
CS162  
Operating Systems and 
Systems Programming 

Lecture 7  
 

Synchronization (Con’t):  
Semaphores, Monitors, and Readers/Writers

February 13th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Review: Too Much Milk Solution #3
• Here is a possible two-note solution:

Thread A Thread B
 leave note A; leave note B;  

while (note B) {\\X if (noNote A) {\\Y  
 do nothing; if (noMilk) {  
} buy milk;  
if (noMilk) { }  
 buy milk; }  
} remove note B;  
remove note A;  

• Does this work? Yes. Both can guarantee that:
– It is safe to buy, or
– Other will buy, ok to quit

• Solution #3 works, but it’s really unsatisfactory
– Really complex – even for this simple of an example

» Hard to convince yourself that this really works
– A’s code is different from B’s – what if lots of threads?

» Code would have to be slightly different for each thread
– While A is waiting, it is consuming CPU time

» This is called “busy-waiting”

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: What is a Lock?
• Lock: prevents someone from doing something

– Lock before entering critical section and  
before accessing shared data

– Unlock when leaving, after accessing shared data
– Wait if locked

» Important idea: all synchronization involves waiting
• For example: fix the milk problem by putting a key on the

refrigerator
– Lock it and take key if you are going to go buy milk
– Fixes too much: roommate angry if only wants OJ

– Of Course – We don’t know how to make a lock yet

#$@%@#$@

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Recall: Too Much Milk: Solution #4
• Suppose we have some sort of implementation of a lock

– lock.Acquire() – wait until lock is free, then grab
– lock.Release() – Unlock, waking up anyone waiting
– These must be atomic operations – if two threads are waiting for the

lock and both see it’s free, only one succeeds to grab the lock
• Then, our milk problem is easy:

milklock.Acquire();
if (nomilk)
 buy milk;
milklock.Release();

• Once again, section of code between Acquire() and
Release() called a “Critical Section”

• Of course, you can make this even simpler : suppose you are out of
ice cream instead of milk

– Skip the test since you always need more ice cream ;-)

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 5

Recall: Implement Locks by Disabling Interrupts

int value = FREE;

Acquire() {  
disable interrupts;  
if (value == BUSY) {  

put thread on wait queue;  
Go to sleep();  
// Enable interrupts?  

} else {  
value = BUSY;  

}  
enable interrupts;  

}

Release() {  
disable interrupts;  
if (anyone on wait queue) {  

take thread off wait queue  
Place on ready queue;  

} else {  
value = FREE;  

}  
enable interrupts;  

}  
 

• Key idea: maintain a lock variable and impose mutual exclusion
only during operations on that variable

• Note – Can easily have many locks
– Use an array of values, for instance!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Recall: How to Re-enable After Sleep()?
• In scheduler, since interrupts are disabled when you call sleep:

– Responsibility of the next thread to re-enable ints
– When the sleeping thread wakes up, returns to acquire and  

re-enables interrupts
 Thread A Thread B

 .  
.  

disable ints  
sleep

sleep return  
enable ints

.  

.  

.
disable int  

sleep
sleep return  
enable ints  

.  

.

context 
switch

context 
switch

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 7

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

In-Kernel Lock: Simulation

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Value: 0 waiters owner

Thread A Thread B
Running

READY

Ready

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 8

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

In-Kernel Lock: Simulation

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

READY

Running
Value: 1 waiters owner

Ready

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 9

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running Running
Value: 1 waiters owner

ReadyReady

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 10

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

RunningRunning
Value: 1 waiters owner

WaitingReady

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 11

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running
Value: 1 waiters owner

WaitingReady

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 12

INIT
 int value = 0;
Acquire() {  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() //??  
 } else {  
 value = 1;  
 }
 enable interrupts;  
}

Running

Release() {  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Thread A Thread B

In-Kernel Lock: Simulation

READY

Running
Value: 1 waiters owner

Ready Ready

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 13

A Better Lock Implementation
• Interrupt-based solution works for single core, but costly

– Kernel crossings/system calls required for users
– Disruption of interrupt handling (by disabling interrupts)

• Doesn't work well on multi-core machines
– Disable intr on all cores?

• Solution: Utilize hardware support for atomic operations
– Operations work on memory which is shared between cores

and doesn’t require system calls

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 14

Recall: Examples of Read-Modify-Write
• test&set (&address) { /* most architectures */ 

 result = M[address]; // return result from “address” and  
 M[address] = 1; // set value at “address” to 1  
 return result;  
}

• swap (&address, register) { /* x86 */  
 temp = M[address]; // swap register’s value to  
 M[address] = register; // value at “address”  
 register = temp;  
}

• compare&swap (&address, reg1, reg2) { /* 68000 */ 
 if (reg1 == M[address]) { // If memory still == reg1,  
 M[address] = reg2; // then put reg2 => memory  
 return success;  
 } else { // Otherwise do not change memory  
 return failure;  
 }  
}

• load-linked&store-conditional(&address) { /* R4000, alpha */ 
 loop:  
 ll r1, M[address];  
 movi r2, 1; // Can do arbitrary computation  
 sc r2, M[address];  
 beqz r2, loop;  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 15

Recall: Implementing Locks with test&set
• Our first (simple!) cut at using atomic operations for locking:

int value = 0; // Free
Acquire() {  

while (test&set(value)); // while busy  
}
Release() {  

value = 0;  
}

• Simple explanation:
– If lock is free, test&set reads 0 and sets value=1, so lock is now busy. It

returns 0 so while exits.
– If lock is busy, test&set reads 1 and sets value=1 (no change)  

It returns 1, so while loop continues.
– When we set value = 0, someone else can get lock.

• Busy-Waiting: thread consumes cycles while waiting
– This is not a good implementation for single core
– For multiprocessors: every test&set() is a write, which makes value

ping-pong around in cache (using lots of network BW)

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 16

Problem: Busy-Waiting for Lock
• Positives for this solution

– Machine can receive interrupts
– User code can use this lock
– Works on a multiprocessor

• Negatives
– This is very inefficient as thread will consume cycles waiting
– Waiting thread may take cycles away from thread holding lock (no one

wins!)
– Priority Inversion: If busy-waiting thread has higher priority than thread

holding lock ⇒ no progress!
• Priority Inversion problem with original Martian rover
• Looking forward: For semaphores and monitors, waiting thread may

wait for an arbitrary long time!
– Thus even if busy-waiting was OK for locks, definitely not ok for other

primitives
– Homework/exam solutions should avoid busy-waiting!

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 17

Multiprocessor Spin Locks: test&test&set
• A better solution for multiprocessors:

int mylock = 0; // Free
 Acquire() {
 do {
 while(mylock); // Wait until might be free  

 } while(test&set(&mylock)); // exit if get lock
 }

 Release() {  
 mylock = 0;  
 }

• Simple explanation:
– Wait until lock might be free (only reading – stays in cache)
– Then, try to grab lock with test&set
– Repeat if fail to actually get lock

• Still have issues with this solution:
– Busy-Waiting: thread still consumes cycles while waiting

» However, it does not impact other processors!

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 18

Better Locks using test&set
• Can we build test&set locks without busy-waiting?

– Can’t entirely, but can minimize!
– Idea: only busy-wait to atomically check lock value

• Note: sleep has to be sure to reset the guard variable
– Why can’t we do it just before or just after the sleep?

Release() {  
// Short busy-wait time  
while (test&set(guard));  
if anyone on wait queue {  

take thread off wait queue  
Place on ready queue;  

} else {  
value = FREE;  

}  
guard = 0;  

int guard = 0;
int value = FREE;

Acquire() {
// Short busy-wait time  
while (test&set(guard));  
if (value == BUSY) {

put thread on wait queue;
go to sleep() & guard = 0;  

} else {  
value = BUSY;  
guard = 0;  

}  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 19

Recall: Locks using Interrupts vs. test&set
Compare to “disable interrupt” solution

Basically we replaced:
– disable interrupts ! while (test&set(guard));
– enable interrupts ! guard = 0;

int value = FREE;

Acquire() {  
 disable interrupts;  
 if (value == BUSY) { 
 put thread on wait queue; 
 Go to sleep(); 
 // Enable interrupts? 
 } else { 
 value = BUSY;  
 }  
 enable interrupts;  
}

Release() {  
 disable interrupts;  
 if (anyone on wait queue) { 
 take thread off wait queue 
 Place on ready queue; 
 } else { 
 value = FREE;  
 }  
 enable interrupts;  
}  
 

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 20

Recap: Locks using interrupts
int value = 0;
Acquire() {
 // Short busy-wait time  
 disable interrupts;  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep() && Enab Ints  
 } else {  
 value = 1;  
 enable interrupts;  
 }  
}

Release() {  
 // Short busy-wait time  
 disable interrupts;  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 enable interrupts;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

Acquire() {
 disable interrupts;  
}

Release() {  
 enable interrupts;  
}

If one thread in critical
section, no other
activity (including OS)
can run!

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 21

Recap: Locks using test & set
int guard = 0;
int value = 0;
Acquire() {
 // Short busy-wait time  
 while(test&set(guard));  
 if (value == 1) {
 put thread on wait-queue;
 go to sleep()& guard = 0;  
 } else {  
 value = 1;  
 guard = 0;  
 }  
}

Release() {  
 // Short busy-wait time  
 while (test&set(guard));  
 if anyone on wait queue {  
 take thread off wait-queue  
 Place on ready queue;  
 } else {  
 value = 0;  
 }  
 guard = 0;  
}

lock.Acquire();
 …
 critical section;
 …
lock.Release();

int value = 0;
Acquire() {
 while(test&set(value));  
}

Release() {  
 value = 0;  
}

Threads waiting to
enter critical section
busy-wait

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Producer-Consumer with a Bounded Buffer

• Problem Definition
– Producer(s) put things into a shared buffer
– Consumer(s) take them out
– Need synchronization to coordinate producer/consumer

• Don’t want producer and consumer to have to work in lockstep, so
put a fixed-size buffer between them

– Need to synchronize access to this buffer
– Producer needs to wait if buffer is full
– Consumer needs to wait if buffer is empty

• Example 1: GCC compiler
– cpp | cc1 | cc2 | as | ld

• Example 2: Coke machine
– Producer can put limited number of Cokes in machine
– Consumer can’t take Cokes out if machine is empty

• Others: Web servers, Routers, ….

Consumer
Consumer

Producer ConsumerBuffer
Producer

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 23

• Insert: write & bump write ptr (enqueue)
• Remove: read & bump read ptr (dequeue)
• How to tell if Full (on insert) Empty (on remove)?
• And what do you do if it is?
• What needs to be atomic?

typedef struct buf {
 int write_index;
 int read_index;
 <type> *entries[BUFSIZE];
} buf_t;

w
r

di di+1di+2

Circular Buffer Data Structure (sequential case)

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 24

mutex buf_lock = <initially unlocked>

Producer(item) {
 acquire(&buf_lock);
 while (buffer full) {}; // Wait for a free slot
 enqueue(item);  
 release(&buf_lock);
}

Consumer() {
 acquire(&buf_lock);
 while (buffer empty) {}; // Wait for arrival
 item = dequeue();  
 release(&buf_lock);
 return item
}

Will we ever come out
of the wait loop?

Circular Buffer – first cut

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 25

mutex buf_lock = <initially unlocked>

Producer(item) {
 acquire(&buf_lock);
 while (buffer full) {release(&buf_lock);
acquire(&buf_lock);}
 enqueue(item);  
 release(&buf_lock);
}

Consumer() {
 acquire(&buf_lock);
 while (buffer empty) {release(&buf_lock);
acquire(&buf_lock);}
 item = dequeue();  
 release(&buf_lock);
 return item
}

What happens when one
is waiting for the other?
 - Multiple cores ?
 - Single core ?

Circular Buffer – 2nd cut ∅

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Higher-level Primitives than Locks
• Goal of last couple of lectures:

– What is right abstraction for synchronizing threads that share
memory?

– Want as high a level primitive as possible
• Good primitives and practices important!

– Since execution is not entirely sequential, really hard to find bugs,
since they happen rarely

– UNIX is pretty stable now, but up until about mid-80s  
(10 years after started), systems running UNIX would crash every
week or so – concurrency bugs

• Synchronization is a way of coordinating multiple concurrent
activities that are using shared state

– This lecture and the next presents a some ways of structuring
sharing

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 27

Semaphores

• Semaphores are a kind of generalized lock
– First defined by Dijkstra in late 60s
– Main synchronization primitive used in original UNIX

• Definition: a Semaphore has a non-negative integer value and
supports the following two operations:

– P(): an atomic operation that waits for semaphore to become positive,
then decrements it by 1

» Think of this as the wait() operation
– V(): an atomic operation that increments the semaphore by 1, waking

up a waiting P, if any
» This of this as the signal() operation

– Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Semaphores Like Integers Except

• Semaphores are like integers, except
– No negative values
– Only operations allowed are P and V – can’t read or write value, except

to set it initially
– Operations must be atomic

» Two P’s together can’t decrement value below zero
» Similarly, thread going to sleep in P won’t miss wakeup from V – even if

they both happen at same time
• Semaphore from railway analogy

– Here is a semaphore initialized to 2 for resource control:

Value=0Value=2Value=2Value=1Value=0Value=1Value=0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Two Uses of Semaphores
Mutual Exclusion (initial value = 1)
• Also called “Binary Semaphore”.
• Can be used for mutual exclusion:

 semaphore.P();  
// Critical section goes here  
semaphore.V();

Scheduling Constraints (initial value = 0)
• Allow thread 1 to wait for a signal from thread 2

– thread 2 schedules thread 1 when a given event occurs
• Example: suppose you had to implement ThreadJoin which must

wait for thread to terminate:
Initial value of semaphore = 0

ThreadJoin {  
 semaphore.P();  
}

ThreadFinish {  
 semaphore.V();  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Revisit Bounded Buffer:  
Correctness constraints for solution

• Correctness Constraints:
– Consumer must wait for producer to fill buffers, if none full (scheduling

constraint)
– Producer must wait for consumer to empty buffers, if all full (scheduling

constraint)
– Only one thread can manipulate buffer queue at a time (mutual

exclusion)
• Remember why we need mutual exclusion

– Because computers are stupid
– Imagine if in real life: the delivery person is filling the machine and

somebody comes up and tries to stick their money into the machine
• General rule of thumb:  

Use a separate semaphore for each constraint
– Semaphore fullBuffers; // consumer’s constraint
– Semaphore emptyBuffers;// producer’s constraint
– Semaphore mutex; // mutual exclusion

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Full Solution to Bounded Buffer
 Semaphore fullSlots = 0; // Initially, no coke
Semaphore emptySlots = bufSize;  

// Initially, num empty slots
Semaphore mutex = 1; // No one using machine

 
Producer(item) {  

emptySlots.P(); // Wait until space  
mutex.P(); // Wait until machine free  
Enqueue(item);  
mutex.V();  
fullSlots.V(); // Tell consumers there is  

// more coke  
}
Consumer() {  

fullSlots.P(); // Check if there’s a coke  
mutex.P(); // Wait until machine free  
item = Dequeue();  
mutex.V();  
emptySlots.V(); // tell producer need more  
return item;  

}  

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 32

Discussion about Solution

• Why asymmetry?
– Producer does: emptyBuffer.P(), fullBuffer.V()
– Consumer does: fullBuffer.P(), emptyBuffer.V()

• Is order of P’s important?
– Yes! Can cause deadlock

• Is order of V’s important?
– No, except that it might  

affect scheduling efficiency
• What if we have 2 producers  

or 2 consumers?
– Do we need to change anything?

Decrease # of
empty slots

Increase # of
occupied slots

Increase # of
empty slots

Decrease # of
occupied slots

 Producer(item) {  
 mutex.P();  
 emptySlots.P();  
 Enqueue(item);  
 mutex.V();  
 fullSlots.V();  
}  
Consumer() {  
 fullSlots.P();  
 mutex.P();  
 item = Dequeue();  
 mutex.V();  
 emptySlots.V();  
 return item;  
}  

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 33

Semaphores are good but…Monitors are better!
• Semaphores are a huge step up; just think of trying to do the

bounded buffer with only loads and stores
• Problem is that semaphores are dual purpose:

– They are used for both mutex and scheduling constraints
– Example: the fact that flipping of P’s in bounded buffer gives

deadlock is not immediately obvious. How do you prove
correctness to someone?

• Cleaner idea: Use locks for mutual exclusion and condition variables
for scheduling constraints

• Definition: Monitor : a lock and zero or more condition variables
for managing concurrent access to shared data

– Some languages like Java provide this natively
– Most others use actual locks and condition variables

• A “Monitor” is a paradigm for concurrent programming!
– Some languages support monitors explicitly

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 34

Condition Variables
• How do we change the consumer() routine to wait until something is

on the queue?
– Could do this by keeping a count of the number of things on the queue

(with semaphores), but error prone
• Condition Variable: a queue of threads waiting for something inside a

critical section
– Key idea: allow sleeping inside critical section by atomically releasing lock

at time we go to sleep
– Contrast to semaphores: Can’t wait inside critical section

• Operations:
– Wait(&lock): Atomically release lock and go to sleep.  

Re-acquire lock later, before returning.
– Signal(): Wake up one waiter, if any
– Broadcast(): Wake up all waiters

• Rule: Must hold lock when doing condition variable ops!

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 35

 Monitor with Condition Variables

• Lock: the lock provides mutual exclusion to shared data
– Always acquire before accessing shared data structure
– Always release after finishing with shared data
– Lock initially free

• Condition Variable: a queue of threads waiting for something inside a
critical section

– Key idea: make it possible to go to sleep inside critical section by atomically
releasing lock at time we go to sleep

– Contrast to semaphores: Can’t wait inside critical section

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 36

Synchronized Buffer (with condition variable)
• Here is an (infinite) synchronized queue:

lock buf_lock; // Initially unlocked  
condition buf_CV; // Initially empty  
queue queue;

Producer(item) {  
acquire(&buf_lock); // Get Lock  
enqueue(&queue,item); // Add item  
cond_signal(&buf_CV); // Signal any waiters  
release(&buf_lock); // Release Lock  

}  

Consumer() {  
acquire(&buf_lock); // Get Lock  
while (isEmpty(&queue)) {  

cond_wait(&buf_CV, &buf_lock); // If empty, sleep  
}  
item = dequeue(&queue); // Get next item  
release(&buf_lock); // Release Lock  
return(item);  

}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 37

Mesa vs. Hoare monitors
• Need to be careful about precise definition of signal and wait.

Consider a piece of our dequeue code:
 while (isEmpty(&queue)) {  

cond_wait(&buf_CV,&buf_lock); // If nothing, sleep  
}  
item = dequeue(&queue); // Get next item

– Why didn’t we do this?  
if (isEmpty(&queue)) {  

cond_wait(&buf_CV,&buf_lock); // If nothing, sleep  
}  
item = dequeue(&queue); // Get next item

• Answer: depends on the type of scheduling
– Mesa-style: Named after Xerox-Park Mesa Operating System

» Most OSes use Mesa Scheduling!
– Hoare-style: Named after British logician Tony Hoare

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 38

Hoare monitors
• Signaler gives up lock, CPU to waiter; waiter runs immediately
• Then, Waiter gives up lock, processor back to signaler when it

exits critical section or if it waits again

• On first glance, this seems like good semantics
– Waiter gets to run immediately, condition is still correct!

• Most textbooks talk about Hoare scheduling
– However, hard to do, not really necessary!
– Forces a lot of context switching (inefficient!)

acquire(&buf_lock);
…
if (isEmpty(&queue)) {
 cond_wait(&buf_CV,&buf_lock);  
}  
…
release(&buf_lock);

…
acquire(&buf_lock);
…
cond_signal(&buf_CV);
…
release(&buf_lock);

Lock, CPU
Lock, CPU

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 39

Mesa monitors
• Signaler keeps lock and processor
• Waiter placed on ready queue with no special priority

• Practically, need to check condition again after wait
– By the time the waiter gets scheduled, condition may be false

again – so, just check again with the “while” loop
• Most real operating systems do this!

– More efficient, easier to implement
– Signaler’s cache state, etc still good

acquire(&buf_lock);
…
while (isEmpty(&queue)) {  
 cond_wait(&buf_CV,&buf_lock);  
}  
…
lock.Release();

…
acquire(&buf_lock)
…
cond_signal(&buf_CV);
…
release(&buf_lock));

schedule thread  

(sometime later!)

Put waiting
thread on

ready queue

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 40

lock buf_lock = <initially unlocked>
condition producer_CV = <initially empty>
condition consumer_CV = <initially empty>

Producer(item) {
 acquire(&buf_lock);
 while (buffer full) { cond_wait(&producer_CV,
&buf_lock); }
 enqueue(item);
 cond_signal(&consumer_CV);  
 release(&buf_lock);
}
Consumer() {
 acquire(buf_lock);
 while (buffer empty) { cond_wait(&consumer_CV,
&buf_lock); }
 item = dequeue();
 cond_signal(&producer_CV);
 release(buf_lock);
 return item
}

Circular Buffer – 3rd cut (Monitors, pthread-like)

What does thread do
when it is waiting?
 - Sleep, not busywait!

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 41

• MESA semantics
• For most operating systems, when a thread is woken up by
signal(), it is simply put on the ready queue

• It may or may not reacquire the lock immediately!
– Another thread could be scheduled first and "sneak in" to empty

the queue
– Need a loop to re-check condition on wakeup

Again: Why the while Loop?

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 42

Readers/Writers Problem

• Motivation: Consider a shared database
– Two classes of users:

» Readers – never modify database
» Writers – read and modify database

– Is using a single lock on the whole database sufficient?
» Like to have many readers at the same time
» Only one writer at a time

R
R

R

W

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 43

Basic Readers/Writers Solution
• Correctness Constraints:

– Readers can access database when no writers
– Writers can access database when no readers or writers
– Only one thread manipulates state variables at a time

• Basic structure of a solution:
– Reader()  
 Wait until no writers  
 Access data base  
 Check out – wake up a waiting writer

– Writer()  
 Wait until no active readers or writers 
 Access database  
 Check out – wake up waiting readers or writer

– State variables (Protected by a lock called “lock”):
» int AR: Number of active readers; initially = 0
» int WR: Number of waiting readers; initially = 0
» int AW: Number of active writers; initially = 0
» int WW: Number of waiting writers; initially = 0
» Condition okToRead = NIL
» Condition okToWrite = NIL

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 44

Code for a Reader
 Reader() {  
 // First check self into system  
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 okToRead.wait(&lock); // Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 lock.release();

 // Perform actual read-only access  
 AccessDatabase(ReadOnly);

 // Now, check out of system  
 lock.Acquire();  
 AR--; // No longer active  
 if (AR == 0 && WW > 0) // No other active readers  
 okToWrite.signal(); // Wake up one writer  
 lock.Release();  
}

9/28/15 Kubiatowicz CS162 ©UCB Fall 2015 45

 Writer() {  
 // First check self into system  
 lock.Acquire();

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 okToWrite.wait(&lock); // Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++; // Now we are active!  
 lock.release();

 // Perform actual read/write access  
 AccessDatabase(ReadWrite);

 // Now, check out of system  
 lock.Acquire();  
 AW--; // No longer active  
 if (WW > 0){ // Give priority to writers  
 okToWrite.signal(); // Wake up one writer  
 } else if (WR > 0) { // Otherwise, wake reader  
 okToRead.broadcast(); // Wake all readers  
 }  
 lock.Release();  
}

Code for a Writer

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 46

Simulation of Readers/Writers Solution

• Use an example to simulate the solution

• Consider the following sequence of operators:
– R1, R2, W1, R3

• Initially: AR = 0, WR = 0, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 47

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock)

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 48

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 49

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 50

Simulation of Readers/Writers Solution
• R1 comes along (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 51

Simulation of Readers/Writers Solution
• R1 accessing dbase (no other threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 52

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 53

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 54

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 55

Simulation of Readers/Writers Solution
• R2 comes along (R1 accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 56

Simulation of Readers/Writers Solution
• R1 and R2 accessing dbase
• AR = 2, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

Assume readers take a while to access database
Situation: Locks released, only AR is non-zero

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

 57

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

 58

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 59

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• W1 comes along (R1 and R2 are still accessing dbase)
• AR = 2, WR = 0, AW = 0, WW = 1

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 60

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 0, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 61

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 0, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 62

Simulation of Readers/Writers Solution
• R3 comes along (R1 and R2 accessing dbase, W1 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 lock.release();

 
 AccessDBase(ReadOnly);

 
 lock.Acquire();  
 AR--;  
 if (AR == 0 && WW > 0)  
 okToWrite.signal();  
 lock.Release();  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 63

Reader() {  
 lock.Acquire();

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 lock.release();

 
 AccessDBase(ReadOnly);

 
 lock.Acquire();  
 AR--;  
 if (AR == 0 && WW > 0)  
 okToWrite.signal();  
 lock.Release();  
}

Simulation of Readers/Writers Solution
• R3 comes along (R1, R2 accessing dbase, W1 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 64

Simulation of Readers/Writers Solution
• R1 and R2 accessing dbase, W1 and R3 waiting
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}
Status:
• R1 and R2 still reading
• W1 and R3 waiting on okToWrite and okToRead, respectively

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 65

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 2, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 66

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 67

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 68

Simulation of Readers/Writers Solution
• R2 finishes (R1 accessing dbase, W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 69

Simulation of Readers/Writers Solution
• R1 finishes (W1 and R3 waiting)
• AR = 1, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 70

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 71

Simulation of Readers/Writers Solution
• R1 finishes (W1, R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 72

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 lock.Release();  
}

Simulation of Readers/Writers Solution
• R1 signals a writer (W1 and R3 waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 73

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 1

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

 74

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 75

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• W1 gets signal (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 76

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• W1 accessing dbase (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 77

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 okToWrite.wait(&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 1, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 78

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 okToWrite.wait(&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 79

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• W1 finishes (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 80

Writer() {  
 acquire(&lock);

 while ((AW + AR) > 0) { // Is it safe to write?  
 WW++; // No. Active users exist  
 cond_wait(&okToWrite,&lock);// Sleep on cond var  
 WW--; // No longer waiting  
 }

 AW++;  
 release(&lock);

 
 AccessDBase(ReadWrite);

 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okToWrite);  
 } else if (WR > 0) {  
 cond_broadcast(&okToRead);  
 }  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• W1 signaling readers (R3 still waiting)
• AR = 0, WR = 1, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 81

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• R3 gets signal (no waiting threads)
• AR = 0, WR = 1, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 82

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

Simulation of Readers/Writers Solution
• R3 gets signal (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 83

Simulation of Readers/Writers Solution
• R3 accessing dbase (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 84

Simulation of Readers/Writers Solution
• R3 finishes (no waiting threads)
• AR = 1, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDBase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 85

Simulation of Readers/Writers Solution
• R3 finishes (no waiting threads)
• AR = 0, WR = 0, AW = 0, WW = 0

Reader() {  
 acquire(&lock);

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  
 cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!  
 release(&lock);

 
 AccessDbase(ReadOnly);

 
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okToWrite);  
 release(&lock);  
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 86

Questions
• Can readers starve? Consider Reader() entry code:

 while ((AW + WW) > 0) { // Is it safe to read?  
 WR++; // No. Writers exist  

cond_wait(&okToRead,&lock);// Sleep on cond var  
 WR--; // No longer waiting  
 }

 AR++; // Now we are active!

• What if we erase the condition check in Reader exit?
 AR--; // No longer active  
 if (AR == 0 && WW > 0) // No other active readers  
 cond_signal(&okToWrite);// Wake up one writer

• Further, what if we turn the signal() into broadcast()
 AR--; // No longer active  
 cond_broadcast(&okToWrite); // Wake up sleepers

• Finally, what if we use only one condition variable (call it
“okContinue”) instead of two separate ones?

– Both readers and writers sleep on this variable
– Must use broadcast() instead of signal()

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 87

Use of Single CV: okContinue
Reader() {  

 // check into system 
 acquire(&lock);

 while ((AW + WW) > 0) {  
 WR++;  
 cond_wait(&okContinue);  
 WR--;  
 }

 AR++;  
 release(&lock);

 // read-only access  
 AccessDbase(ReadOnly);

 // check out of system 
 acquire(&lock); 
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okContinue);  
 release(&lock); 
}

Writer() {  
 // check into system 
 acquire(&lock);

 while ((AW + AR) > 0) {  
 WW++;  
 cond_wait(&okContinue);  
 WW--;  
 }

 AW++;  
 release(&lock);

 // read/write access 
 AccessDbase(ReadWrite);

 // check out of system 
 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okContinue);  
 } else if (WR > 0) {  
 cond_broadcast(&okContinue);  
 }  
 release(&lock); 
}

What if we turn okToWrite and okToRead into okContinue  
(i.e. use only one condition variable instead of two)?

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 88

Use of Single CV: okContinue

Consider this scenario:
•R1 arrives
• W1, R2 arrive while R1 still reading ! W1 and R2 wait for R1 to finish
• Assume R1’s signal is delivered to R2 (not W1)

Reader() {  
 // check into system 
 acquire(&lock);

 while ((AW + WW) > 0) {  
 WR++;  
 cond_wait(&okContinue);  
 WR--;  
 }

 AR++;  
 release(&lock);

 // read-only access  
 AccessDbase(ReadOnly);

 // check out of system 
 acquire(&lock); 
 AR--;  
 if (AR == 0 && WW > 0)  
 cond_signal(&okContinue);  
 release(&lock); 
}

Writer() {  
 // check into system 
 acquire(&lock);

 while ((AW + AR) > 0) {  
 WW++;  
 cond_wait(&okContinue);  
 WW--;  
 }

 AW++;  
 release(&lock);

 // read/write access 
 AccessDbase(ReadWrite);

 // check out of system 
 acquire(&lock); 
 AW--;  
 if (WW > 0){  
 cond_signal(&okContinue);  
 } else if (WR > 0) {  
 cond_broadcast(&okContinue);  
 }  
 release(&lock); 
}

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 89

Use of Single CV: okContinue

Reader() {  
 // check into system  
 acquire(&lock);

 while ((AW + WW) > 0) {  
 WR++;  
 okContinue.wait(&lock);  
 WR--;  
 }

 AR++;  
 release(&lock);

 // read-only access  
 AccessDbase(ReadOnly);

 // check out of system  
 acquire(&lock);  
 AR--;  
 if (AR == 0 && WW > 0)  
 okContinue.broadcast();  
 release(&lock);  
}

Writer() {  
 // check into system  
 acquire(&lock);

 while ((AW + AR) > 0) {  
 WW++;  
 okContinue.wait(&lock);  
 WW--;  
 }

 AW++;  
 release(&lock);

 // read/write access  
 AccessDbase(ReadWrite);

 // check out of system  
 acquire(&lock);  
 AW--;  
 if (WW > 0 || WR > 0){  
 okContinue.broadcast();  
 }  
 release(&lock);  
}

Need to change to
broadcast()!

Must broadcast()
to sort things out!

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 90

Can we construct Monitors from Semaphores?
• Locking aspect is easy: Just use a mutex
• Can we implement condition variables this way?

 Wait() { semaphore.P(); }
 Signal() { semaphore.V(); }
– Doesn’t work: Wait() may sleep with lock held

• Does this work better?
 Wait(Lock lock) {  
 lock.Release();  
 semaphore.P();  
 lock.Acquire();  
}  
Signal() { semaphore.V(); }

– No: Condition vars have no history, semaphores have history:
» What if thread signals and no one is waiting? NO-OP
» What if thread later waits? Thread Waits
» What if thread V’s and no one is waiting? Increment
» What if thread later does P? Decrement and continue

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 91

Construction of Monitors from Semaphores (con’t)
• Problem with previous try:

– P and V are commutative – result is the same no matter what order
they occur

– Condition variables are NOT commutative
• Does this fix the problem?

Wait(Lock lock) {  
 lock.Release();  
 semaphore.P();  
 lock.Acquire();  
}  
Signal() {  
 if semaphore queue is not empty  
 semaphore.V();  
}

– Not legal to look at contents of semaphore queue
– There is a race condition – signaler can slip in after lock release and

before waiter executes semaphore.P()
• It is actually possible to do this correctly

– Complex solution for Hoare scheduling in book
– Can you come up with simpler Mesa-scheduled solution?

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 92

Monitor Conclusion
• Monitors represent the logic of the program

– Wait if necessary
– Signal when change something so any waiting threads can proceed

• Basic structure of monitor-based program:
 lock  
while (need to wait) {  
 condvar.wait();  
}  
unlock  
 
do something so no need to wait  
 
lock  

 condvar.signal();
 
unlock

Check and/or update 
state variables

Wait if necessary

Check and/or update
state variables

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 93

C-Language Support for Synchronization

• C language: Pretty straightforward synchronization
– Just make sure you know all the code paths out of a critical section
int Rtn() {  
 lock.acquire();  
 …  
 if (exception) {  
 lock.release();  
 return errReturnCode;  
 }  
 …  
 lock.release();  
 return OK;  
}

– Watch out for setjmp/longjmp!
» Can cause a non-local jump out of procedure
» In example, procedure E calls longjmp, poping stack back to

procedure B
» If Procedure C had lock.acquire, problem!

Proc A

Proc B
Calls setjmp

Proc C
lock.acquire

Proc D

Proc E
Calls longjmp

Stack growth

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 94

C++ Language Support for Synchronization
• Languages with exceptions like C++

– Languages that support exceptions are problematic (easy to make a
non-local exit without releasing lock)

– Consider :
void Rtn() {  

 lock.acquire();  
 …  
 DoFoo();  
 …  
 lock.release();  
 }  
 void DoFoo() {  
 …  
 if (exception) throw errException;  
 …  
 }

– Notice that an exception in DoFoo() will exit without releasing the
lock!

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 95

C++ Language Support for Synchronization (con’t)
• Must catch all exceptions in critical sections

– Catch exceptions, release lock, and re-throw exception: 
void Rtn() {  

 lock.acquire();  
 try {  
 …  
 DoFoo();  
 …  
 } catch (…) { // catch exception 
 lock.release(); // release lock  
 throw; // re-throw the exception  
 }  
 lock.release();  
 }  
 void DoFoo() {  
 …  
 if (exception) throw errException;  
 …  
 }

– Even Better : auto_ptr<T> facility. See C++ Spec.
» Can deallocate/free lock regardless of exit method

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 96

Java Language Support for Synchronization

• Java has explicit support for threads and thread synchronization
• Bank Account example: 

class Account {  
 private int balance;  
 // object constructor  
 public Account (int initialBalance) {  
 balance = initialBalance;  
 }  
 public synchronized int getBalance() {  
 return balance;  
 }  
 public synchronized void deposit(int amount) {  
 balance += amount;  
 }  
 }

– Every object has an associated lock which gets automatically acquired
and released on entry and exit from a synchronized method.

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 97

Java Language Support for Synchronization (con’t)

• Java also has synchronized statements:
synchronized (object) {  

 …  
 }

– Since every Java object has an associated lock, this type of statement
acquires and releases the object’s lock on entry and exit of the body

– Works properly even with exceptions:
synchronized (object) {  

 …  
 DoFoo();  
 …  
 }  
 void DoFoo() {  
 throw errException;  
 }

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 98

Java Language Support for Synchronization (con’t 2)
• In addition to a lock, every object has a single condition variable

associated with it
– How to wait inside a synchronization method of block:

» void wait(long timeout); // Wait for timeout
» void wait(long timeout, int nanoseconds); //variant
» void wait();

– How to signal in a synchronized method or block:
» void notify(); // wakes up oldest waiter
» void notifyAll(); // like broadcast, wakes everyone

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 99

Summary (1/2)
• Important concept: Atomic Operations

– An operation that runs to completion or not at all
– These are the primitives on which to construct various synchronization

primitives
• Talked about hardware atomicity primitives:

– Disabling of Interrupts, test&set, swap, compare&swap,  
load-locked & store-conditional

• Showed several constructions of Locks
– Must be very careful not to waste/tie up machine resources

» Shouldn’t disable interrupts for long
» Shouldn’t spin wait for long

– Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

2/13/20 Kubiatowicz CS162 ©UCB Spring 2020 100

Summary (2/2)
• Semaphores: Like integers with restricted interface

– Two operations:
» P(): Wait if zero; decrement when becomes non-zero
» V(): Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

– Use separate semaphore for each constraint
• Monitors: A lock plus one or more condition variables

– Always acquire lock before accessing shared data
– Use condition variables to wait inside critical section

» Three Operations: Wait(), Signal(), and Broadcast()

• Monitors represent the logic of the program
– Wait if necessary
– Signal when change something so any waiting threads can proceed

