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Physical
Address:

OffsetPhysical
Page #

4KB

Recall: Fix for sparse address space:  
The two-level page table

10 bits 10 bits 12 bits
Virtual 
Address:

OffsetVirtual
P2 index

Virtual
P1 index

4 bytes

PageTablePtr

• Tree of Page Tables
– “Magic” 10b-10b-12b pattern!

• Tables fixed size (1024 entries)
– On context-switch: save single PageTablePtr 

register (i.e. CR3)
• Valid bits on Page Table Entries 

– Don’t need every 2nd-level table
– Even when exist, 2nd-level tables can reside on 

disk if not in use
4 bytes
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Recall: Making it real:  
X86 Memory model with segmentation (16/32-bit)

2-level page table  
in 10-10-12 bit address

Combined address
Is 32-bit “linear”
Virtual address

Segment Selector from  
instruction: mov eax, gs(0x0)

First level
called “directory”

Second level
called “table”
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Recall: In Machine Structures (eg. 61C) …
• Caching is the key to memory system performance

Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)
Where HitRate + MissRate = 1

HitRate = 90% => AMAT = (0.9 x 1) + (0.1 x 101)=11.1 ns
HitRate = 99% => AMAT = (0.99 x 1) + (0.01 x 101)=2.01 ns

Processor

Main
Memory
(DRAM)

100ns1 ns

Cache
(SRAM)

Processor

Main
Memory
(DRAM)

Access time = 100ns
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Recall: The Memory Hierarchy

L3 C
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Recall: How to make Address Translation Fast?

• Cache results of recent translations !
– Different from a traditional cache
– Cache Page Table Entries using Virtual Page # as the key

Processor 
(core)

Cache(s)

Physical 
Memory

MMU

Rea
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ddr
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Phs
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X >
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pgm data

page 
tablesPTBR

V_Pg M1 : <Phs_Frame #1, V, … >

V_Pg M2 : <Phs_Frame #2, V, … >

V_Pg Mk : <Phs_Frame #k, V, … >

V_Pg M2 : <Phs_Frame #2, V, … >
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Translation Look-Aside Buffer

• TLB is a cache of translations:
– Record recent Virtual Page # to Physical Frame # translation

• If present, get the physical address from TLB without reading any of the 
page tables !!!

– Even if the translation involved multiple levels
– Caches the end-to-end result

• Was invented by Sir Maurice Wilkes – prior to caches
– People realized “if it’s good for page tables, why not the rest of the data in 

memory?”
• On a TLB miss, the page tables may be cached, so only go to memory 

when both miss
– Ultimately invokes page table walk 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Caching Applied to Address Translation

• Question is one of page locality: does it exist?
– Instruction accesses spend a lot of time on the same page (since 

accesses sequential)
– Stack accesses have definite locality of reference
– Data accesses have less page locality, but still some…

• Can we have a TLB hierarchy?
– Sure: multiple levels at different sizes/speeds

Data Read or Write
(untranslated)

CPU Physical
Memory

TLB

Translate
(MMU)

No

Virtual
Address

Physical
Address

Yes
Cached?

Sav
e

Resu
lt
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What kind of Cache for TLB?

• Remember all those cache design parameters and trade-offs?
– Amount of Data = N * L * K
– Tag is portion of address that identifies line (w/o line offset)
– Write Policy (write-thru, write-back), Eviction Policy (LRU, …)

. . . . . .
tag data

line size (L)

# of Sets 
(N)

Set Size (k) - Associativity
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How might organization of TLB differ from that 
of a conventional instruction or data cache?

• Let’s do some review …



3/12/20 Kubiatowicz CS162 ©UCB Spring 2020  11

• Compulsory (cold start or process migration, first reference): first 
access to a block

– “Cold” fact of life: not a whole lot you can do about it
– Note: If you are going to run “billions” of instruction, Compulsory 

Misses are insignificant
• Capacity:

– Cache cannot contain all blocks access by the program
– Solution: increase cache size

• Conflict (collision):
– Multiple  memory locations  mapped to the same cache location
– Solution 1: increase  cache size
– Solution 2: increase associativity

• Coherence (Invalidation): other process (e.g., I/O) updates memory 

A Summary on Sources of Cache Misses
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• Block is minimum quantum of caching
– Data select field used to select data (byte) within block
– Many caching applications don’t have data select field

• Index Used to Lookup Candidates in Cache
– Index identifies the set 

• Tag used to identify actual copy
– If no candidates match, then declare cache miss

How is a Block found in a Cache?

Block 
offset

Block Address
Tag Index

Set Select

Data Select
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:

0x50

Valid Bit

:

 Cache Tag

Byte 32
0
1
2
3

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 33Byte 63 :
Byte 992Byte 1023 : 31

Review: Direct Mapped Cache

• Direct Mapped 2N byte cache:
– The uppermost (32 - N) bits are always the Cache Tag
– The lowest M bits are the Byte Select (Block Size = 2M)

• Example: 1 KB Direct Mapped Cache with 32 B Blocks
– Index chooses potential block
– Tag checked to verify block
– Byte select chooses byte within block

Ex: 0x50 Ex: 0x00
Cache Index

0431
Cache Tag Byte Select

9

Ex: 0x01
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Cache Index
0431

Cache Tag Byte Select
8

Cache Data
Cache Block 0

Cache TagValid

:: :

Cache Data
Cache Block 0

Cache Tag Valid

: ::

Mux 01Sel1 Sel0

OR

Hit

Review: Set Associative Cache

• N-way set associative: N entries per Cache Index
– N direct mapped caches operates in parallel

• Example: Two-way set associative cache
– Cache Index selects a “set” from the cache
– Two tags in the set are compared to input in parallel
– Data is selected based on the tag result

Compare Compare

Cache Block
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Review: Fully Associative Cache
• Fully Associative: Every block can hold any line

– Address does not include a cache index
– Compare Cache Tags of all Cache Entries in Parallel

• Example: Block Size=32B blocks
– We need N 27-bit comparators
– Still have byte select to choose from within block

:

 Cache Data
Byte 0Byte 1Byte 31 :

Byte 32Byte 33Byte 63 :

Valid Bit

::

 Cache Tag

04
Cache Tag (27 bits long) Byte Select

31

=

=
=

=

=

Ex: 0x01
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• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block 
no.

Direct mapped: 
block 12 can go 
only into block 4 
(12 mod 8)

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block 
no.

Where does a Block Get Placed in a Cache?
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• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block 
no.

Direct mapped: 
block 12 can go 
only into block 4 
(12 mod 8)

Set associative: 
block 12 can go 
anywhere in set 0 
(12 mod 4)

0 1 2 3 4 5 6 7Block 
no.

Set 
0

Set 
1

Set 
2

Set 
3

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block 
no.

Where does a Block Get Placed in a Cache?
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• Example: Block 12 placed in 8 block cache

0 1 2 3 4 5 6 7Block 
no.

Direct mapped: 
block 12 can go 
only into block 4 
(12 mod 8)

Set associative: 
block 12 can go 
anywhere in set 0 
(12 mod 4)

0 1 2 3 4 5 6 7Block 
no.

Set 
0

Set 
1

Set 
2

Set 
3

Fully associative: 
block 12 can go 
anywhere

0 1 2 3 4 5 6 7Block 
no.

0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1

32-Block Address Space:

1 1 1 1 1 1 1 1 1 1 2 2 2 2 2 2 2 2 2 2 3 3Block 
no.

Where does a Block Get Placed in a Cache?
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• Easy for Direct Mapped: Only one possibility
• Set Associative or Fully Associative:

– Random
– LRU (Least Recently Used)

• Miss rates for a workload:
                    2-way              4-way                 8-way  
Size LRU Random  LRU Random  LRU Random
16 KB 5.2% 5.7%     4.7% 5.3% 4.4% 5.0%
64 KB 1.9% 2.0%     1.5% 1.7% 1.4% 1.5%
256 KB 1.15% 1.17%    1.13%  1.13% 1.12% 1.12%

Which block should be replaced on a miss?
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• Write through: The information is written to both the block in the 
cache and to the block in the lower-level memory

• Write back: The information is written only to the block in the cache
– Modified cache block is written to main memory only when it is 

replaced
– Question is block clean or dirty?

• Pros and Cons of each?
– WT: 

» PRO: read misses cannot result in writes
» CON: Processor held up on writes unless writes buffered

– WB: 
» PRO: repeated writes not sent to DRAM 

 processor not held up on writes
» CON: More complex 

 Read miss may require writeback of dirty data

Review: What happens on a write?
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Impact of caches on Operating Systems

• Dealing with cache effects 
– Maintaining the correctness of various caches
– E.g., TLB consistency:

» With PT across context switches ?
» Across updates to the PT ?

• Process scheduling
– Which and how many processes are active ? Priorities ?
– Large memory footprints versus small ones ?
– Shared pages mapped into VAS of multiple processes ?

• Impact of thread scheduling on cache performance
– Rapid interleaving of threads (small quantum) may degrade cache 

performance
» Increase average memory access time (AMAT) !!!

• Designing operating system data structures for cache performance
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What TLB Organization Makes Sense?

• Needs to be really fast
– Critical path of memory access 

» In simplest view: before the cache
» Thus, this adds to access time (reducing cache speed)

– Seems to argue for Direct Mapped or Low Associativity
• However, needs to have very few conflicts!

– With TLB, the Miss Time extremely high! (PT traversal)
– Cost of Conflict (Miss Time) is high 
– Hit Time – dictated by clock cycle

• Thrashing: continuous conflicts between accesses
– What if use low order bits of page as index into TLB?

» First page of code, data, stack may map to same entry
» Need 3-way associativity at least?

– What if use high order bits as index?
» TLB mostly unused for small programs

CPU TLB Cache Memory
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TLB organization: include protection

• How big does TLB actually have to be?
– Usually small: 128-512 entries (larger now)
– Not very big, can support higher associativity

• Small TLBs usually organized as fully-associative cache
– Lookup is by Virtual Address
– Returns Physical Address + other info

• What happens when fully-associative is too slow?
– Put a small (4-16 entry) direct-mapped cache in front
– Called a “TLB Slice”

• Example for MIPS R3000:

 0xFA00 0x0003 Y N Y R/W 34 
 0x0040 0x0010 N Y Y R 0  
 0x0041 0x0011 N Y Y R 0

Virtual Address   Physical Address   Dirty   Ref   Valid   Access ASID
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• As described, TLB lookup is in serial with cache lookup:

• Machines with TLBs go one step further : they overlap TLB lookup with 
cache access.
– Works because offset available early 

Reducing translation time further

Virtual Address

TLB Lookup

V Access 
Rights PA

V page no. offset
10

P page no. offset
10

Physical Address

CPU TLB Cache Memory
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Overlapping TLB & Cache Access (1/2)

• Main idea: 
– Offset in virtual address exactly covers the “cache index” and 

“byte select”
– Thus can select the cached byte(s) in parallel to perform 

address translation  

OffsetVirtual Page #

indextag / page # byte

virtual address 

physical address 
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• Here is how this might work with a 4K, direct-mapped cache: 

TLB 4K Cache

10 2
00

4 bytes

index 1 K

virtual page # disp
20

assoc
lookup

32

Hit/
Miss

Tag Data Hit/
Miss

=page #

Overlapping TLB & Cache Access 
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Example TLB Sizes: Pentium-M TLBs (2003)

• Four different TLBs
– Instruction TLB for 4K pages

» 128 entries, 4-way set associative
– Instruction TLB for large pages

» 2 entries, fully associative
– Data TLB for 4K pages

» 128 entries, 4-way set associative
– Data TLB for large pages

» 8 entries, 4-way set associative

• All TLBs use LRU replacement policy
• Why different TLBs for instruction, data, and page 

sizes?
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Intel Nahelem (2008)

•  L1 DTLB
– 64 entries for 4 K pages and 
– 32 entries for 2/4 M pages, 

• L1 ITLB
– 128 entries for 4 K pages using 4-way associativity and 
– 14 fully associative entries for 2/4 MiB pages

• unified 512-entry L2 TLB for 4 KiB pages, 4-way associative.
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Current Intel x86 (Skylake, Cascade Lake)
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Current Intel x86 (Skylake, Cascade Lake)
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Current Intel x86 (Skylake, Cascade Lake)
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Current Intel x86 (Skylake, Cascade Lake)
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Current Example: Memory Hierarchy
• Caches (all 64 B line size)

– L1 I-Cache: 32 KiB/core, 8-way set assoc.
– L1 D Cache: 32 KiB/core, 8-way set assoc.,  4-5 cycles load-to-use, Write-back 

policy
– L2 Cache: 1 MiB/core, 16-way set assoc., Inclusive, Write-back policy, 14 cycles 

latency
– L3 Cache: 1.375 MiB/core, 11-way set assoc., shared across cores, Non-inclusive 

victim cache, Write-back policy, 50-70 cycles latency
• TLB

– L1 ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page 

– L1 DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, 1G page translations:

– L2 STLB: 1536 entries; 12-way set assoc. 4 KiB + 2 MiB pages
» 16 entries; 4-way set associative, 1 GiB page translations:
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What happens to TLB on Context Switch?
• Need to do something, since TLBs map virtual addresses to physical 

addresses
– Address Space just changed, so TLB entries no longer valid!

• Options?
– Invalidate TLB: simple but might be expensive

» What if switching frequently between processes?
– Include ProcessID in TLB

» This is an architectural solution: needs hardware
• What if translation tables change?

– For example, to move page from memory to disk or vice versa…
– Must invalidate TLB entry!

» Otherwise, might think that page is still in memory!
– Called “TLB Consistency”
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Putting Everything Together: Address Translation

Physical Address:

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:
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Putting Everything Together: Address Translation

Physical Address:

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Physical 
Memory:
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Putting Everything Together: Address Translation

Physical Address:

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Physical 
Memory:
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Putting Everything Together: Address Translation

Physical Address:

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:



3/12/20 Kubiatowicz CS162 ©UCB Spring 2020  30

Putting Everything Together: Address Translation

Physical Address:

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:
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Putting Everything Together: Address Translation

Physical Address:

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:
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Putting Everything Together: Address Translation

Physical Address:
Physical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:
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Putting Everything Together: Address Translation

Physical Address:

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:
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Putting Everything Together: Address Translation

Physical Address:

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:
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Putting Everything Together: Address Translation

Physical Address:

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

PageTablePtr

Page Table 
(1st level)

Page Table 
(2nd level)

Physical 
Memory:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:

Physical Address:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:

Physical Address:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:

Physical Address:

…

TLB:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Putting Everything Together: TLB

OffsetPhysical
Page #

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

Physical 
Memory:

Physical Address:

…

TLB:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
Physical
Page #

cache:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
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…

tag: block:
cache:

index bytetag
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag
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Page Table 
(2nd level)

PageTablePtr

Page Table 
(1st level)

Virtual Address:
OffsetVirtual

P2 index
Virtual
P1 index

…

TLB:

Putting Everything Together: Cache

Offset

Physical 
Memory:

Physical Address:
Physical
Page #

…

tag: block:
cache:

index bytetag
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Recall: Two Critical Issues in Address Translation

• How to translate addresses fast enough?
– Every instruction fetch
– Plus every load / store
– EVERY MEMORY REFERENCE !
– More than one translation for EVERY instruction

• Next: What to do if the translation fails?  
– Page fault!  This is a synchronous exception!

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

sic
al

 a
dd

re
ss

”

Registers
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Recall: User→Kernel: (Exceptions: Traps & Interrupts)

• A system call instruction causes a synchronous exception (or “trap”)
– In fact, often called a software “trap” instruction

• Other sources of Synchronous Exceptions (“Trap”):
– Divide by zero, Illegal instruction, Bus error (bad address, e.g. unaligned 

access)
– Segmentation Fault (address out of range)
– Page Fault (for illusion of infinite-sized memory)

• Interrupts are Asynchronous Exceptions:
– Examples: timer, disk ready, network, etc….
– Interrupts can be disabled, traps cannot!

• On system call, exception, or interrupt:
– Hardware enters kernel mode with interrupts disabled
– Saves PC, then jumps to appropriate handler in kernel
– Some processors (e.g. x86) also save registers, changes stack

• Handler does any required state preservation not done by CPU:
– Might save registers, other CPU state, and switches to kernel stack
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Precise Exceptions

• Precise ⇒ state of the machine is preserved as if program executed 
up to the offending instruction

– All previous instructions completed
– Offending instruction and all following instructions act as if they have not 

even started
– Same system code will work on different implementations 
– Difficult in the presence of pipelining, out-of-order execution, ...

• Imprecise ⇒ system software has to figure out what is where and put 
it all back together

• Performance goals may lead designers to forsake precise interrupts
– system software developers, user, markets etc. usually wish they had not 

done this
• Modern techniques for out-of-order execution and branch prediction 

help implement precise interrupts
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Page Fault is a Synchronous Exception
• The Virtual-to-Physical Translation fails

– PTE marked invalid (at whatever level of page table),  
Privilege-Level Violation, Access violation

• Causes a Fault / Trap
– Not an interrupt because synchronous to instruction execution!
– May occur on instruction fetch or data access
– Protection violations typically terminate the instruction in a way that is restartable 

(more later)
• Page Faults engage operating system to fix the situation and retry the 

instruction
– Allocate an additional stack page, or
– Make the page accessible - Copy on Write, 
– Bring page in from secondary storage – demand paging

• Protection violations that cannot be resolved ⇒ 
terminate process (possibly “dumping core” image for debugging)

• Fundamental inversion of the hardware / software boundary
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Next Up: What happens when …
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Next Up: What happens when …
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Next Up: What happens when …
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Next Up: What happens when …
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Inversion of the Hardware / Software Boundary

• In order for an instruction to complete …
• It requires the intervention of operating system software
• Receive the page fault, remedy the situation 

– Load the page, create the page, copy-on-write
– Update the PTE entry so the translation will succeed

• Restart (or resume) the instruction
– This is one of the huge simplifications in RISC instructions sets
– Can be very complex when instruction modify state (x86)
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Demand Paging as Caching, …

• What  “block size”? - 1 page (e.g, 4 KB)
• What “organization” ie. direct-mapped, set-assoc., fully-associative?

– Any page in any frame of memory, i.e., fully associative:              
arbitrary virtual → physical mapping

• How do we locate a page?
– First check TLB, then page-table traversal

• What is page replacement policy? (i.e. LRU, Random…)
– This requires more explanation… (kinda LRU)

• What happens on a miss?
– Go to lower level to fill miss (i.e. disk)

• What happens on a write? (write-through, write back)
– Definitely write-back – need dirty bit!
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Demand Paging

• Modern programs require a lot of physical memory
– Memory per system growing faster than 25%-30%/year

• But they don’t use all their memory all of the time
– 90-10 rule: programs spend 90% of their time in 10% of their 

code
– Wasteful to require all of user’s code to be in memory

• Solution: use main memory as “cache” for disk

O
n-C

hip
C

ache

Control

Datapath

Secondary
Storage
(Disk)

Processor

Main
Memory
(DRAM)

Second
Level
Cache
(SRAM)

Tertiary
Storage
(Tape)

pagingcaching
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Page 
Table

TLB

Illusion of Infinite Memory

• Disk is larger than physical memory ⇒
– In-use virtual memory can be bigger than physical memory
– Combined memory of running processes much larger than physical 

memory
» More programs fit into memory, allowing more concurrency 

• Principle: Transparent Level of Indirection (page table) 
– Supports flexible placement of physical data

» Data could be on disk or somewhere across network
– Variable location of data transparent to user program

» Performance issue, not correctness issue

Physical 
Memory 
512 MB

Disk 
500GB

∞

Virtual 
Memory 
4 GB
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Review: What is in a PTE?
• What is in a Page Table Entry (or PTE)?

– Pointer to next-level page table or to actual page
– Permission bits: valid, read-only, read-write, write-only

• Example: Intel x86 architecture PTE:
– 2-level page tabler (10, 10, 12-bit offset)
– Intermediate page tables called “Directories”

P: Present (same as “valid” bit in other architectures) 
W: Writeable
U: User accessible
PWT: Page write transparent: external cache write-through
PCD: Page cache disabled (page cannot be cached)
A: Accessed: page has been accessed recently
D: Dirty (PTE only): page has been modified recently
PS: Page Size: PS=1⇒4MB page (directory only). 
Bottom 22 bits of virtual address serve as offset

Page Frame Number 
(Physical Page Number)

Free 
(OS) 0

PS D A

PCD
PW

T U WP

01234567811-931-12
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Origins of Paging

Disks provide 
most of the 
storage

Relatively small 
memory, for 
many processes

P

. . .

Many clients on 
dumb terminals 
running different 
programs

Keep memory full 
of the frequently 
accesses pages 

Keep most of the 
address space on 
disk

Actively swap 
pages to/from
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Recall: The Memory Hierarchy
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Very Different Situation Today

Powerful system 
Huge memory 
Huge disk 
Single user
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A Picture on one machine

• Memory stays about 75% used, 25% for dynamics
• A lot of it is shared 1.9 GB
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Many Uses of ”Demand Paging” …

• Extend the stack
– Allocate a page and zero it

• Extend the heap (sbrk of old, today mmap)
• Process Fork

– Create a copy of the page table
– Entries refer to parent pages – NO-WRITE
– Shared read-only pages remain shared
– Copy page on write

• Exec 
– Only bring in parts of the binary in active use
– Do this on demand

• MMAP to explicitly share region (or to access a file as RAM)
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Classic: Loading an executable into memory

• .exe
– lives on disk in the file system
– contains contents of code & data segments, relocation entries and symbols
– OS loads it into memory, initializes registers (and initial stack pointer)
– program sets up stack and heap upon initialization:  

crt0 (C runtime init)

disk (huge) memory

code

data

info

exe
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Create Virtual Address Space of the Process

• Utilized pages in the VAS are backed by a page block on disk
– Called the backing store or swap file
– Typically in an optimized block store, but can think of it like a file

disk (huge) memory

code

data

heap

stack

kernel

process VAS

sbrk

kernel code 
& data

user page
frames

user 
pagetable



3/12/20 Kubiatowicz CS162 ©UCB Spring 2020  50

Create Virtual Address Space of the Process

• User Page table maps entire VAS
• All the utilized regions are backed on disk

– swapped into and out of memory as needed
• For every process

disk (huge, TB) memory

code

data

heap
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kernel

process VAS (GBs)

kernel code 
& data

user page
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code

data
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Create Virtual Address Space of the Process

• User Page table maps entire VAS
– Resident pages to the frame in memory they occupy
– The portion of it that the HW needs to access must be resident in 

memory

disk (huge, TB) memory

code

data

heap

stack

kernel

VAS – per process

kernel code 
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user page
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Provide Backing Store for VAS

• User Page table maps entire VAS
• Resident pages mapped to memory frames
• For all other pages, OS must record where to find them on disk

disk (huge, TB) memory
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What Data Structure Maps  
Non-Resident Pages to Disk?

• FindBlock(PID, page#) → disk_block
– Some OSs utilize spare space in PTE for paged blocks
– Like the PT, but purely software

• Where to store it?
– In memory – can be compact representation if swap storage is 

contiguous on disk
– Could use hash table (like Inverted PT)

• Usually want backing store for resident pages too

• May map code segment directly to on-disk image
– Saves a copy of code to swap file

• May share code segment with multiple instances of the program
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Provide Backing Store for VAS
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On page Fault …
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On page Fault … find & start load
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On page Fault … schedule other P or T
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On page Fault … update PTE
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Eventually reschedule faulting thread
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Summary: Steps in Handling a Page Fault
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Cache

• PTE makes demand paging implementatable
– Valid ⇒ Page in memory, PTE points at physical page
– Not Valid ⇒ Page not in memory; use info in PTE to find it on disk when 

necessary
• Suppose user references page with invalid PTE?

– Memory Management Unit (MMU) traps to OS
» Resulting trap is a “Page Fault”

– What does OS do on a Page Fault?:
» Choose an old page to replace 
» If old page modified (“D=1”), write contents back to disk
» Change its PTE and any cached TLB to be invalid
» Load new page into memory from disk
» Update page table entry, invalidate TLB for new entry
» Continue thread from original faulting location

– TLB for new page will be loaded when thread continued!
– While pulling pages off disk for one process, OS runs another process 

from ready queue
» Suspended process sits on wait queue

Demand Paging Mechanisms
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Some questions we need to answer!

• During a page fault, where does the OS get a free frame?
– Keeps a free list
– Unix runs a “reaper” if memory gets too full

» Schedule dirty pages to be written back on disk
» Zero (clean) pages which haven’t been accessed in a while

– As a last resort, evict a dirty page first

• How can we organize these mechanisms?
– Work on the replacement policy

• How many page frames/process?
– Like thread scheduling, need to “schedule” memory resources:

» Utilization?  fairness? priority?
– Allocation of disk paging bandwidth
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Cache Behavior under WS model

• Amortized by fraction of time the Working Set is active
• Transitions from one WS to the next
• Capacity, Conflict, Compulsory misses
• Applicable to memory caches and pages.  Others ?
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Another model of Locality: Zipf

• Likelihood of accessing item of rank r is α 1/ra

• Although rare to access items below the top few, there are so many that it yields a “heavy 
tailed” distribution

• Substantial value from even a tiny cache
• Substantial misses from even a very large cache

P access(rank) = 1/rank
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Demand Paging Cost Model
• Since Demand Paging like caching, can compute average access time! 

(“Effective Access Time”)
– EAT = Hit Rate x Hit Time + Miss Rate x Miss Time
– EAT = Hit Time + Miss Rate x Miss Penalty

• Example:
– Memory access time = 200 nanoseconds
– Average page-fault service time = 8 milliseconds
– Suppose p = Probability of miss, 1-p = Probably of hit
– Then, we can compute EAT as follows:

EAT = 200ns + p x 8 ms
        = 200ns + p x 8,000,000ns

• If one access out of 1,000 causes a page fault, then  
EAT = 8.2 μs:
– This is a slowdown by a factor of 40!

• What if want slowdown by less than 10%?
– 200ns x 1.1 < EAT ⇒ p < 2.5 x 10-6

– This is about 1 page fault in 400,000!
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What Factors Lead to Misses in Page Cache?
• Compulsory Misses: 

– Pages that have never been paged into memory before
– How might we remove these misses?

» Prefetching: loading them into memory before needed
» Need to predict future somehow!  More later

• Capacity Misses:
– Not enough memory. Must somehow increase available memory size.
– Can we do this?

» One option: Increase amount of DRAM (not quick fix!)
» Another option:  If multiple processes in memory: adjust percentage of 

memory allocated to each one!
• Conflict Misses:

– Technically, conflict misses don’t exist in virtual memory, since it is a “fully-
associative” cache

• Policy Misses:
– Caused when pages were in memory, but kicked out prematurely 

because of the replacement policy
– How to fix? Better replacement policy
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Page Replacement Policies
• Why do we care about Replacement Policy?

– Replacement is an issue with any cache
– Particularly important with pages

» The cost of being wrong is high: must go to disk
» Must keep important pages in memory, not toss them out

• FIFO (First In, First Out)
– Throw out oldest page.  Be fair – let every page live in memory for same 

amount of time.
– Bad – throws out heavily used pages instead of infrequently used

• RANDOM:
– Pick random page for every replacement
– Typical solution for TLB’s.  Simple hardware
– Pretty unpredictable – makes it hard to make real-time guarantees

• MIN (Minimum): 
– Replace page that won’t be used for the longest time 
– Great (provably optimal), but can’t really know future…
– But past is a good predictor of the future …
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Replacement Policies (Con’t)
• LRU (Least Recently Used):

– Replace page that hasn’t been used for the longest time
– Programs have locality, so if something not used for a while, unlikely to 

be used in the near future.
– Seems like LRU should be a good approximation to MIN.

• How to implement LRU? Use a list!

– On each use, remove page from list and place at head
– LRU page is at tail

• Problems with this scheme for paging?
– Need to know immediately when each page used so that can change 

position in list… 
– Many instructions for each hardware access

• In practice, people approximate LRU (more later)

Page 6 Page 7 Page 1 Page 2Head

Tail (LRU)
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• Suppose we have 3 page frames, 4 virtual pages, and 
following reference stream: 
– A B C A B D A D B C B

• Consider FIFO Page replacement:

• FIFO: 7 faults
• When referencing D, replacing A is bad choice, since need A 

again right away

Example: FIFO (strawman)
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B
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BCBDADBACBA

3

2

1

Ref:
Page:
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• Suppose we have the same reference stream: 
– A B C A B D A D B C B

• Consider MIN Page replacement:

• MIN: 5 faults 
– Where will D be brought in? Look for page not referenced 

farthest in future
• What will LRU do?

– Same decisions as MIN here, but won’t always be true!

Example: MIN / LRU

C
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2
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Page:
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• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• Fairly contrived example of working set of N+1 on N frames

D

Is LRU guaranteed to perform well?
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• Consider the following: A B C D A B C D A B C D
• LRU Performs as follows (same as FIFO here):

– Every reference is a page fault!
• MIN Does much better :

D

When will LRU perform badly?
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Why it works in Practice: Working Set Model

• As a program executes it transitions through a sequence of 
“working sets” consisting of varying sized subsets of the address 
space

Time

A
dd
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ss
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Graph of Page Faults Versus  
The Number of Frames

• One desirable property: When you add memory the miss 
rate drops (stack property)

– Does this always happen?
– Seems like it should, right?

• No: Bélády’s anomaly 
– Certain replacement algorithms (FIFO) don’t have this obvious 

property!
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Adding Memory Doesn’t Always Help Fault Rate

• Does adding memory reduce number of page faults?
– Yes for LRU and MIN
– Not necessarily for FIFO!  (Called Bélády’s anomaly)

• After adding memory:
– With FIFO, contents can be completely different
– In contrast, with LRU or MIN, contents of memory with X pages 

are a subset of contents with X+1 Page
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Summary (1/2)

• The Principle of Locality:
– Program likely to access a relatively small portion of the address space at 

any instant of time.
» Temporal Locality: Locality in Time
» Spatial Locality: Locality in Space

• Three (+1) Major Categories of Cache Misses:
– Compulsory Misses: sad facts of life.  Example: cold start misses.
– Conflict Misses: increase cache size and/or associativity
– Capacity Misses: increase cache size
– Coherence Misses: Caused by external processors or I/O devices

• Cache Organizations:
– Direct Mapped: single block per set
– Set associative: more than one block per set
– Fully associative: all entries equivalent
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Summary  (2/2)
• “Translation Lookaside Buffer” (TLB)

– Small number of PTEs and optional process IDs (< 512)
– Fully Associative (Since conflict misses expensive)
– On TLB miss, page table must be traversed and if located PTE is 

invalid, cause Page Fault 
– On change in page table, TLB entries must be invalidated
– TLB is logically in front of cache (need to overlap with cache access)

• Precise Exception specifies a single instruction for which:
– All previous instructions have completed (committed state)
– No following instructions nor actual instruction have started 

• Can manage caches in hardware or software or both
– Goal is highest hit rate, even if it means more complex cache 

management


