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Recall: Four Fundamental OS Concepts
• Thread: Execution Context

– Fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with or w/o translation)
– Set of memory addresses accessible to program (for read or write)
– May be distinct from memory space of the physical machine  

(in which case programs operate in a virtual address space)
• Process: an instance of a running program

– Protected Address Space + One or more Threads
• Dual mode operation / Protection

– Only the “system” has the ability to access certain resources
– Combined with translation, isolates programs from each other 

and the OS from programs
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Recall: OS Bottom Line: Run Programs

int main() 
{ … ;
 }
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• Create OS “PCB”, address space, stack and heap
• Load instruction and data segments of executable 

file into memory
• “Transfer control to program”
• Provide services to program
• While protecting OS and program
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Recall: Protected Address Space

• Program operates in an address space that is distinct from 
the physical memory space of the machine
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Recall: give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor.  How do we provide the illusion of 
multiple processors? 

– Multiplex in time! 
– Multiple “virtual CPUs” 

• Each virtual “CPU” needs a structure to hold: 
– Program Counter (PC), Stack Pointer (SP) 
– Registers (Integer, Floating point, others…?) 

• How switch from one virtual CPU to the next? 
– Save PC, SP, and registers in current state block 
– Load PC, SP, and registers from new state block 

• What triggers switch? 
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time 
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Recall: The Process

• Definition: execution environment with restricted rights
– Address Space with One or More Threads
» Page table per process!

– Owns memory (mapped pages)
– Owns file descriptors, file system context, …
– Encapsulates one or more threads sharing process resources

• Application program executes as a process
– Complex applications can fork/exec child processes [later]

• Why processes? 
– Protected from each other. OS Protected from them.
– Execute concurrently [ trade-offs with threads? later ]
– Basic unit OS deals with
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Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?
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Recall: Simple address translation with Base and Bound
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Simple B&B: User => Kernel
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to system?
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Simple B&B: Interrupt

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save 

registers and set 
up system stack?

IntrpVector[i]



1/28/20 Kubiatowicz CS162 ©UCB Spring 2020  11

Simple B&B: Switch User Process
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Simple B&B: “resume”
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Is Branch and Bound a  
Good-Enough Protection Mechanism?

• NO: Too simplistic for real systems
• Inflexible/Wasteful: 

– Must dedicate physical memory for potential future use
– (Think stack and heap!)

• Fragmentation: 
– Kernel has to somehow fit whole processes into contiguous block of 

memory
– After a while, memory becomes fragmented!

• Sharing: 
– Very hard to share any data between Processes or between Process and 

Kernel
– Need to communicate indirectly through the kernel…
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Better: x86 – segments and stacks
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Alternative: Page Table Mapping (More soon!)
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What’s beneath the Illusion?
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Today: How does the Operating System create the Process 
Abstraction?

• What data structures are used?
• What machine structures are employed?

– Focus on x86, since will use in projects (and everywhere)  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Starting Point: Single Threaded Process

• Process: OS abstraction of what is needed to 
run a single program

1. Sequential program execution stream
» Sequential stream of  execution (thread)
» State of CPU registers

2. Protected resources
» Contents of Address Space
» I/O state (more on this later)
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Running Many Programs

• We have the basic mechanism to 
– switch between user processes and the kernel, 
– the kernel can switch among user processes,
– Protect OS from user processes and processes from each other

• Questions ???
– How do we represent each process in the kernel?
– How do we decide which user process to run?
– How do we pack up the process and set it aside?
– How do we get a stack and heap for the kernel?
– Aren’t we wasting are lot of memory?
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Multiplexing Processes: The Process Control Block

• Kernel represents each process as a process 
control block (PCB)

– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure 
containing the PCBs

– Give out CPU to different processes
– This is a Policy Decision

• Give out non-CPU resources
– Memory/IO
– Another policy decision

Process 
Control
Block
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Context Switch
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Lifecycle of a process / thread

• OS juggles many process/threads using kernel data structures
• Proc’s may create other process (fork/exec)

– All starts with init process at boot

existing proc 
“forks” a new 

proc
ready running

terminated

waiting

Create OS repr. of proc 
• Descriptor 
• Address space 
• Thread(s) 
• … 
Queue for scheduling

Scheduler dispatches proc/thread to run: 
context_switch to it

exit syscall 
or abort

interrupt, syscall, 
sleep, blocking call

completion

Pintos: process.c
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Scheduling: All About Queues

• PCBs move from queue to queue
• Scheduling: which order to remove from queue

– Much more on this soon



1/28/20 Kubiatowicz CS162 ©UCB Spring 2020  24

Scheduler

• Scheduling: Mechanism for deciding which processes/threads receive 
the CPU
• Lots of different scheduling policies provide …

– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if ( readyProcesses(PCBs) ) { 
 nextPCB = selectProcess(PCBs); 
 run( nextPCB ); 
} else { 
 run_idle_process(); 
}
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Simultaneous MultiThreading/Hyperthreading

• Hardware scheduling technique  
– Superscalar processors can  

execute multiple instructions 
that are independent. 

– Hyperthreading duplicates  
register state to make a 
second “thread,” allowing  
more instructions to run. 

• Can schedule each thread  
as if were separate CPU 

– But, sub-linear speedup! 

• Original technique called “Simultaneous Multithreading” 
– http://www.cs.washington.edu/research/smt/index.html  
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show  
instructions executed 

http://www.cs.washington.edu/research/smt/index.html
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Also Recall: The World Is Parallel
• Intel Skylake (2017)

– 28 Cores 
– Each core has two hyperthreads!
– So: 54 Program Counters(PCs)

• Scheduling here means:
– Pick which core
– Pick which thread

• Space of possible scheduling 
much more interesting

– Can afford to dedicate certain cores 
to housekeeping tasks

– Or, can devote cores to services 
(e.g. Filesystem)
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Administrivia: Getting started
• Homework 0 Due Monday!

– Get familiar with the tools
– configure your VM, submit via git
– Practice finding out information: 

» How to use GDB?  How to understand output of unix tools?
» We don’t assume that you already know everything!
» Learn to use “man” (command line), “help” (in gdb, etc), google

• HW1 released today
• Group sign up form 
• HW/GHW Schedule/Deadlines
• THIS Monday is Drop Deadline! 

• Given the assignments, this is a highly rewarding but time consuming 
course

• If you are not serious about putting in the time, please drop early 
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Recall: User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception
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Three types of Kernel Mode Transfer

• Syscall
– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– eg. Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero, …
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Implementing Safe Kernel Mode Transfers

• Important aspects:
– Controlled transfer into kernel (e.g., syscall table)
– Separate kernel stack

• Carefully constructed kernel code packs up the user process state and 
sets it aside

– Details depend on the machine architecture

• Should be impossible for buggy or malicious user program to cause 
the kernel to corrupt itself
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Interrupt Vector

interrupt number (i)

intrpHandler_i () { 
 …. 
}

Address and properties of 
each interrupt handler
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Need for Separate Kernel Stacks

• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel memory) plus 
User stack (located in user memory)

– Syscall handler copies user args to kernel space before invoking 
specific function (e.g., open)
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Before
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During
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Kernel System Call Handler

• Vector through well-defined syscall entry points!
– Table mapping system call number to handler

• Locate arguments
– In registers or on user (!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back 
– Into user memory
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Hardware support: Interrupt Control

• Interrupt processing not visible to the user process:
– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt processing?

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)
– Pack up in a queue and pass off to an OS thread for hard work
» wake up an existing OS thread 
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Putting it together: web server

Request

Reply
(retrieved by web server)

Client Web Server
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Putting it together: web server
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Meta-Question

• Process is an instance of a program executing.
– The fundamental OS responsibility

• Processes do their work by processing and calling file system 
operations

• Are their any operations on processes themselves?

• exit ?
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pid.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[])
{
  pid_t pid = getpid();   /* get current processes PID */

  printf("My pid: %d\n", pid);

  exit(0);
}

ps a
nyon

e?
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Can a process create a process ?

• Yes
• Fork creates a copy of process
• What about the program you want to run?
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OS Run-Time Library

OS

Proc 1 Proc 2 Proc n
…

OS

Appln login Window 
Manager

…
OS library OS library OS librarylibc
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A Narrow Waist
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Portable OS Kernel
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POSIX/Unix

• Portable Operating System Interface [X?]
• Defines “Unix”, derived from AT&T Unix

– Created to bring order to many Unix-derived OSs

• Interface for application programmers (mostly)
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System Calls

Application:
fd = open(pathname);

Library:
File *open(pathname) {
   asm code … syscall # into ax
   put args into registers bx, …
   special trap instruction

  get results from regs 
};

Continue with results

Operating System:
  get args from regs
  dispatch to system func 
  process, schedule, … 
  complete, resume process

Pintos: userprog/syscall.c, lib/user/syscall.c
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SYSCALLs (of over 300)

Pintos: syscall-nr.h
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Recall: Kernel System Call Handler

• Locate arguments
– In registers or on user(!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back 
– into user memory
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Process Management

•exit – terminate a process
•fork – copy the current process
•exec – change the program being run by the 

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like notification) to 

another process
•sigaction – set handlers for signals
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Creating Processes

• pid_t fork(); -- copy the current process
– New process has different pid

• Return value from fork(): pid (like an integer)
– When > 0: 

» Running in (original) Parent process
» return value is pid of new child

– When = 0: 
» Running in new Child process

– When < 0:
» Error!  Must handle somehow
» Running in original process

• State of original process duplicated in both Parent and Child!
– Address Space (Memory), File Descriptors (covered later), etc…
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fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
  pid_t cpid, mypid;
  pid_t pid = getpid();            /* get current processes PID */
  printf("Parent pid: %d\n", pid);
  cpid = fork();
  if (cpid > 0) {      /* Parent Process */
    mypid = getpid();
    printf("[%d] parent of [%d]\n", mypid, cpid);
  } else if (cpid == 0) {      /* Child Process */
    mypid = getpid();
    printf("[%d] child\n", mypid);
  } else {
    perror("Fork failed");
  }
}
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fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
  pid_t cpid, mypid;
  pid_t pid = getpid();            /* get current processes PID */
  printf("Parent pid: %d\n", pid);
  cpid = fork();
  if (cpid > 0) {      /* Parent Process */
    mypid = getpid();
    printf("[%d] parent of [%d]\n", mypid, cpid);
  } else if (cpid == 0) {      /* Child Process */
    mypid = getpid();
    printf("[%d] child\n", mypid);
  } else {
    perror("Fork failed");
  }
}
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fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
  pid_t cpid, mypid;
  pid_t pid = getpid();            /* get current processes PID */
  printf("Parent pid: %d\n", pid);
  cpid = fork();
  if (cpid > 0) {      /* Parent Process */
    mypid = getpid();
    printf("[%d] parent of [%d]\n", mypid, cpid);
  } else if (cpid == 0) {      /* Child Process */
    mypid = getpid();
    printf("[%d] child\n", mypid);
  } else {
    perror("Fork failed");
  }
}
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fork_race.c

int i;
cpid = fork();
if (cpid > 0) {
  for (i = 0; i < 10; i++) {
    printf("Parent: %d\n", i);
    // sleep(1);
  }
} else if (cpid == 0) {
  for (i = 0; i > -10; i--) {
    printf("Child: %d\n", i);
    // sleep(1);
  }
}

• What does this print? 
• Would adding the calls to sleep matter?



1/28/20 Kubiatowicz CS162 ©UCB Spring 2020  54

Fork “race”

int i;
cpid = fork();
if (cpid > 0) {
  for (i = 0; i < 10; i++) {
    printf("Parent: %d\n", i);
    // sleep(1);
  }
} else if (cpid == 0) {
  for (i = 0; i > -10; i--) {
    printf("Child: %d\n", i);
    // sleep(1);
  }
}
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Process Management

•fork – copy the current process
•exec – change the program being run by the 

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like 

notification) to another process
•sigaction – set handlers for signals
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fork2.c – parent waits for child to finish

int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) {               /* Parent Process */
  mypid = getpid();
  printf("[%d] parent of [%d]\n", mypid, cpid);
  tcpid = wait(&status);
  printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
} else if (cpid == 0) {      /* Child Process */
  mypid = getpid();
  printf("[%d] child\n", mypid);
}
…
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Process Management

•fork – copy the current process
•exec – change the program being run by the 

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like 

notification) to another process
•sigaction – set handlers for signals
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Process Management

child

parent
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fork3.c

…
cpid = fork();
if (cpid > 0) {               /* Parent Process */
  tcpid = wait(&status);
} else if (cpid == 0) {      /* Child Process */
  char *args[] = {“ls”, “-l”, NULL};
  execv(“/bin/ls”, args);
  /* execv doesn’t return when it works.
     So, if we got here, it failed! */
  perror(“execv”);
  exit(1);
}
…



1/28/20 Kubiatowicz CS162 ©UCB Spring 2020  60

Shell

• A shell is a job control system 
– Allows programmer to create and manage a set of programs 

to do some task
– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c
cc –c sourcefile2.c
ln –o program sourcefile1.o sourcefile2.o
./program

HW1
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Process Management

•fork – copy the current process
•exec – change the program being run by the 

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like 

notification) to another process
•sigaction – set handlers for signals
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inf_loop.c
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
  printf(“Caught signal!\n”);
  exit(1);
}
int main() {
  struct sigaction sa;
  sa.sa_flags = 0;
  sigemptyset(&sa.sa_mask);
  sa.sa_handler = signal_callback_handler;

  sigaction(SIGINT, &sa, NULL);
  while (1) {}
}
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Common POSIX Signals

• SIGINT – control-C
• SIGTERM – default for kill shell command
• SIGSTP – control-Z (default action: stop process)

• SIGKILL, SIGSTOP – terminate/stop process
– Can’t be changed or disabled with sigaction
– Why?



1/28/20 Kubiatowicz CS162 ©UCB Spring 2020  64

Summary

• Process consists of two pieces
1. Address Space (Memory & Protection)
2. One or more threads (Concurrency)

• Represented in kernel as
– Process object (resources associated with process)
– Kernel vs User stack

• Variety of process management syscalls
– fork, exec, wait, kill, sigaction

• Scheduling: Threads move between queues


