
CS162  
Operating Systems and 
Systems Programming 

Lecture 3  
 

Processes (con’t), Fork, System Calls

January 28th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall: Four Fundamental OS Concepts
• Thread: Execution Context

– Fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with or w/o translation)
– Set of memory addresses accessible to program (for read or write)
– May be distinct from memory space of the physical machine  

(in which case programs operate in a virtual address space)
• Process: an instance of a running program

– Protected Address Space + One or more Threads
• Dual mode operation / Protection

– Only the “system” has the ability to access certain resources
– Combined with translation, isolates programs from each other

and the OS from programs

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: OS Bottom Line: Run Programs

int main()
{ … ;
 }

ed
ito

r
Program Source

foo.c

Lo
ad

 &

Ex
ec

ut
e

M
em

ory

PC:

Processor

registers

0x000…

0xFFF…

instructions

data

heap

stack

OS

co
m

pi
le

r

Executable

a.out

data

instructions

• Create OS “PCB”, address space, stack and heap
• Load instruction and data segments of executable

file into memory
• “Transfer control to program”
• Provide services to program
• While protecting OS and program

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Recall: Protected Address Space

• Program operates in an address space that is distinct from
the physical memory space of the machine

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

sic
al
 a

dd
re

ss
”

Registers

Page Table

<Frame Addr>

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 5

Recall: give the illusion of multiple processors?

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor. How do we provide the illusion of
multiple processors?

– Multiplex in time!
– Multiple “virtual CPUs”

• Each virtual “CPU” needs a structure to hold:
– Program Counter (PC), Stack Pointer (SP)
– Registers (Integer, Floating point, others…?)

• How switch from one virtual CPU to the next?
– Save PC, SP, and registers in current state block
– Load PC, SP, and registers from new state block

• What triggers switch?
– Timer, voluntary yield, I/O, other things

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Recall: The Process

• Definition: execution environment with restricted rights
– Address Space with One or More Threads
» Page table per process!

– Owns memory (mapped pages)
– Owns file descriptors, file system context, …
– Encapsulates one or more threads sharing process resources

• Application program executes as a process
– Complex applications can fork/exec child processes [later]

• Why processes?
– Protected from each other. OS Protected from them.
– Execute concurrently [trade-offs with threads? later]
– Basic unit OS deals with

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 7

Recall: Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 8

Recall: Simple address translation with Base and Bound

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

• Can the program touch OS?
• Can it touch other programs?

0010…
0010…

Addresses translated  
on-the-fly

1010…

0100…

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 9

Simple B&B: User => Kernel

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

• How to return
to system?

0000 1234

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 10

Simple B&B: Interrupt

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save

registers and set
up system stack?

IntrpVector[i]

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 11

Simple B&B: Switch User Process

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
• How to save

registers and set
up system stack?

0001 0124

1000 …

1100 …

0000 1234

regs

00FF…

RTU

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 12

Simple B&B: “resume”

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
• How to save

registers and set
up system stack?

000 0248

1000 …

1100 …

0000 1234

regs

00FF…

RTU

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 13

Is Branch and Bound a  
Good-Enough Protection Mechanism?

• NO: Too simplistic for real systems
• Inflexible/Wasteful:

– Must dedicate physical memory for potential future use
– (Think stack and heap!)

• Fragmentation:
– Kernel has to somehow fit whole processes into contiguous block of

memory
– After a while, memory becomes fragmented!

• Sharing:
– Very hard to share any data between Processes or between Process and

Kernel
– Need to communicate indirectly through the kernel…

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 14

Better: x86 – segments and stacks

CS EIP

SS ESP

DS

ECXES

EDX

ESI

EDI

EAX

EBX

code

Static Data
heap

stack

code

Static Data

heap

stack

CS:
EIP:

SS:
ESP:

Processor Registers

Start address, length
and access rights
associated with each
segment

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 15

Alternative: Page Table Mapping (More soon!)

Prog 1
Virtual
Address
Space 1

Prog 2
Virtual
Address
Space 2

Code
Data
Heap
Stack

Code
Data
Heap
Stack

Data 2

Stack 1

Heap 1

OS heap &
Stacks

Code 1

Stack 2

Data 1

Heap 2

Code 2

OS code

OS dataTranslation Map 1 Translation Map 2

Physical Address Space

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 16

What’s beneath the Illusion?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 17

Today: How does the Operating System create the Process
Abstraction?

• What data structures are used?
• What machine structures are employed?

– Focus on x86, since will use in projects (and everywhere)  

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 18

Starting Point: Single Threaded Process

• Process: OS abstraction of what is needed to
run a single program

1. Sequential program execution stream
» Sequential stream of execution (thread)
» State of CPU registers

2. Protected resources
» Contents of Address Space
» I/O state (more on this later)

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 19

Running Many Programs

• We have the basic mechanism to
– switch between user processes and the kernel,
– the kernel can switch among user processes,
– Protect OS from user processes and processes from each other

• Questions ???
– How do we represent each process in the kernel?
– How do we decide which user process to run?
– How do we pack up the process and set it aside?
– How do we get a stack and heap for the kernel?
– Aren’t we wasting are lot of memory?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 20

Multiplexing Processes: The Process Control Block

• Kernel represents each process as a process
control block (PCB)

– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure
containing the PCBs

– Give out CPU to different processes
– This is a Policy Decision

• Give out non-CPU resources
– Memory/IO
– Another policy decision

Process 
Control
Block

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 21

Context Switch

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Lifecycle of a process / thread

• OS juggles many process/threads using kernel data structures
• Proc’s may create other process (fork/exec)

– All starts with init process at boot

existing proc
“forks” a new

proc
ready running

terminated

waiting

Create OS repr. of proc
• Descriptor
• Address space
• Thread(s)
• …
Queue for scheduling

Scheduler dispatches proc/thread to run:
context_switch to it

exit syscall
or abort

interrupt, syscall,
sleep, blocking call

completion

Pintos: process.c

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 23

Scheduling: All About Queues

• PCBs move from queue to queue
• Scheduling: which order to remove from queue

– Much more on this soon

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 24

Scheduler

• Scheduling: Mechanism for deciding which processes/threads receive
the CPU
• Lots of different scheduling policies provide …

– Fairness or
– Realtime guarantees or
– Latency optimization or ..

if (readyProcesses(PCBs)) {
 nextPCB = selectProcess(PCBs);
 run(nextPCB);
} else {
 run_idle_process();
}

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 25

Simultaneous MultiThreading/Hyperthreading

• Hardware scheduling technique
– Superscalar processors can  

execute multiple instructions 
that are independent.

– Hyperthreading duplicates  
register state to make a 
second “thread,” allowing  
more instructions to run.

• Can schedule each thread  
as if were separate CPU

– But, sub-linear speedup!

• Original technique called “Simultaneous Multithreading”
– http://www.cs.washington.edu/research/smt/index.html
– SPARC, Pentium 4/Xeon (“Hyperthreading”), Power 5

Colored blocks show
instructions executed

http://www.cs.washington.edu/research/smt/index.html

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Also Recall: The World Is Parallel
• Intel Skylake (2017)

– 28 Cores
– Each core has two hyperthreads!
– So: 54 Program Counters(PCs)

• Scheduling here means:
– Pick which core
– Pick which thread

• Space of possible scheduling 
much more interesting

– Can afford to dedicate certain cores
to housekeeping tasks

– Or, can devote cores to services
(e.g. Filesystem)

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 27

Administrivia: Getting started
• Homework 0 Due Monday!

– Get familiar with the tools
– configure your VM, submit via git
– Practice finding out information:

» How to use GDB? How to understand output of unix tools?
» We don’t assume that you already know everything!
» Learn to use “man” (command line), “help” (in gdb, etc), google

• HW1 released today
• Group sign up form
• HW/GHW Schedule/Deadlines
• THIS Monday is Drop Deadline!

• Given the assignments, this is a highly rewarding but time consuming
course

• If you are not serious about putting in the time, please drop early

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Recall: User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Three types of Kernel Mode Transfer

• Syscall
– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– eg. Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero, …

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Implementing Safe Kernel Mode Transfers

• Important aspects:
– Controlled transfer into kernel (e.g., syscall table)
– Separate kernel stack

• Carefully constructed kernel code packs up the user process state and
sets it aside

– Details depend on the machine architecture

• Should be impossible for buggy or malicious user program to cause
the kernel to corrupt itself

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Interrupt Vector

interrupt number (i)

intrpHandler_i () {
 ….
}

Address and properties of
each interrupt handler

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 32

Need for Separate Kernel Stacks

• Kernel needs space to work
• Cannot put anything on the user stack (Why?)
• Two-stack model

– OS thread has interrupt stack (located in kernel memory) plus
User stack (located in user memory)

– Syscall handler copies user args to kernel space before invoking
specific function (e.g., open)

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 33

Before

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 34

During

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 35

Kernel System Call Handler

• Vector through well-defined syscall entry points!
– Table mapping system call number to handler

• Locate arguments
– In registers or on user (!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– Into user memory

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 36

Hardware support: Interrupt Control

• Interrupt processing not visible to the user process:
– Occurs between instructions, restarted transparently
– No change to process state
– What can be observed even with perfect interrupt processing?

• Interrupt Handler invoked with interrupts ‘disabled’
– Re-enabled upon completion
– Non-blocking (run to completion, no waits)
– Pack up in a queue and pass off to an OS thread for hard work
» wake up an existing OS thread

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 37

Putting it together: web server

Request

Reply
(retrieved by web server)

Client Web Server

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 38

Putting it together: web server

Server

Kernel

Hardware

request
buffer

reply
buffer

11. kernel copy
 from user buffer
 to network buffer

Network
interface Disk interface

12. format outgoing
 packet and DMA

6. disk
 request

10. network
 socket
 write

1.network
 socket
 read

2. copy arriving
 packet (DMA)

syscall

wait

interrupt

3. kernel
 copy

RTU

5. file
 readsyscall

8. kernel
 copy

RTU

7. disk data
 (DMA)

interrupt

4. parse request 9. format reply

Request Reply

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 39

Meta-Question

• Process is an instance of a program executing.
– The fundamental OS responsibility

• Processes do their work by processing and calling file system
operations

• Are their any operations on processes themselves?

• exit ?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 40

pid.c

#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <unistd.h>
#include <sys/types.h>
int main(int argc, char *argv[])
{
 pid_t pid = getpid(); /* get current processes PID */

 printf("My pid: %d\n", pid);

 exit(0);
}

ps a
nyon

e?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 41

Can a process create a process ?

• Yes
• Fork creates a copy of process
• What about the program you want to run?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 42

OS Run-Time Library

OS

Proc 1 Proc 2 Proc n
…

OS

Appln login Window
Manager

…
OS library OS library OS librarylibc

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 43

A Narrow Waist

Compilers

Web Servers

Web Browsers

Databases

Email

Word Processing

Portable OS Library

System Call
Interface

Portable OS Kernel

Platform support, Device Drivers

x86 ARMPowerPC

Ethernet (1Gbs/10Gbs) 802.11 a/g/n/ac SCSI ThunderboltGraphics

PCI
Hardware

Software

System

User
OS

Application / Service

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 44

POSIX/Unix

• Portable Operating System Interface [X?]
• Defines “Unix”, derived from AT&T Unix

– Created to bring order to many Unix-derived OSs

• Interface for application programmers (mostly)

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 45

System Calls

Application:
fd = open(pathname);

Library:
File *open(pathname) {
 asm code … syscall # into ax
 put args into registers bx, …
 special trap instruction

 get results from regs
};

Continue with results

Operating System:
 get args from regs
 dispatch to system func
 process, schedule, …
 complete, resume process

Pintos: userprog/syscall.c, lib/user/syscall.c

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 46

SYSCALLs (of over 300)

Pintos: syscall-nr.h

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 47

Recall: Kernel System Call Handler

• Locate arguments
– In registers or on user(!) stack

• Copy arguments
– From user memory into kernel memory
– Protect kernel from malicious code evading checks

• Validate arguments
– Protect kernel from errors in user code

• Copy results back
– into user memory

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 48

Process Management

•exit – terminate a process
•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like notification) to

another process
•sigaction – set handlers for signals

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 49

Creating Processes

• pid_t fork(); -- copy the current process
– New process has different pid

• Return value from fork(): pid (like an integer)
– When > 0:

» Running in (original) Parent process
» return value is pid of new child

– When = 0:
» Running in new Child process

– When < 0:
» Error! Must handle somehow
» Running in original process

• State of original process duplicated in both Parent and Child!
– Address Space (Memory), File Descriptors (covered later), etc…

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 50

fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID */
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 }
}

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 51

fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID */
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 }
}

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 52

fork1.c

#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>
#include <sys/types.h>

int main(int argc, char *argv[]) {
 pid_t cpid, mypid;
 pid_t pid = getpid(); /* get current processes PID */
 printf("Parent pid: %d\n", pid);
 cpid = fork();
 if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 } else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
 } else {
 perror("Fork failed");
 }
}

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 53

fork_race.c

int i;
cpid = fork();
if (cpid > 0) {
 for (i = 0; i < 10; i++) {
 printf("Parent: %d\n", i);
 // sleep(1);
 }
} else if (cpid == 0) {
 for (i = 0; i > -10; i--) {
 printf("Child: %d\n", i);
 // sleep(1);
 }
}

• What does this print?
• Would adding the calls to sleep matter?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 54

Fork “race”

int i;
cpid = fork();
if (cpid > 0) {
 for (i = 0; i < 10; i++) {
 printf("Parent: %d\n", i);
 // sleep(1);
 }
} else if (cpid == 0) {
 for (i = 0; i > -10; i--) {
 printf("Child: %d\n", i);
 // sleep(1);
 }
}

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 55

Process Management

•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like

notification) to another process
•sigaction – set handlers for signals

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 56

fork2.c – parent waits for child to finish

int status;
pid_t tcpid;
…
cpid = fork();
if (cpid > 0) { /* Parent Process */
 mypid = getpid();
 printf("[%d] parent of [%d]\n", mypid, cpid);
 tcpid = wait(&status);
 printf("[%d] bye %d(%d)\n", mypid, tcpid, status);
} else if (cpid == 0) { /* Child Process */
 mypid = getpid();
 printf("[%d] child\n", mypid);
}
…

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 57

Process Management

•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like

notification) to another process
•sigaction – set handlers for signals

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 58

Process Management

child

parent

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 59

fork3.c

…
cpid = fork();
if (cpid > 0) { /* Parent Process */
 tcpid = wait(&status);
} else if (cpid == 0) { /* Child Process */
 char *args[] = {“ls”, “-l”, NULL};
 execv(“/bin/ls”, args);
 /* execv doesn’t return when it works.
 So, if we got here, it failed! */
 perror(“execv”);
 exit(1);
}
…

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 60

Shell

• A shell is a job control system
– Allows programmer to create and manage a set of programs

to do some task
– Windows, MacOS, Linux all have shells

• Example: to compile a C program
cc –c sourcefile1.c
cc –c sourcefile2.c
ln –o program sourcefile1.o sourcefile2.o
./program

HW1

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 61

Process Management

•fork – copy the current process
•exec – change the program being run by the

current process
•wait – wait for a process to finish
•kill – send a signal (interrupt-like

notification) to another process
•sigaction – set handlers for signals

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 62

inf_loop.c
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <unistd.h>
#include <signal.h>

void signal_callback_handler(int signum) {
 printf(“Caught signal!\n”);
 exit(1);
}
int main() {
 struct sigaction sa;
 sa.sa_flags = 0;
 sigemptyset(&sa.sa_mask);
 sa.sa_handler = signal_callback_handler;

 sigaction(SIGINT, &sa, NULL);
 while (1) {}
}

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 63

Common POSIX Signals

• SIGINT – control-C
• SIGTERM – default for kill shell command
• SIGSTP – control-Z (default action: stop process)

• SIGKILL, SIGSTOP – terminate/stop process
– Can’t be changed or disabled with sigaction
– Why?

1/28/20 Kubiatowicz CS162 ©UCB Spring 2020 64

Summary

• Process consists of two pieces
1. Address Space (Memory & Protection)
2. One or more threads (Concurrency)

• Represented in kernel as
– Process object (resources associated with process)
– Kernel vs User stack

• Variety of process management syscalls
– fork, exec, wait, kill, sigaction

• Scheduling: Threads move between queues

