CS162
Operating Systems and
Systems Programming

Lecture 14

Caching and TLBs (Finished),
Demand Paging

March 12th, 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on

the bottom of that slide, in which case a full list of references is provided on the
last slide.

Recall: Fix for sparse address space:

The two-level page table
- Physical
ddress:

|0 bits |0 bits |2 bits

Virtual
Address:

* Tree of Page Tables
— "Magic” 10b-10b-12b pattern!

* Tables fixed size (1024 entrieg)

— On context-switch: save single Page TablePtr
register (l.e. CR3)
* Valid bits on Page Table Entries
— Don't need every 2nd-level table

— Even when exist, 2nd-level tables can reside oR=—p 4 bytes <— L

disk if not In use
3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

3/12/20

Recall: Making it real:
X86 Memory model with segmentation (|6/32-bit)

Logical Address
(or Far Pointer)

Segment k
Selector et L

Segment Selector from
instruction: mov eax, gs(0x0)

inear Address
| | | | Space
Global Descriptor
Table (GDT)
Segment
Segment o
L. Descriptor
{’ Lin. Addr.
A
Segment
Base Address \
Combined addres
Is 32-bit “linear”

Virtual address
Segmentati

2-level page table

{ in 10-10-12 bit address
inear Address

——»{ Dir | Table | Offset | Physical
Address
Space
Page Table Page
Page Directory I »| Phy. Addr.
”—D Entry »
»| Entry I

T Page

Second level
called “table”

First level
called “directory” |

on

Paging |

Kubiatowicz CS162 ©UCB Spring 2020

Recall: In Machine Structures (eg. 61C) ...

* Caching is the key to memory system performance

Main
Memory
Processor | . > (DRAM)
Access time = [00ns
Main
Cache Memory
Processor | >|(rRAM) |€—>t (DRAM)
| ns 00ns

Average Memory Access Time (AMAT)

= (Hit Rate x HitTime) + (Miss Rate x MissTime)
Where HitRate + MissRate = |

HitRate = 90% => AMAT = (09 x 1) + (0.1 x 10)=11.I ns
HitRate = 99% => AMAT = (099 x) + (001 x 101)=2.01 ns

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Recall: The Memory Hierarchy

Managed in
Hardware
Processor
TLB - PT
X r N
&l sl |8 er| | L
(Z_’. Q (9] |
® % = PT SeSc;ondary
(2] orage
e PT : Secondary rag
TLB T LT Storage (Disk)
= - (g_ w Memory (SSD)
o | |5 N 5 O | [(DRAM)
Q e 0 ® 0
21 18] (2] | &3
sl |3] [®
Accessed in Hardware
100,000 10,000,000
Speed (ns):0.3 | 1 3 10-30 100 0.1 ms) (10 ms)
Size (bytes):100Bs 10kBs 100kBs MBs GBs 100GBs TBs

3/12/20

Kubiatowicz CS162 ©UCB Spring 2020

Recall: How to make Address Translation Fast?

e (Cache results of recent translations !
— Different from a traditional cache
— Cache Page Table Entries using Virtual Page # as the key

Physical

Processor
(core)

V_Pg M, : <Phs_Frame #,, V, .. >

V_Pg M, : <Phs_Frame #,, V, .. >

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Translation Look-Aside Buffer

* TLB is a cache of translations:
— Record recent Virtual Page # to Physical Frame # translation

* If present, get the physical address from TLB without reading any of the
page tables !l!
— Even if the translation involved multiple levels
— Caches the end-to-end result
* Was invented by Sir Maurice Wilkes — prior to caches

— People realized "if it's good for page tables, why not the rest of the data in
memory?”

* On a TLB miss, the page tables may be cached, so only go to memory
when both miss

— Ultimately invokes page table walk

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 7

Caching Applied to Address Translation

Virtual

Physical
ddress ysica

Address

Data Read or Write
(untranslated)

* Question Is one of page locality: does it exist!

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...

* Can we have a TLB hierarchy!?
— Sure: multiple levels at different sizes/speeds

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

What kind of Cache for TLB?

Set Size (k) - Associativity

\

of Sets _
(N)

tag data

\ J
1

line size (L)

* Remember all those cache design parameters and trade-offs!

— Amount of Data = N * L * K
— Tag is portion of address that identifies line (w/o line offset)

— Write Policy (write-thru, write-back), Eviction Policy (LRU, ...)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

3/10/20

How might organization of TLB differ from that
of a conventional instruction or data cache!?

e | et's do some review ...

Kubiatowicz CS162 ©UCB Spring 2020

A Summary on Sources of Cache Misses

Compulsory (cold start or process migration, first reference): first
access to a block

— "Cold" fact of life: not a whole lot you can do about it

— Note: If you are going to run "billions” of instruction, Compulsory
Misses are insignificant

Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size

Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution |:increase cache size
— Solution 2:increase associativity

Coherence (Invalidation): other process (e.g., [/O) updates memory

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 Il

How is a Block found in a Cache?

Set Select

Data Select
* Block is minimum quantum of caching

— Data select field used to select data (byte) within block
— Many caching applications don't have data select field
* Index Used to Lookup Candidates in Cache
— Index identifies the set
* Tag used to identify actual copy
— If no candidates match, then declare cache miss

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Review: Direct Mapped Cache

* Direct Mapped 2N byte cache:
— The uppermost (32 - N) bits are always the Cache Tag
— The lowest M bits are the Byte Select (Block Size = 2M)

* Example: | KB Direct Mapped Cache with 32 B Blocks
— Index chooses potential block
— Tag checked to verify block
ngyte select chooses byte within block o

4 0
Cache Tag A Cache Index Byte Select
Ex: 0x50 Ex: 0x01 Ex: 0x00
I
Valid Bit Cache Tag Cache Data
.. Byte3l]....»|Bytel |Bytel0 |0
0x50 Byte 63 Byte 33 [Byte 32 | § «—
.. 3
3
Byte 1023 Byte 992 |31

3/12/20

Kubiatowicz CS162 ©UCB Spring 2020

Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

* Example: Two-way set associative cache
— Cache Index selects a ““set” from the cache
— Two tags In the set are compared to input in parallel
;57 Data is selected based on the tag rgsult

4 0
Cache Tag Cache Index Byte Select
J
Valid Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
g I by ol ettt B A I e B -1,
| < > |
i i R i e L —
I [

—’@ }&Sen —Mpx 0 Sel0 ,/_CJ

3/12/20 Hit l Cache Block 14

Review: Fully Associative Cache

* Fully Associative: Every block can hold any line

— Address does not include a cache index

— Compare Cache Tags of all Cache Entries in Parallel
* Example: Block Size=32B blocks

— We need N 2/-brt comparators
— Still have byte select to choose from within black

31 0
Ex: 0x01
Cache Tag Valid Bit Cache Data

v

Bye31] .. [Byiel[Byeo

Byte 63 «« |Byte 33 |Byte 32

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 I5

Where does a Block Get Placed in a Cache?

* Example: Block |2 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped:
block 12 can go
only into block 4
(12 mod 8)

Block 01234567
no.

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 16

Where does a Block Get Placed in a Cache?

* Example: Block |2 placed in 8 block cache
32-Block Address Space:

Block 1111111111222222222233
no. 01234567890123456789012345678901

Direct mapped: Set associative:
block 12 can go block 12 can go
only into block 4 anywhere in set 0
(12 mod 8) (12 mod 4)
Block 01234567 Block 01234567
no. no.
Set Set Set Set
01 2 3

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Where does a Block Get Placed in a Cache?

* Example: Block |2 placed in 8 block cache
32-Block Address Space:

Block

1111111111222222222233

no. 01234567890123456789012345678901

Direct mapped:

block 12 can go
only into block 4
(12 mod 8)

Block 01234567
no.

3/12/20

Set associative: Fully associative:
block 12 can go block 12 can go
anywhere in set 0 anywhere
(12 mod 4)

Block 01234567 Block 01234567

no. no.

Set Set Set Set
0 1 2 3

Kubiatowicz CS162 ©UCB Spring 2020 6

Which block should be replaced on a miss?

* Easy for Direct Mapped: Only one possibility
* Set Associative or Fully Associative:
— Random

— LRU (Least Recently Used)

* Miss rates for a workload:

2-way 4-way 8-way
Size LRU Random [RU Random LRU Random

6 KB 52% 57% 47% 53% 44% 5.0%
64 KB 1.9% 2.0% 1.5% |.7% 4% 1.5%
256 KB [.15% |.17% 1.13% 1.13% 1.129% 1.12%

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Review:What happens on a write!

* Write through: The information is written to both the block in the
cache and to the block in the lower-level memory

* Write back: The information is written only to the block in the cache

— Modified cache block is written to main memory only when it is
replaced

— Question is block clean or dirty?
* Pros and Cons of each?
— WT:
» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
— WB:

» PRO: repeated writes not sent to DRAM
processor not held up on writes
» CON: More complex
Read miss may require writeback of dirty data

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 18

Impact of caches on Operating Systems

Dealing with cache effects
— Maintaining the correctness of various caches
— kg, TLB consistency:
» With PT across context switches ?
» Across updates to the PT ¢

* Process scheduling
— Which and how many processes are active ! Priorities ?
— Large memory footprints versus small ones !
— Shared pages mapped into VAS of multiple processes !

Impact of thread scheduling on cache performance

— Rapid interleaving of threads (small quantum) may degrade cache
performance

» Increase average memory access time (AMAT) Il

Designing operating system data structures for cache performance

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 19

What TLB Organization Makes Sense!

TLB [—*|Cache p—>Memory

* Needs to be really fast

— Critical path of memory access
» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

— Seems to argue for Direct Mapped or Low Associativity

* However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high! (PT traversal)
— Cost of Conflict (Miss Time) is high

— Hit Time — dictated by clock cycle

 Thrashing: continuous conflicts between accesses
— What if use low order bits of page as index into TLB!
» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?
— What if use high order bits as index?
» TLB mostly unused for small programs

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

TLB organization: include protection

* How big does TLB actually have to be!
—Usually small: 128-512 entries (larger now)

—Not very big, can support higher associativity
* Small TLBs usually organized as fully-associative cache
— Lookup I1s by Virtual Address
—Returns Physical Address + other info
* What happens when fully-associative is too slow!
—Put a small (4-16 entry) direct-mapped cache in front

— Called a"“TLB Slice”
* Example for MIPS R3000:

3/12/20

Virtual Address

0xFAO00
0x0040
0x0041

Physical Address |Dirty |Ref |[Valid |Access ASID
0x0003 Y N Y RW 34
0x0010 N Y Y R 0
0x0011 N Y Y R 0

Kubiatowicz CS162 ©UCB Spring 2020

21

Reducing translation time further

TLB [—*|Cache p—>Memory

* As described, TLB lookup is in serial with cache lookup:
“—0 —_
Virtual Address |V page no. off

TLB Lookup

Access

V |Rights | PA _‘

Y

P page no. offset | Physical Address
“—0—

v

* Machines with TLBs go one step further: they overlap TLB lookup with
cache access.

— Works because offset available early
3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Overlapping TLB & Cache Access (1/2)

e Main idea;

— Offset in virtual address exactly covers the “cache index” and
“byte select”

— Thus can select the cached byte(s) in parallel to perform
address translation

virtual address [Virtual Page # [Offsee ™]
physical address [tag / page # [lindex | byte |

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 23

Overlapping TLB & Cache Access

* Here is how this might work with a 4K, direct-mapped cache:

assoc
lookup _
3 ‘ index | | K
20 10 2
virtual page # | disp
Hit/ —
MiSS \ /
page # Tag Data Hit/
v+ Miss

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 24

Example TLB Sizes: Pentium-M TLBs (2003)

* Four different TLBs
— Instruction TLB for 4K pages

» |28 entries, 4-way set associative

— Instruction TLB for large pages
» 2 entries, fully associative

— Data TLB for 4K pages

» |28 entries, 4-way set associative

— Data TLB for large pages

» 8 entries, 4-way set associative
* All TLBs use LRU replacement policy

. \/\/hy? different TLBs for instruction, data, and page
sizes!

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 25

Intel Nahelem (2008)

e LI DTLB
— 64 entries for 4 K pages and
— 32 entries for 2/4 M pages,
LI ITLB
— |28 entries for 4 K pages using 4-way associativity and
— |4 fully associative entries for 2/4 MiB pages

 unified 512-entry L2 TLB for 4 KiB pages, 4-way associative.

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

26

Current Intel x86 (Skylake, Cascade Lake)

Front End Instruction

CacheTag| L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
Tag TLB
16 B&cycle
Branch
Predictor Instruction Fetch & PreDecode
(16 B window)
(BPU))
B
A N w
Instruction Queue NS
(50, 2x25 entries) <
[2)
o
MicroCode 5-Way Decode
Seq;oe;lcer Complex || Simple Simple Simple Simple
(MS ROM) ficod:r Decoder || Decoder || Decoder || Decoder Stack
g - ¥ ¥ ¥ Engine
(SE)
5 pOPs
Decoded Stream Buffer (DSB) Ad er|
(OP Cache) _
(1.5k LOPs; 8-Way)
(64 B window) “’i"
Allocation Queue (IDQ) (128, 2x64 uOPs) ‘
P upOP poOP P poP Branch Order Buffer
‘ Register Alias Table (RAT) (BOB) (48-entry)
- i
= |—| Rename / Allocate / Retirement - ing 1di
s —ﬁt| Move Elimination ReOrder Buffor (224 entries) | Ones Idioms | | Zeroing Idioms |
8 - 2
g 0P 0P oP 0 0
by
g
% Integer Physical Register File Unified | (R Vector Physical Register File
g (180 Registers) ~ninec MRS (168 Registers)
- = = = T
=
c =r
S = N 64B/cycle
g Yon
2 = g To L3
5 28
=
&5 =0
QU
<
Execution Engine
g Store Buffer & Forwarding
(56 entries) g
G‘Iicle \ \ g
2 <
b Data TLB 2
L1 Data Cache ®

Load Buffer
(72 entries)

32KiB 8-Way

Line Fill Buffers (LFB)
(10 entries)

3/12/20 Kubiato Memo:'y Subsystem

Current Intel x86 (Skylake, Cascade Lake)

Front End Instruction

CacheTag| L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
Tag TLB
16 B&cycle
Branch
Predictor Instruction Fetch & PreDecode
(16 B window)
(BPU))
B
A N w
Instruction Queue NS
(50, 2x25 entries) <
[2)
o
MicroCode 5-Way Decode
Seq;oe;lcer Complex || Simple Simple Simple Simple
(MS ROM) ficod:r Decoder || Decoder || Decoder || Decoder Stack
g - ¥ ¥ ¥ Engine
(SE)
5 pOPs
Decoded Stream Buffer (DSB) Ad er|
(OP Cache) _
(1.5k LOPs; 8-Way)
(64 B window) “’i"
Allocation Queue (IDQ) (128, 2x64 uOPs) ‘
P upOP poOP P poP Branch Order Buffer
‘ Register Alias Table (RAT) (BOB) (48-entry)
- i
= |—| Rename / Allocate / Retirement - ing 1di
s —ﬁt| Move Elimination ReOrder Buffor (224 entries) | Ones Idioms | | Zeroing Idioms |
8 - 2
g 0P 0P oP 0 0
by
g
% Integer Physical Register File Unified | (R Vector Physical Register File
g (180 Registers) ~ninec MRS (168 Registers)
- = = = T
=
c =r
S = N 64B/cycle
g Yon
2 =g ToL3
s 28
=
&5 =0
QU
<
Execution Engine
g Store Buffer & Forwarding
(56 entries) g
N o
" g
: 2
Data TLB || o
Load Buffer L1 Data Cachg

32KiB 8-Way

(72 entries)

Line Fill Buffers (LFB)
(10 entries)

3/12/20 Kubiato Memo:'y Subsystem

Current Intel x86 (Skylake, Cascade Lake)

Front End Instruction

CacheTag| L1 Instruction Cache
HOP Cache 32KiB 8-Way Instruction
Tag TLB |
16 B&cycle
Branch
Predictor Instruction Fetch & PreDecode
(16 B window)
(BPU))
B
A N w
Instruction Queue NS
(50, 2x25 entries) <
[2)
o
MicroCode 5-Way Decode
Seq;oe;lcer Complex || Simple Simple Simple Simple
(MS ROM) ficod:r Decoder || Decoder || Decoder || Decoder Stack
g - ¥ ¥ ¥ Engine
(SE)
5 pOPs
Decoded Stream Buffer (DSB) Ad er|
(OP Cache) _
(1.5k LOPs; 8-Way)
(64 B window) “’i"
Allocation Queue (IDQ) (128, 2x64 uOPs) ‘
P upOP poOP P poP Branch Order Buffer
‘ Register Alias Table (RAT) (BOB) (48-entry)
- i
= |—| Rename / Allocate / Retirement - ing 1di
s —ﬁt| Move Elimination ReOrder Buffor (224 entries) | Ones Idioms | | Zeroing Idioms |
8 - 2
g 0P 0P oP 0 0
by
g
% Integer Physical Register File Unified | (R Vector Physical Register File
g (180 Registers) ~ninec MRS (168 Registers)
- = = = T
=
c =r
S = N 64B/cycle
g Yon
2 =g ToL3
s 28
=
&5 =0
QU
<
Execution Engine
g Store Buffer & Forwarding
(56 entries) g
N o
" g
: 2
Data TLB || o
Load Buffer L1 Data Cachg

32KiB 8-Way

(72 entries)

Line Fill Buffers (LFB)
(10 entries)

3/12/20 Kubiato Memo:'y Subsystem

Current Intel x86 (Skylake, Cascade Lake)

Front End Instruction)
Cache Tag| L1 Instruction Cache

MOP Cache 32KiB 8-Way Instruction
Tag TLB

16 Bytes/cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MOP MOP MOP MOP MOP MOP

Instruction Queue
(50, 2x25 entries)

8124h2/av9

MoP MoP MopP MmopP MopP

MicroCode 5-Way Decode
seq;oehr;cer Complex|[Simple |[Simple |[Simple |[Simple
(MS ROM) Decoder || Decoder || Decoder || Decoder || Decoder Stack
1-4 poPs HOP HOP HOP HOP Eng ine
4 poPs
5 uOPs
Deooded(itor;ua::ger (DSB) 6 HOPs
60’5 window

Allocation Queue (IDQ) (128, 2x64 LOPs) ‘

MOP pOP pOP pOP pOP pOP Branch Order Buffer
‘ Register Alias Table (RAT) ‘ ak’ho (BOB) (48-entry)
»

Load
g —| |—| Rename / Allocate / Retirement ; ing 1di
§ FP. | Move Elimination ReOrder Buffer (224 entries) | Ones Idioms | | Zeroing Idioms |
]
B uopP Hop HoP Hop HopP uoP e uoP
8 Scheduler
= Integer Physical Register File eer " " Vector Physical Register File
§ . Unified Reservatlop Station (RS) (168 Registers)
2| | Storel (97 entries)
| Port0 | [Portl | | Port5 | | Port6 | [Port2 | [Port3 | [Portd | [Port7 |
Hop Hop Hop uop uop Hop uopP uop
[}
= =r
m = o 64B/cycle
ALU]|[INT % e
MUL|[INT 8 = ToL3
MA Fi ; O|\ Ia)
=
Gl =5
QU
<
Execution Engine
g Store Buffer & Forwarding
(56 entries) g
\E
)
2 <
g Data TLB 2
Load Buffer| 2 | L1 Data Cachg 2
(72 entries) —!'é 32KiB 8-Way
g Line Fill Buffers (LFB)

3/12/20 Kubiatov Memory Subsystem QO entries)

Current Example: Memory Hierarchy

* Caches (all 64 B line size)
— LI |I-Cache: 32 KiB/core, 8-way set assoc.

— LI D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back
policy

— L2 Cache: | MiB/core, | 6-way set assoc., Inclusive, Write-back policy, 14 cycles
latency

— L3 Cache: 1.375 MiB/core, | |-way set assoc., shared across cores, Non-inclusive
victim cache, Write-back policy, 50-70 cycles latency

« TLB

— LI ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page

— LI DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, | G page translations:

— L2 STLB: |536 entries; | 2-way set assoc. 4 KiB + 2 MiB pages

» |6 entries; 4-way set associative, | GIB page translations:

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 28

What happens to TLB on Context Switch?

* Need to do something, since TLBs map virtual addresses to physical
addresses

— Address Space just changed, so TLB entries no longer valid!

* Options!
— Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?

— Include ProcessID in TLB

» This is an architectural solution: needs hardware
* What if translation tables change!?
— For example, to move page from memory to disk or vice versa. ..

— Must invalidate TLB entry!
» Otherwise, might think that page is still iIn memory!

— Called "TLB Consistency”

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:
Physical Address:
3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

PageTablePtr I/E Physical Address:

Page Table
(Ist level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

Page TablePtr Physical Address:

Page Table
(Ist level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

Page TablePtr Physical Address:

Page Table
(Ist level)

Page Table
(2nd level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

Page TablePtr Physical Address:

Page Table
(Ist level)

Page Table
(2nd level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

P;ageTabIePtr

Page Table
(Ist level)

Page Table
(2nd level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

P;ageTabIePtr

Page Table
(Ist level)

Page Table
(2nd level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

P;ageTabIePtr

Page Table
(Ist level)

Page Table
(2nd level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:

P;ageTabIePtr Physical A SS:

Page Table
(Ist level)

Page Table
(2nd level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:
o
Page TablePtr PhyXjcal Aderess: \,
Page Table
(Ist level)
Page Table
(2nd level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
\ J
Y
of |
Page lablePtr I-’ 8 Physical A st \
sica
\. Paye
%,
Page Table
(Ist level)
Page Table
(2nd level)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
\ J
of |
Page lablePy Ps q Physical A SS: Y
sica
\. Paye
%,
Page Table
(Ist level)
Page Table
(2nd level)
>

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
\ J
of |
Page lablePy Ps q Physical A SS: Y
sica
\. Paye #
%,
Page Table
(Ist level)
Page Table
(2nd level)
TLB:

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Putting Everything Together: TLB

Physical
Virtual Address: Memory:
\ J
of |
Page lablePy Ps q Physical A SS: Y
sica
\. Paye #
%,
Page Table
(Ist level)
Page Table
(2nd level)
TLB:

—

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Putting Everything Together: Cache

Physical
Virtual Address: 7 Memory:
Virtual Virtual
Pl index P2 index |Offset
\ Y J
of |
PageTablePjr i‘/> Physical AderEss:
sica
Paye
%,
Page Table
(Istlevel) e
Page Table
(2nd level)
TLB:

32

Putting Everything Together: Cache

Physica
Memory:

Physical A S\
Paxgigl Offset

cache:

tag: block:

Putting Everything Together: Cache

Physical
Memory:

Physical A S\
Paygc;l IOffset

{
Itag Iindex Ibyte I
cache:

tag: block:

Putting Everything Together: Cache

Physical
Memory:

Physical A S\
Paygc;l IOffset

{
Itag Iindex Ibyte I
ache:

tag: block:

B A

Putting Everything Together: Cache

Physical
Memory:

Physical A S\
Paygc;l IOffset

{
Itag Iindex Ibyte I
ache:

tag: block:

Putting Everything Together: Cache

Physical
Memory:

Physical A S\
Paygc;l IOffset

{
Itag Iindex Ibyte I
ache:
tag: block:

Recall: Two Ciritical Issues in Address Translation

>~
Processor $ y Memory
P
Registers

* How to translate addresses fast enough?
— Every instruction fetch

0x000...

OxFFF...

— Plus every load / store
— EVERY MEMORY REFERENCE !
— More than one translation for EVERY instruction

e Next:What to do if the translation fails?

— Page fault! This is a synchronous exception!

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Recall: User—Kernel: (Exceptions: Traps & Interrupts)

A system call instruction causes a synchronous exception (or “trap”)
— In fact, often called a software “trap” instruction

Other sources of Synchronous Exceptions (“Trap™):

— Divide by zero, lllegal instruction, Bus error (bad address, e.g. unaligned
access)

— Segmentation Fault (address out of range)
— Page Fault (for illusion of infinite-sized memory)

Interrupts are Asynchronous Exceptions:
— Examples: timer, disk ready, network, etc. ...
— Interrupts can be disabled, traps cannot!
On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel

— Some processors (e.g. x86) also save registers, changes stack

Handler does any required state preservation not done by CPU:
— Might save registers, other CPU state, and switches to kernel stack

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 34

Precise Exceptions

 Precise = state of the machine is preserved as if program executed
up to the offending instruction

— All previous instructions completed

— Offending instruction and all following instructions act as if they have not
even started

— Same system code will work on different implementations
— Difficult in the presence of pipelining, out-of-order execution, ...
* Imprecise = system software has to figure out what is where and put
it all back together
* Performance goals may lead designers to forsake precise interrupts

— stemhsoftvvare developers, user, markets etc. usually wish they had not
one tnis

* Modern techniques for out-of-order execution and branch prediction
help iImplement precise interrupts

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 35

Page Fault is a Synchronous Exception
The Virtual-to-Physical Translation fails

— PTE marked invalid (at whatever level of page table),
Privilege-Level Violation, Access violation

Causes a Fault / Trap
— Not an interrupt because synchronous to instruction execution!
— May occur on instruction fetch or data access

— Protection violations typically terminate the instruction in a way that is restartable
(more later)

Page Faults engage operating system to fix the situation and retry the
instruction

— Allocate an additional stack page, or
— Make the page accessible - Copy on Write,
— Bring page in from secondary storage — demand paging

Protection violations that cannot be resolved =
terminate process (possibly “dumping core” image for debugging)

Fundamental inversion of the hardware / software boundary

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 36

Next Up:What happens when ...

Process

virtual address

physical address

Instruction

MMU

Operating System

3/12/20

PT

Kubiatowicz CS162 ©UCB Spring 2020

37

Next Up:What happens when ...

Process

virtual address

physical address

Instruction

—>

MMU

Operating System

3/12/20

PT

Kubiatowicz CS162 ©UCB Spring 2020

37

Next Up:What happens when ...

Process

virtual address

Instruction

—>

MMU

page#

Operating System

3/12/20

Kubiatowicz CS162 ©UCB Spring 2020

physical address

PT

frame#t

37

Next Up:What happens when ...

Process

virtual address

physical address

Instruction

—>

MMU

Operating System

3/12/20

PT

Kubiatowicz CS162 ©UCB Spring 2020

37

Next Up:What happens when ...

Process virtual address physical address
_/

instr%((on

MU

/ \ P ~ !
L%fault

Operating System

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Next Up:What happens when ...

Process virtual address physical address
_/

instr%((on MU
\

M
exception % fault

Operafjng System
Page Fault Handler

D =

PT

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Next Up:What happens when ...

Process virtual address physical address
_/

instr%((on MU
\

M
exception A fault

Operafjng System
Page Fault Handler

g oad page from disk

PT

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Next Up:What happens when ...

Process virtual address physical address
_/

instr%((on MU
\

M
exception % fault

Operaf)ng System
" update PT entry
Page Fault Handler -~

.
.
.
.
.
.
.
, O

PT

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Next Up:What happens when ...

Process virtual address physical address

instruction MMU

retry exception % fault

Opkratjng System

PT

Page Fault Handler

scheduler

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Next Up:What happens when ...

Process

virtual address

physical address

Instruction

MMU

Operating System

3/12/20

PT

\%‘

i

Kubiatowicz CS162 ©UCB Spring 2020

37

Inversion of the Hardware / Software Boundary

In order for an instruction to complete ...

't requires the intervention of operating system software

Receive the page fault, remedy the situation
— Load the page, create the page, copy-on-write
— Update the PTE entry so the translation will succeed

Restart (or resume) the instruction
— This is one of the huge simplifications in RISC instructions sets
— Can be very complex when instruction modify state (x386)

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 38

Demand Paging as Caching, ...

What "block size™?! - | page (e.g, 4 KB)
* What "organization” ie. direct-mapped, set-assoc., fully-associative!

— Any page In any frame of memory, I.e., fully associative:
arbitrary virtual — physical mapping

* How do we locate a page!
— First check TLB, then page-table traversal

* What is page replacement policy! (i.e. LRU, Random...)

— This requires more explanation... (kinda LRU)
* What happens on a miss!
— Go to lower level to fill miss (i.e. disk)

* What happens on a write! (write-through, write back)
— Definitely write-back — need dirty bit!

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 39

* Modern programs require a lot of physical memory

3/12/20

Demand Paging

— Memory per system growing faster than 25%-30%/year

* But they don't use all their memory all of the time
— 90-10 rule: programs spend 90% of their time in 10% of their

code

— Wiasteful to require all of user's code to be in memory
* Solution: use main memory as “cache” for disk

Processor

Control

\

]

Datapath

ayded)

IYD-UO

Kubiatowicz CS162 ©UCB Spring 2020

Tertiary

Storage
(Tape)

40

............ llusion of Infinite Memory
_ | A
oo— [B | "
Page I
e Table Physical Disk
Virtual Memory 50068
Memory
512 MB
4 6B

o Disk is larger than physical memory =
— In-use virtual memory can be bigger than physical memory
— Combined memory of running processes much larger than physical
memory
» More programs fit into memory, allowing more concurrency

* Principle: Transparent Level of Indirection (page table)
— Supports flexible placement of physical data
» Data could be on disk or somewhere across network
— Variable location of data transparent to user program

» Performance issue, not correctness issue
3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Review:What is in a PTE!?
* What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page
— Permission bits: valid, read-only, read-write, write-only
* Example: Intel x86 architecture PTE:
— 2-level page tabler (10, 10, [2-bit offset)
— Intermediate page tables called "Directories”
Free

‘Page Frame Number -o‘ g‘ ‘Wi ‘
, (0S) O|wn|D S UIWP

P: Preéeln’tl(game as “valid” bit it othePalReduited 2 1 0

S
Alo

W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through

PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently

D: Dirty (PTE only): page has been modified recently
PS: Page Size: PS=1=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 42

Origins of Paging

Keep most of the (T Disks provide

address space on most of the

disk storage
~_

Actively swap

s to/from
pages To/Tro Relatively small

memory, for
many processes

Keep memory full
of the frequently @

accesses pages / P \

Many clients on

~ dumb terminals
E%. running different
programs

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 43

Recall: The Memory Hierarchy

Managed in
Hardware
Processor
TLB - PT
X r N
&l sl |8 er| | L
(Z_’. Q (9] |
® % = PT SeSc;ondary
(2] orage
e PT : Secondary rag
TLB T LT Storage (Disk)
= - (g_ w Memory (SSD)
o | |5 N 5 O | [(DRAM)
Q e 0 ® 0
21 18] (2] | &3
sl |3] [®
Accessed in Hardware
100,000 10,000,000
Speed (ns):0.3 | 1 3 10-30 100 0.1 ms) (10 ms)
Size (bytes):100Bs 10kBs 100kBs MBs GBs 100GBs TBs

3/12/20

Kubiatowicz CS162 ©UCB Spring 2020

44

Very Different Situation Today

Powerful system
Huge memory
Huge disk
Single user

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 45

3/12/20

A Picture on one machine

Processes: 407 total, 2 running, 405 sleeping, 2135 threads 22:10:3¢
Load Avg: 1.26, 1.26, 0.98 CPU usage: 1.35% user, 1.59% sys, 97.5% idle

SharedLibs: 292M resident, 54M data, 43M linkedit.

MemRegions: 155071 total, 4489M resident, 124M private, 1891M shared.

PhysMem: 13G used (3518M wired), 2718M unused.

VM: 1819G vsize, 1372M framework vsize, 68020510(0) swapins, 71200340(0) swapouts.

Networks: packets: 40629441/21G in, 21395374/7747M out.

Disks: 17026780/555G read, 15757470/638G written.

PID COMMAND %CPU TIME #TH #WQ #PORTS MEM PURG CMPRS PGRP PPID STATE
90498 bash 0.0 00:00.41 1 0 21 1080K 0B 564K 90498 90497 sleeping
90497 login 0.0 00:00.10 2 1 31 1236K 0B 1220K 90497 90496 sleeping
90496 Terminal 0.5 01:43.28 6 1 378- 103M- 16M 13M 90496 1 sleeping
89197 siriknowledg 0.0 00:00.83 2 2 45 2664K 0B 1528K 89197 1 sleeping
89193 com.apple.DF 0.0 00:17.34 2 1 68 2688K 0B 1700K 89193 1 sleeping
82655 LookupViewSe 0.0 00:10.75 3 1 169 13M 0B 8064K 82655 1 sleeping
82453 PAH_Extensio 0.0 00:25.89 3 1 235 15M 0B 7996K 82453 1 sleeping
75819 tzlinkd 0.0 00:00.01 2 2 14 452K 0B 444K 75819 1 sleeping
75787 MTLCompilerS 0.0 00:00.10 2 2 24 9032K 0B 9020K 75787 1 sleeping
75776 secd 0.0 00:00.78 2 2 36 3208K 0B 2328K 75776 1 sleeping
75098 DiskUnmountW 0.0 00:00.48 2 2 34 1420K ©B 728K 75098 1 sleeping
75093 MTLCompilerS 0.0 00:00.06 2 2 21 5924K 0B 5912K 75093 1 sleeping
74938 ssh-agent 0.0 00:00.00 1 0 21 908K 0B 892K 74938 1 sleeping
74063 Google Chrom 0.0 10:48.49 15 1 678 192M 0B 51M 54320 54320 sleeping

* Memory stays about /5% used, 25% for dynamics
* Alotof itisshared |.9 GB

Kubiatowicz CS162 ©UCB Spring 2020

46

3/12/20

Many Uses of "Demand Paging” ...

Extend the stack
— Allocate a page and zero it

Extend the heap (sbrk of old, today mmap)
Process Fork
— Create a copy of the page table
— Entries refer to parent pages — NO-WRITE
— Shared read-only pages remain shared
— Copy page on write

Exec
— Only bring in parts of the binary in active use
— Do this on demand

MMAP to explicitly share region (or to access a file as RAM)

Kubiatowicz CS162 ©UCB Spring 2020

47

3/12/20

Classic: Loading an executable into memory

disk (huge) memory

AN
- -

exe

SN

.exe
— lives on disk in the file system
— contains contents of code & data segments, relocation entries and symbols
— OS loads it into memory, initializes registers (and initial stack pointer)

— program sets up stack and heap upon initialization:
crt0 (C runtime init)

Kubiatowicz CS162 ©UCB Spring 2020

48

Create Virtual Address Space of the Process

disk (huge) process VAS memory

N kernel user page

. frames
_nfo stack

exe —sbrk user
pagetable

kernel code
& data

» Utllized pages in the VAS are backed by a page block on disk

— Called the backing store or swap file
— Typically in an optimized block store, but can think of it like a file

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 49

Create Virtual Address Space of the Process

disk (huge, TB)
N
w

stack

11

heap

exe

data

w

process VAS (GBs)

kernel

» User Page table maps entire VAS

 All the utilized regions are backed on disk

— swapped into and out of memory as needed

* [or every process

3/12/20

Kubiatowicz CS162 ©UCB Spring 2020

memory

user page
frames

user
pagetable

kernel code
& data

50

Create Virtual Address Space of the Process

PT

M VAS — per process
N kernel
o] Kk
| stack S
] _______
ot heap
exe h
data =
data
code
w COde

* User Page table maps entire VAS

— Resident pages to the frame in memory they occupy
— The portion of it that the HW needs to access must be resident in

memory

3/12/20

/
/

Kubiatowicz CS162 ©UCB Spring 2020

memory

user page
frames

user
pagetable

kernel code
& data

51

Provide Backing Store for VAS

disk (huge, TB)

A
A

VAS — per process

kernel

E stack L.
code heap .:
data L

* User Page table maps entire VAS

* Resident pages mapped to memory frames

memory

user page
frames

user
pagetable

kernel code
& data

 For all other pages, OS must record where to find them on disk

3/12/20

Kubiatowicz CS162 ©UCB Spring 2020

52

What Data Structure Maps
Non-Resident Pages to Disk?

e FindBlock(PID, page#) — disk block
— Some OSs utllize spare space in PTE for paged blocks
— Like the PT, but purely software

* Where to store it!

— In memory — can be compact representation if swap storage is
contiguous on disk

— Could use hash table (like Inverted PT)

* Usually want backing store for resident pages too

May map code segment directly to on-disk image
— Saves a copy of code to swap file

* May share code segment with multiple instances of the program

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 53

Provide Backing Store for VAS

disk (huge, TB)

w kernel
stack _________________________________ stack
stack | heap | -
N heap
heap || e | — i /
\ \\\\ \\ _____ _V_ _A__S_ _2 PT 2 ta.
data Yocode N[T 7
stack
heap y
\ data
code /
3/12/20 el 627&0/CB Spring 2020

PT |

N\

memory

—

; user

page
frames
pagetable

kernel

code &
data

54

On page Fault ...

disk (huge, TB)

memory

; user

m VAS | PT
stack stack “
stack | _ heap | T /
T h // /
\\\ \\\ ___________________ eaP
heap Y data. -I—-—__#_. /
, - <t YAS 2 P
L e .
oo W kernel L/
\\\ \\\ /
stack
heap y
\ data
code /
3/12/20 [62-<dCB Spring 2020

active process & PT

page
frames
pagetable

kernel
code
& data

55

On page Fault ... find & start load

disk (huge, TB)

VAS |

kernel

memory

stack | . heap

‘H user

heap

2\ /

page

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘
pppppppppp

zzzzzzzzzz
4444444444 r'a mes

3/12/20

\
A \
\\ N
N A \
AN
N
d)
ata \
N
\
\ N \
\
Nk 3
3 \
\ \

user

pagetable

.\

.\

CB Spring 2020

kernel

code &
data

active process & PT

56

On page Fault ... schedule other P or T

disk (huge, TB)

VAS |

kernel

memory

stack

heap

3/12/20

\
A \
\\ N
N A \
AN
N
d)
ata \
N
\
\ N \
\
Nk 3
3 \
\ \

4444444
\\\\\\\\\\\\\\\\\\\
4444444444

pppppppppp
ffffffffff

.\

B Spring 2020

active process & PT

‘H user

page
frames

user
pagetable

kernel

code &
data

57

On page Fault ... update PTE

disk (huge, TB)

stack

heap

3/12/20

\
N N
o N
'S
AY
N 3 \
AY
\ \
d)
ata \
R
\
N D "
\ 0
N
Oy 3 \
N \ \
\ \ \
N

.\

VAS |

PT |

memory

kernel

page

2\ /

frames

user

pagetable

B Spring 2020

active process & PT

kernel

code &
data

58

Eventually reschedule faulting thread

disk (huge, TB)
N
_/

stack
stack | ™
heap |

Y
N \ N
N \ S \
\ \ N
M N
. code
N
\ \\
- \

3/12/20

data \
R
N
N D "
\ IR
\\ A \
N \ \
\ N3 1
\

kernel
ol
stack
heap -
\ ./
. data
b code /

VAS |

PT |

kernel

2\ /

-

memory

—

page
frames

user
pagetable

active process & PT

LY

CB Spring 2020

kernel

code &
data

59

Summary: Steps in Handling a Page Fault

page is on
backing store

operating
system

@

reference
trap

O,
load M 1« S i
®

restart page table

instruction
free frame |« S
reset page bring in
table missing page
physical
memory

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

Demand Paging Mechanisms

* PTE makes demand paging implementatable
— Valid = Page in memory, PTE points at physical page
— Not Valid = Page not in memory; use info in PTE to find it on disk when
necessary
* Suppose user references page with invalid PTE!
— Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”
— What does OS do on a Page Fault?:
» Choose an old page to replace
» If old page modified (“D=1"), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location
=TEBfornew page will‘betoaded whenthread continued!

— While pulling pages off disk for one process, OS runs another process
from ready queue

» Suspended process sits on wait queue

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 61

Some questions we need to answer!

* During a page fault, where does the OS get a free frame?
— Keeps a free list

— Unix runs a “reaper’ if memory gets too full
» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven't been accessed in a while

— As a last resort, evict a dirty page first

* How can we organize these mechanisms!
— Work on the replacement policy

* How many page frames/process!
— Like thread scheduling, need to “schedule” memory resources:
» Ultilization? fairness?! priority?

— Allocation of disk paging bandwidth

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 62

Cache Behavior under WS model

new working set fits -
-

Hit Rate

Cache Size

Amortized by fraction of time the Working Set is active
Transitions from one WS to the next

Capacity, Conflict, Compulsory misses

Applicable to memory caches and pages. Others !

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 63

Another model of Locality: Zipf

P access(rank) = |/rank
20% — 0.9

()
0 / 5
< 15% \ 0.675 <~
& 9 10% - oy - 045 —©
S o
S ® go — Hit Rate(cache) 0.225 g
\\ 7
0% 0
4 7 1013161922252831343740434649
Rank

Likelihood of accessing item of rank ris & [/ra

Although rare to access items below the top few, there are so many that it yields a “heavy
tailed” distribution

Substantial value from even a tiny cache

Substantial misses from even a very large cache

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 64

Demand Paging Cost Model

Since Demand Pagrmg like caching, can compute average access time!
(“Effective Access Time”

— EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
— EAT = Hit Time + Miss Rate x Miss Penalty

Example:

— Memory access time = 200 nanoseconds

— Average page-fault service time = 8 milliseconds

— Suppose p = Probability of miss, |-p = Probably of hit
— Then, we can compute EAT as follows:

EAT =200ns + p x 8 ms

= 200ns + p x 8,000,000ns
If one access out of [,000 causes a page fault, then
EAT = 8.2 Us:
— This is a slowdown by a factor of 40!
What if want slowdown by less than 10%!
— 200ns x .| <EAT = p <25x 10*
— This is about | page fault in 400,000!

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 65

What Factors Lead to Misses in Page Cache!?

Compulsory Misses:
— Pages that have never been paged into memory before
— How might we remove these misses!
» Prefetching: loading them into memory before needed
» Need to predict future somehow! More later
Capacity Misses:
— Not enough memory. Must somehow increase available memory size.

— Can we do this?
» One option: Increase amount of DRAM (not quick fix!)

» Another option: If multiple processes in memory: adjust percentage of
memory allocated to each one!

Conflict Misses:

— Technically, conflict misses don't exist in virtual memory, since it is a “fully-
associative’ cache

Policy Misses:

— Caused when pages were in memory, but kicked out prematurely
because of the replacement policy

— How to fix! Better replacement policy

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 66

Page Replacement Policies

Why do we care about Replacement Policy?
— Replacement is an issue with any cache
— Particularly important with pages
» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

FIFO (First In, First Out)

— Throw out oldest page. Be fair — let every page live in memory for same
amount of time.

— Bad — throws out heavily used pages instead of infrequently used
RANDOM:

— Pick random page for every replacement

— Typical solution for TLB's. Simple hardware

— Pretty unpredictable — makes it hard to make real-time guarantees
MIN (Minimum):

— Replace page that won't be used for the longest time

— Great (provably optimal), but cant really know future...

— But past is a good predictor of the future ...

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 67

Replacement Policies (Con’t)

LRU (Least Recently Used):

— Replace page that hasn't been used for the longest time

— Programs have locality, so if something not used for a while, unlikely to
be used in the near future.

— Seems like LRU should be a good approximation to MIN.

Head —>{Page 6

How to implement LRU? Use a list!

_>

Page 7 —>

Page |

_>

Tail (LRU)

Page 2

— On each use, remove page from list and place at head

— LRU page is at tall

Problems with this scheme for paging?

— Need to know immediately when each page used so that can change

position in list...

— Many instructions for each hardware access

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

In practice, people approximate LRU (more later)

68

Example: FIFO (strawman)

* Suppose we have 3 page frames, 4 virtual pages, and
following reference stream:

-~-ABCABDADBCSB
* Consider FIFO Page replacement:

e FIFO: / faults

* When referencing D, replacing A is bad choice, since need A
again right away

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 69

Example: MIN / LRU

* Suppose we have the same reference stream:
-~-ABCABDADBCRB

* Consider MIN Page replacement:

« MIN: 5 faults

— Where will D be brought in! Look for page not referenced
farthest in future

* What will LRU do!?
— Same decisions as MIN here, but won't always be truel

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020

70

Is LRU guaranteed to perform well?

* Consider the following ABCDABCDABCD
* LRU Performs as follows (same as FIFO here):

— Every reference is a page fault!
* Fairly contrived example of working set of N+ 1 on N frames

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 71

When will LRU perform badly?

* Consider the following ABCDABCDABCD
e [RU Performs as follows (same as FIFO here):

— Every reference is a page fault!
* MIN Does much better:

3/12/%

I\ LJ UIJI Ills = \J 2T

3/12/20

Why it works in Practice:Working Set Model

As a program executes It transitions through a sequence of
“working sets” consisting of varying sized subsets of the address
space

! -

Address

Time

Kubiatowicz CS162 ©UCB Spring 2020 73

Graph of Page Faults Versus
The Number of Frames

16 |-
@ 14 |-
S
S 12
L
c 10F
a
S 8l
g
g 6f
S
C 4_
ok
| | | | | |
1 2 3 4 5 6
nU||!Qe| Ol ||§”|€S

* One desirable property: When you add memory the miss
rate drops (stack property)
— Does this always happen!?
— Seem:s like 1t should, right!
* No: Bélady's anomaly
— Certain replacement algorithms (FIFO) don't have this obvious

property!
3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 74

Adding Memory Doesn’t Always Help Fault Rate

* Does addin% memog reduce number of page faults!
— Yes for LRU and Ml

— Not necessarily for FIFO! (Called Bélady's anomaly)
Ref:.ABCDABEABCDE

2 B A E
3 C B
i Aﬁer L«L\4¢I.\¢III F'TINGT T INSI /u D C

— With FIFO, contents can be completely different
— In contrast, with LRU or MIN, contents of memory with X pages
are a subset of contents with X+ 1| Page

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 75

Summary (1/2)

* The Principle of Locality:

— Program likely to access a relatively small portion of the address space at
any instant of time.

» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

* Three (+1) Major Categories of Cache Misses:

— Compulsory Misses: sad facts of life. Example: cold start misses.

— Conflict Misses: increase cache size and/or associativity

— Capacity Misses: increase cache size

— Coherence Misses: Caused by external processors or I/O devices
* Cache Organizations:

— Direct Mapped: single block per set

— Set associative: more than one block per set

— Fully associative: all entries equivalent

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 76

Summary (2/2)

* “Translation Lookaside Buffer” (TLB)
— Small number of PTEs and optional process IDs (< 512)

— Fully Associative (Since conflict misses expensive)

— On TLB miss, page table must be traversed and if located PTE is
invalid, cause Page Fault

— On change in page table, TLB entries must be invalidated

— TLB is logically in front of cache (need to overlap with cache access)

* Precise Exception specifies a single instruction for which:
— All previous Instructions have completed (committed state)
— No following instructions nor actual instruction have started

* Can manage caches in hardware or software or both

— Goal Is highest hit rate, even If it means more complex cache
Management

3/12/20 Kubiatowicz CS162 ©UCB Spring 2020 77

