
CS162  
Operating Systems and 
Systems Programming 

Lecture 4  
 

Processes (con’t),  
Threads, Concurrency

January 30th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall: Modern Process with Threads

• Process: execution environment with restricted rights
– Address Space with One or More Threads

» One Page table per process!

– Owns memory (mapped pages)
– Owns file descriptors, file system context, …
– Encapsulates one or more threads sharing process resources

• Thread: a sequential execution stream within process  
(Sometimes called a “Lightweight process”)

– Process still contains a single Address Space
– No protection between threads

• Multithreading: a single program made up of a number of different concurrent
activities

– Sometimes called multitasking, as in Ada …
• Why separate the concept of a thread from that of a process?

– Discuss the “thread” part of a process (concurrency)
– Separate from the “address space” (protection)
– Heavyweight Process ≡ Process with one thread

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Process 
Control
Block

Recall: How do we Multiplex Processes?
• The current state of process held in a process

control block (PCB):
– This is a “snapshot” of the execution and protection

environment
– Only one PCB active at a time

• Give out CPU time to different processes
(Scheduling):

– Only one process “running” at a time
– Give more time to important processes

• Give pieces of resources to different processes
(Protection):

– Controlled access to non-CPU resources
– Example mechanisms:

» Memory Translation: Give each process their own
(protected) address space

» Kernel/User duality: Arbitrary multiplexing of I/O
through system calls

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 5

Recall: Context Switch

Privilege Level: 0 - sysPrivilege Level: 3 - user Privilege Level: 3 - user

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Recall: Lifecycle of a Process

• As a process executes, it changes state:
– new: The process is being created
– ready: The process is waiting to run
– running: Instructions are being executed
– waiting: Process waiting for some event to occur
– terminated: The process has finished execution

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 7

Discussion

• Process is an instance of an executing program
– The fundamental OS responsibility
– Each instance has an identity (Process ID) or PID

• Processes do their work by processing and calling file system
operations

– This involves interacting with the Kernel!
– How do we do that?

• Are their any operations on processes themselves?
– create (fork) ?
– terminate (exit) ?
– sleep (sleep) ?
– communicate with (e.g. signal)?

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 8

OS Run-Time Library

OS

Proc 1 Proc 2 Proc n
…

OS

Appln login Window
Manager

…
OS library OS library OS librarylibc

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 9

A Narrow Waist

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac/ax SCSI ThunderboltGraphics

PCI
Hardware

Software

System Mode

User Mode
OS

Application / Service

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 10

pid.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[])
{
 pid_t pid = getpid(); /* get current processes PID */

 printf("My pid: %d\n", pid);

 exit(0);
}

ps a
nyon

e?

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 11

POSIX/Unix

• Portable Operating System Interface [X?]
• Defines “Unix”, derived from AT&T Unix

– Created to bring order to many Unix-derived OSs

• Interface for application programmers (mostly)

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 12

System Calls

Application:
fd = open(pathname);

Library:
File *open(pathname) {
 asm code … syscall # into ax
 put args into registers bx, …
 special trap instruction

 get results from regs
};

Continue with results

Operating System:
 get args from regs
 dispatch to system func
 process, schedule, …
 complete, resume process

Pintos: userprog/syscall.c, lib/user/syscall.c

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 13

SYSCALLs (of over 300)

Pintos: syscall-nr.h

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 14

Recall: Kernel System Call Handler

• Locate arguments
– In registers or on user(!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– into user memory

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 15

Process Management

•exit – terminate a process
•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like notification) to

another process
•sigaction – set handlers for signals

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 16

Process Management

•exit – terminate a process
•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like notification) to

another process
•sigaction – set handlers for signals

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 17

Creating Processes

• pid_t fork(); -- copy the current process
– This means everything!
– New process has different pid

• Return value from fork(): pid (like an integer)
– When > 0:

» Running in (original) Parent process
» return value is pid of new child

– When = 0:
» Running in new Child process

– When < 0:
» Error! Must handle somehow
» Running in original process

• If no error: State of original process duplicated in both  
Parent and Child!

– Address Space (Memory), File Descriptors (covered later), etc…
– Not as bad as it seems – really only copy page table [more later]

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 18

fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID
*/
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 }
}

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 19

fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID
*/
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 }
}

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 20

fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID
*/
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 }
}

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 21

fork_race.c

int i;
cpid = fork();
if (cpid > 0) {
 for (i = 0; i < 10; i++) {
 printf("Parent: %d\n", i);
 // sleep(1);
 }
} else if (cpid == 0) {
 for (i = 0; i > -10; i--) {
 printf("Child: %d\n", i);
 // sleep(1);
 }
}

• What does this print?
• Would adding the calls to sleep matter?

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Fork “race”

int i;
cpid = fork();
if (cpid > 0) {
 for (i = 0; i < 10; i++) {
 printf("Parent: %d\n", i);
 // sleep(1);
 }
} else if (cpid == 0) {
 for (i = 0; i > -10; i--) {
 printf("Child: %d\n", i);
 // sleep(1);
 }
}

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 23

Process Management

•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like

notification) to another process
•sigaction – set handlers for signals

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 24

fork2.c – parent waits for child to finish

int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 tcpid = wait(&status);
 printf("[%d] bye %d(%d)\n", mypid, tcpid,
status);
} else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 exit(42);
}
…

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 25

Process Management

•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like

notification) to another process
•sigaction – set handlers for signals

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 26

main() {

 …

}

Process Management

pid=fork();
if (pid==0)
 exec(…);
else
 wait(&stat)

child

parent

pid=fork();
if (pid==0)
 exec(…);
else
 wait(&stat)

pid=fork();
if (pid==0)
 exec(…);
else
 wait(&stat)

fork

fork
wait

exec

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 27

fork3.c

…
cpid = fork();
if (cpid > 0) { /* Parent Process */
 tcpid = wait(&status);
} else if (cpid == 0) { /* Child Process */
 char *args[] = {“ls”, “-l”, NULL};
 execv(“/bin/ls”, args);
 /* execv doesn’t return when it works.
 So, if we got here, it failed! */
 perror(“execv”);
 exit(1);
}
…

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Shell

• A shell is a job control system
– Allows programmer to create and manage a set of programs

to do some task
– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c
cc –c sourcefile2.c
ln –o program sourcefile1.o sourcefile2.o
./program

HW1

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Process Management

•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like

notification) to another process
•sigaction – set handlers for signals

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 30

inf_loop.c
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
 printf(“Caught signal!\n”);
 exit(1);
}
int main() {
 struct sigaction sa;
 sa.sa_flags = 0;
 sigemptyset(&sa.sa_mask);
 sa.sa_handler = signal_callback_handler;

 sigaction(SIGINT, &sa, NULL);
 while (1) {}
}

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Common POSIX Signals

• SIGINT – control-C
• SIGTERM – default for kill shell command
• SIGSTP – control-Z (default action: stop process)

• SIGKILL, SIGSTOP – terminate/stop process
– Can’t be changed or disabled with sigaction
– Why?

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 32

Administrivia

• HW0 due today!
• HW1 started?
• Groups assignment
• Any issues?

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 33

Reminder: Definitions

• A thread is a single execution sequence that represents a
separately schedulable task

• Protection is an orthogonal concept
– Can have one or many threads per protection domain
– Single threaded user program: one thread, one protection

domain
– Multi-threaded user program: multiple threads, sharing same data

structures, isolated from other user programs
– Multi-threaded kernel: multiple threads, sharing kernel data

structures, capable of using privileged instructions

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 34

Threads Motivation
• Operating systems need to be able to handle multiple things at once

(MTAO)
– processes, interrupts, background system maintenance

• Servers need to handle MTAO
– Multiple connections handled simultaneously

• Parallel programs need to handle MTAO
– To achieve better performance

• Programs with user interfaces often need to handle MTAO
– To achieve user responsiveness while doing computation

• Network and disk bound programs need to handle MTAO
– To hide network/disk latency
– Sequence steps in access or communication

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 35

Imagine the following program:
main() {
 ComputePI(“pi.txt”);
 PrintClassList(“classlist.txt”);
}

• What is the behavior here?
– Program would never print out class list
– Why? ComputePI would never finish

Silly Example for Threads

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 36

• Version of program with Threads (loose syntax):
main() {
 thread_fork(ComputePI, “pi.txt”));
 thread_fork(PrintClassList, “classlist.txt”));
}

• thread_fork: Start independent thread running given procedure
• What is the behavior here?

– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time

CPU1 CPU2

Adding Threads

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 37

Back to Jeff Dean's "Numbers everyone should know“:

Handle I/O in
separate thread,
avoid blocking
other progress

More Practical Motivation

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 38

Imagine the following program:
main() {

 …
 ReadLargeFile(“pi.txt”);
 RenderUserInterface();
}

• What is the behavior here?
– Still respond to user input
– While reading file in the background

Little Better Example for Threads?

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 39

Voluntarily Giving Up Control

• I/O – e.g. keypress
• Waiting for a signal from another thread

– Thread makes system call to wait

• Thread executes thread_yield()
– Relinquishes CPU but puts calling thread back on ready queue

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 40

Thread State

• State shared by all threads in process/address space
– Content of memory (global variables, heap)
– I/O state (file descriptors, network connections, etc)

• State “private” to each thread
– Kept in TCB ≡ Thread Control Block
– CPU registers (including, program counter)
– Execution stack – what is this?

• Execution Stack
– Parameters, temporary variables
– Return PCs are kept while called procedures are executing

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 41

Shared vs. Per-Thread State

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 42

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 43

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 44

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 45

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exitStack

PointerA:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 46

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 47

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exit

Stack
Pointer

B: ret=A+2
A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 48

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 49

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
 ret=C+1

Stack Growth

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 50

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
 ret=C+1

Stack Growth

Output:>2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 51

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

A: tmp=2
 ret=C+1

Stack Growth

Output:>2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 52

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exit

Stack
Pointer

B: ret=A+2

C: ret=B+1

Output:>2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 53

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exit

Stack
Pointer

B: ret=A+2

Output:>2

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 54

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exitStack

Pointer

Output:>2 1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 55

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=1
 ret=exitStack

Pointer

Output:>2 1

A:

A+1:

A+2:

B:

B+1:

C:

C+1:

exit:

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 56

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

Output:>2 1

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 57

Execution Stack Example

• Stack holds temporary results
• Permits recursive execution
• Crucial to modern languages

A(int tmp) {

 if (tmp<2)

 B();

 printf(tmp);

}

B() {

 C();

}

C() {

 A(2);

}

A(1);

A: tmp=2
 ret=C+1

Stack Growth

A: tmp=1
 ret=exit

B: ret=A+2

C: ret=b+1

Stack
Pointer

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 58

• Version of program with Threads (loose syntax):
main() {
 thread_fork(ReadLargeFile, “pi.txt”);
 thread_fork(RenderUserInterface, “classlist.txt”);
}

• thread_fork: Start independent thread running given procedure
• What is the behavior here?

– Now, you would actually see the class list
– This should behave as if there are two separate CPUs

CPU1 CPU2 CPU1 CPU2

Time

CPU1 CPU2

Adding Threads

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 59

Memory Footprint: Two-Threads

• If we stopped this program and examined it with a debugger, we
would see

– Two sets of CPU registers
– Two sets of Stacks

• Questions:
– How do we position stacks relative to  

each other?
– What maximum size should we choose 

for the stacks?
– What happens if threads violate this?
– How might you catch violations?

Code

Global Data

Heap

Stack 1

Stack 2

A
ddress Space

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 60

Actual Thread Operations
• thread_fork(func, args)

– Create a new thread to run func(args)
– Pintos: thread_create

• thread_yield()
– Relinquish processor voluntarily
– Pintos: thread_yield

• thread_join(thread)
– In parent, wait for forked thread to exit, then return
– Pintos: thread_join

• thread_exit
– Quit thread and clean up, wake up joiner if any
– Pintos: thread_exit

• pThreads: POSIX standard for thread programming 
[POSIX.1c, Threads extensions (IEEE Std 1003.1c-1995)]

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 61

Dispatch Loop

• Conceptually, the dispatching loop of the operating system looks
as follows: 

 Loop {
 RunThread();
 ChooseNextThread();
 SaveStateOfCPU(curTCB);
 LoadStateOfCPU(newTCB);
}

• This is an infinite loop
– One could argue that this is all that the OS does

• Should we ever exit this loop???
– When would that be?

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 62

Running a thread

Consider first portion: RunThread()

• How do I run a thread?
– Load its state (registers, PC, stack pointer) into CPU
– Load environment (virtual memory space, etc)
– Jump to the PC

• How does the dispatcher get control back?
– Internal events: thread returns control voluntarily
– External events: thread gets preempted

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 63

Internal Events

• Blocking on I/O
– The act of requesting I/O implicitly yields the CPU

• Waiting on a “signal” from other thread
– Thread asks to wait and thus yields the CPU

• Thread executes a yield()
– Thread volunteers to give up CPU

 computePI() {
 while(TRUE) {
 ComputeNextDigit();
 yield();
 }
 }

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 64

Stack for Yielding Thread

• How do we run a new thread?
run_new_thread() {

 newThread = PickNewThread();
 switch(curThread, newThread);
 ThreadHouseKeeping(); /* Do any cleanup */

 }
• How does dispatcher switch to a new thread?

– Save anything next thread may trash: PC, regs, stack pointer
– Maintain isolation for each thread

yield

ComputePI

Stack grow
thrun_new_thread

kernel_yield
Trap to OS

switch

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 65

What Do the Stacks Look Like?

• Consider the following code
blocks:
 proc A() {

 B();
 }
 proc B() {
 while(TRUE) {
 yield();
 }
 }

• Suppose we have 2 threads:
– Threads S and T

Thread S

S
t
a
c
k

gr
ow

th A

B(while)

yield

run_new_thread

switch

Thread T

A

B(while)

yield

run_new_thread

switch

Thread S's switch returns to Thread
T's (and vice versa)

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 66

Saving/Restoring state (often called “Context Switch)
 Switch(tCur,tNew) {
 /* Unload old thread */
 TCB[tCur].regs.r7 = CPU.r7;
 …
 TCB[tCur].regs.r0 = CPU.r0;
 TCB[tCur].regs.sp = CPU.sp;
 TCB[tCur].regs.retpc = CPU.retpc; /*return addr*/

 /* Load and execute new thread */
 CPU.r7 = TCB[tNew].regs.r7;
 …
 CPU.r0 = TCB[tNew].regs.r0;
 CPU.sp = TCB[tNew].regs.sp;
 CPU.retpc = TCB[tNew].regs.retpc;
 return; /* Return to CPU.retpc */
 }

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 67

Switch Details (continued)
• What if you make a mistake in implementing switch?

– Suppose you forget to save/restore register 32
– Get intermittent failures depending on when context switch occurred and

whether new thread uses register 32
– System will give wrong result without warning

• Can you devise an exhaustive test to test switch code?
– No! Too many combinations and inter-leavings

• Cautionary tale:
– For speed, Topaz kernel saved one instruction in switch()
– Carefully documented! Only works as long as kernel size < 1MB
– What happened?

» Time passed, People forgot
» Later, they added features to kernel (no one removes features!)
» Very weird behavior started happening

– Moral of story: Design for simplicity

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 68

Aren't we still switching contexts?

• Yes, but much cheaper than switching processes
– No need to change address space

• Some numbers from Linux:
– Frequency of context switch: 10-100ms
– Switching between processes: 3-4 μsec.
– Switching between threads: 100 ns

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 69

Processes vs. Threads
Process 1

CPU
sched. OS

CPU
(1 core)

1 thread at
a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…

• Switch overhead:
– Same process: low
– Different proc.: high

• Protection
– Same proc: low
– Different proc: high

• Sharing overhead
– Same proc: low
– Different proc: high

CPU
state

CPU
state

CPU
state

CPU
state

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 70

Processes vs. Threads
Process 1

CPU
sched. OS

Core 
1

4 threads at
a time

IO
state

Mem.

…

threads
Process N

IO
state

Mem.

…

threads

…
CPU
state

CPU
state

CPU
state

CPU
state

Core 
2

Core 
3

Core 
4

• Switch overhead:
– Same process: low
– Different proc.: high

• Protection
– Same proc: low
– Different proc: high

• Sharing overhead
– Same proc: low
– Different proc: high

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 71

run_new_thread

kernel_read
Trap to OS

switch

What happens when thread blocks on I/O?

• What happens when a thread requests a block of data from the
file system?

– User code invokes a system call
– Read operation is initiated
– Run new thread/switch

• Thread communication similar
– Wait for Signal/Join
– Networking

CopyFile

read

Stack grow
th

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 72

External Events

• What happens if thread never does any I/O, never waits, and
never yields control?

– Could the ComputePI program grab all resources and never
release the processor?

» What if it didn’t print to console?
– Must find way that dispatcher can regain control!

• Answer: utilize external events
– Interrupts: signals from hardware or software that stop the

running code and jump to kernel
– Timer: like an alarm clock that goes off every some milliseconds

• If we make sure that external events occur frequently enough,
can ensure dispatcher runs

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 73

Interrupt Controller

• Interrupts invoked with interrupt lines from devices
• Interrupt controller chooses interrupt request to honor

– Interrupt identity specified with ID line
– Mask enables/disables interrupts
– Priority encoder picks highest enabled interrupt
– Software Interrupt Set/Cleared by Software

• CPU can disable all interrupts with internal flag
• Non-Maskable Interrupt line (NMI) can’t be disabled

Network

IntID

Interrupt

Interrupt M
ask

ControlSoftware
Interrupt NMI

CPU

Priority EncoderT
im

er

Int Disable

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 74

...
add $r1,$r2,$r3
subi $r4,$r1,#4
slli $r4,$r4,#2

...

PC
 sa

ve
d

Disa
ble

 A
ll I

nt
s

Ker
ne

l M
od

e

Restore PC

Enable all Ints

User M
ode

Raise priority
(set mask)

Reenable All Ints
Save registers
Dispatch to Handler

…
Transfer Network
Packet from
hardware  
to Kernel Buffers

…
Restore registers
Clear current Int
Disable All Ints
Restore priority

(clear Mask)
RTI

“I
nt

er
ru

pt
 H

an
dl

er
”

Example: Network Interrupt

• An interrupt is a hardware-invoked context switch
– No separate step to choose what to run next
– Always run the interrupt handler immediately

Ex
te

rn
al

 In
te

rr
up

t

Pipeline Flush
...

lw $r2,0($r4)
lw $r3,4($r4)
add $r2,$r2,$r3
sw 8($r4),$r2

...

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 75

Use of Timer Interrupt to Return Control

• Solution to our dispatcher problem
– Use the timer interrupt to force scheduling decisions

• Timer Interrupt routine:
 

TimerInterrupt() {  
 DoPeriodicHouseKeeping();  
 run_new_thread();  
}

Some Routine

run_new_thread

TimerInterrupt
Interrupt

switch
Stack grow

th

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 76

Hardware context switch support in x86

• Syscall/Intr (U ! K)
– PL 3 ! 0;
– TSS " EFLAGS, CS:EIP;
– SS:SP " k-thread stack (TSS PL 0);
– push (old) SS:ESP onto (new) k-stack
– push (old) eflags, cs:eip, <err>
– CS:EIP " <k target handler>

• Then
– Handler then saves other regs, etc
– Does all its works, possibly choosing other threads,

changing PTBR (CR3)

– kernel thread has set up user GPRs

• iret (K ! U)
– PL 0 ! 3;
– Eflags, CS:EIP " popped off k-stack
– SS:SP " user thread stack (TSS PL 3);

pg 2,942 of 4,922 of x86 reference manual Pintos: tss.c, intr-stubs.S

1/30/20 Kubiatowicz CS162 ©UCB Spring 2020 77

Summary
• Processes have two parts

– One or more Threads (Concurrency)
– Address Spaces (Protection)

• Threads: unit of concurrent execution
– Useful for parallelism, overlapping computation and IO, organizing

sequences of interactions (protocols)
– Require: multiple stacks per address space
– Thread switch:

» Save/Restore registers, "return" from new thread's switch routine
• Concurrency accomplished by multiplexing CPU Time:

– Unloading current thread (PC, registers)
– Loading new thread (PC, registers)
– Such context switching may be voluntary (yield(), I/O operations) or

involuntary (timer, other interrupts)
• Concurrent threads introduce problems when accessing shared data

– Programs must be insensitive to arbitrary interleavings
– Without careful design, shared variables can become completely

inconsistent

