first

– Pick the request that’s closest on the disk
– Although called SSTF, today must include  

rotational delay in calculation, since  
rotation can be as long as seek

– Con: SSTF good at reducing seeks, but  
may lead to starvation

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests

1

4

2

D
isk H

ead

3



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  24

Disk Scheduling (2/2)
• Disk can do only one request at a time; What order do you choose to 

do queued requests?

• SCAN: Implements an Elevator Algorithm: take the closest request in 
the direction of travel
– No starvation, but retains flavor of SSTF

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  25

Disk Scheduling (2/2)
• Disk can do only one request at a time; What order do you choose to 

do queued requests?

• C-SCAN: Circular-Scan: only goes in one direction
– Skips any requests on the way back
– Fairer than SCAN, not biased towards pages in middle

2,3
2,1
3,10
7,2
5,2
2,2 HeadUser

Requests



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  26

Recall: How do we Hide I/O Latency?
• Blocking Interface: “Wait”

– When request data (e.g., read() system call), put process to sleep 
until data is ready

– When write data (e.g., write() system call), put process to sleep 
until device is ready for data

• Non-blocking Interface: “Don’t Wait”
– Returns quickly from read or write request with count of bytes 

successfully transferred to kernel
– Read may return nothing, write may write nothing

• Asynchronous Interface: “Tell Me Later”
– When requesting data, take pointer to user’s buffer, return 

immediately; later kernel fills buffer and notifies user
– When sending data, take pointer to user’s buffer, return 

immediately; later kernel takes data and notifies user 



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  27

From Storage to File Systems

I/O API and
syscalls Variable-Size Buffer

File System Block
Logical Index, 
Typically 4 KB

Hardware 
Devices

Memory Address

HDD

Sector(s)

Physical Index,
512B or 4KB

SSD

Flash Trans. Layer

Phys. Block
Phys Index., 

4KB

Sector(s)Sector(s)

Erasure Page



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  28

I/O & Storage Layers

High Level I/O 

Low Level I/O 
Syscall

File System

I/O Driver

Application / Service
streams

handles

registers

descriptors

Commands and Data Transfers

Disks, Flash, Controllers, DMA

Operations, Entities and Interface

file_open, file_read, … on struct file * & void *

we are here …



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  29

Recall: C Low level I/O
• Operations on File Descriptors – as OS object representing the 

state of a file
– User has a “handle” on the descriptor 

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int open (const char *filename, int flags [, mode_t mode])
int create (const char *filename, mode_t mode)
int close (int filedes)

Bit vector of:
• Access modes (Rd, Wr, …)
• Open Flags (Create, …)
• Operating modes (Appends, …)

Bit vector of Permission Bits:
• User|Group|Other X R|W|X

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html


4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  30

Recall: C Low Level Operations

• When write returns, data is on its way to disk and can be read, 
but it may not actually be permanent!

ssize_t read (int filedes, void *buffer, size_t maxsize)
 - returns bytes read, 0 => EOF, -1 => error
ssize_t write (int filedes, const void *buffer, size_t size)
 - returns bytes written
off_t lseek (int filedes, off_t offset, int whence)
 - set the file offset
   * if whence == SEEK_SET: set file offset to “offset”
   * if whence == SEEK_CRT: set file offset to crt location + 
“offset”
   * if whence == SEEK_END: set file offset to file size + “offset”
int fsync (int fildes) 
 – wait for i/o of filedes to finish and commit to disk
void sync (void) – wait for ALL to finish and commit to disk



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  31

Building a File System

• File System: Layer of OS that transforms block interface of disks (or 
other block devices) into Files, Directories, etc.

• File System Components
– Naming: Interface to find files by name, not by blocks
– Disk Management: collecting disk blocks into files
– Protection: Layers to keep data secure
– Reliability/Durability: Keeping of files durable despite crashes, 

media failures, attacks, etc.



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  32

Recall: User vs. System View of a File

• User’s view: 
– Durable Data Structures

• System’s view (system call interface):
– Collection of Bytes (UNIX)
– Doesn’t matter to system what kind of data structures you 

want to store on disk!
• System’s view (inside OS):

– Collection of blocks (a block is a logical transfer unit, while a 
sector is the physical transfer unit)

– Block size ≥ sector size; in UNIX, block size is 4KB



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  33

Translating from User to Systems View

• What happens if user says: "give me bytes 2 – 12?"
– Fetch block corresponding to those bytes
– Return just the correct portion of the block

• What about writing bytes 2 – 12?
– Fetch block, modify relevant portion, write out block

• Everything inside file system in terms of whole-size blocks
– Actual disk I/O happens in blocks
– read/write smaller than block size needs to translate and buffer

File
System

File  
(Bytes)



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  34

Disk Management Policies

• Basic entities on a disk:
– File: user-visible group of blocks arranged sequentially in logical space
– Directory: user-visible index mapping names to files

• Access disk as linear array of sectors.  Two Options: 
– Identify sectors as vectors [cylinder, surface, sector], sort in cylinder-

major order, not used anymore
– Logical Block Addressing (LBA): Every sector has integer address 

from zero up to max number of sectors
– Controller translates from address ⇒ physical position

» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  35

What does the file system need?

• Track free disk blocks
– Need to know where to put newly written data

• Track which blocks contain data for which files
– Need to know where to read a file from

• Track files in a directory
– Find list of file's blocks given its name

• Where do we maintain all of this?
– Somewhere on disk



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  36

Data Structures on Disk
• Different than data structures in memory
• Access a block at a time

– Can't efficiently read/write a single word
– Have to read/write full block containing it
– Ideally want sequential access patterns

• Durability
– Ideally, file system is in meaningful state upon shutdown
– This obviously isn't always the case…



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  37

Designing a File System …

• What factors are critical to the design choices?
• Durable data store => it’s all on disk
• (Hard) Disks Performance !!!

– Maximize sequential access, minimize seeks
• Open before Read/Write

– Can perform protection checks and look up where the actual file 
resource are, in advance

• Size is determined as they are used !!!
– Can write to expand the file
– Start small and grow, need to make room

• Organized into directories
– What data structure (on disk) for that?

• Need to allocate / free blocks 
– Such that access remains efficient



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  38

Components of a File System

File path

Directory 
Structure

File Index 
Structure

File number
“inumber”

…

Data blocks

“inode”

One Block = multiple sectors
Ex: 512 sector,  4K block



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  39

Components of a file system

• Open performs Name Resolution
– Translates pathname into a “file number”

» Used as an “index” to locate the blocks
– Creates a file descriptor in PCB within kernel
– Returns a “handle” (another integer) to user process

• Read, Write, Seek, and Sync operate on handle
– Mapped to file descriptor and to blocks

file name
offset directory

file number
offset

Index 
structure

Storage block



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  40

Directories



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  41

Directory
• Basically a hierarchical structure

• Each directory entry is a collection of
– Files
– Directories

» A link to another entries

• Each has a name and attributes
– Files have data

• Links (hard links) make it a DAG, not just a tree
– Softlinks (aliases) are another name for an entry



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  42

File

• Named permanent storage
• Contains

– Data
» Blocks on disk somewhere

– Metadata (Attributes)
» Owner, size, last opened, …
» Access rights

•R, W, X
•Owner, Group, Other (in Unix systems)
•Access control list in Windows system

…

Data blocks



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  43

• Open system call:
– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

In-Memory File System Structures



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  44

• Read/write system calls:
– Use file handle to locate inode
– Perform appropriate reads or writes 

In-Memory File System Structures



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  45

Our first filesystem: FAT (File Allocation Table)
• The most commonly used filesystem in the world!
• Assume (for now) we have a  

way to translate a path to  
a “file number”

– i.e., a directory structure
• Disk Storage is a collection of Blocks

– Just hold file data (offset o = < B, x >)
• Example: file_read 31, < 2, x >

– Index into FAT with file number
– Follow linked list to block
– Read the block from disk  

into memory

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  46

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• File offset (o = < B, x >)
• Follow list to get block #
• Unused blocks ⬄ Marked free (no 

ordering, must scan to find)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

free

31:

File number



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  47

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• File offset (o = < B, x > )
• Follow list to get block #
• Unused blocks ⬄ Marked free (no 

ordering, must scan to find)
• Ex: file_write(31, < 3, y >)

– Grab free block
– Linking them into file

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

memory

FAT Properties

File 31, Block 3

free

31:

File number



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  48

• File is collection of disk blocks
• FAT is linked list 1-1 with blocks
• File Number is index of root  

of block list for the file
• Grow file by allocating free blocks  

and linking them in
• Ex: Create file, write, write

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

File 63, Block 1

File 63, Block 063:

free
31:

File 1 number

File 2 number



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  49

File 31, Block 3

• FAT32 (32 instead of 12 bits) used in Windows, USB drives,  
SD cards, … 

• Where is FAT stored?
– On Disk, on boot cache in memory, 

second (backup) copy on disk
• What happens when you format a disk?

– Zero the blocks, Mark FAT entries “free”
• What happens when you  

quick format a disk?
– Mark all entries in FAT as free

• Simple
– Can implement in  

device firmware

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Assessment

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  50

File 31, Block 3

• Time to find block (large files) ??

• Block layout for file ???

• Sequential Access ???

• Random Access ???

• Fragmentation ???
– MSDOS defrag tool

• Small files ???

• Big files ???

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Assessment – Issues 

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  51

What about the Directory?

• Essentially a file containing  
<file_name: file_number> mappings

• Free space for new entries

• In FAT: file attributes are kept in directory (!!!)

• Each directory a linked list of entries

• Where do you find root directory ( “/” )?



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  52

Directory Structure (cont’d)

• How many disk accesses to resolve “/my/book/count”?
– Read in file header for root (fixed spot on disk)
– Read in first data block for root

» Table of file name/index pairs.  Search linearly – ok since directories 
typically very small

– Read in file header for “my”
– Read in first data block for “my”; search for “book”
– Read in file header for “book”
– Read in first data block for “book”; search for “count”
– Read in file header for “count”

• Current working directory: Per-address-space pointer to a 
directory (inode) used for resolving file names

– Allows user to specify relative filename instead of absolute path (say 
CWD=“/my/book” can resolve “count”)



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  53

Many Huge FAT Security Holes!

• FAT has no access rights

• FAT has no header in the file blocks

• Just gives an index into the FAT 
– (file number = block number)



4/2/20 Kubiatowicz CS162 ©UCB Spring 2020  54

Summary

• Bursts & High Utilization introduce queuing delays
• Queuing Latency:

– M/M/1 and M/G/1 queues: simplest to analyze
– As utilization approaches 100%, latency → ∞ 

Tq = Tser × ½(1+C)  × u/(1 – u))  

• File System:
– Transforms blocks into Files and Directories
– Optimize for access and usage patterns
– Maximize sequential access, allow efficient random access

• File (and directory) defined by header, called “inode”
• File Allocation Table (FAT) Scheme

– Linked-list approach 
– Very widely used: Cameras, USB drives, SD cards
– Simple to implement, but poor performance and no security 

• Look at actual file access patterns – many small files, but large files take up 
all the space!


