
CS162  
Operating Systems and 
Systems Programming 

Lecture 2  
 

Four Fundamental OS Concepts

January 23th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 2

Review: What is an Operating System?

• Referee
– Manage sharing of resources, Protection, Isolation

» Resource allocation, isolation, communication
• Illusionist

– Provide clean, easy to use abstractions of physical
resources

» Infinite memory, dedicated machine
» Higher level objects: files, users, messages
» Masking limitations, virtualization

• Glue
– Common services

» Storage, Window system, Networking
» Sharing, Authorization
» Look and feel

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: HW Functionality ⇒ great complexity!

Intel Skylake-X I/O Configuration

Direct Media Interface 
(3.93 GBytes/sec)

Really High Speed I/O
(e.g. graphics)

Memory Channels
(High BW DRAM)

High-Speed I/O devices
(PCI Exp)

Disks (8 x SATA)

Slower I/O (USB)

Integrated Ethernet

PCI/e Drives

HD Audio

RAID 0/1/5/10

Smart Connect 
(autoupdate)

Intel Management Engine (ME) and
BIOS Support
[remote management]

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 4

Linux 2.2.0

Mars Curiosity Rover

Firefox

Android

Linux 3.1 (recent)

Windows 7

Microsoft Office 2013

Windows Vista

Facebook

Mac OS X "Tiger"

Modern Car

Mouse Base Pairs

0 30 60 90 120

Linux 2.2.0

Mars Curiosity Rover

Firefox

Android

Linux 3.1 (recent)

Windows 7

Microsoft Office 2013

Windows Vista

Facebook

Mac OS X "Tiger"

Modern Car

Mouse Base Pairs

0 30 60 90 120

Linux 2.2.0

Mars Curiosity Rover

Firefox

Android

Linux 3.1 (recent)

Windows 7

Microsoft Office 2013

Windows Vista

Facebook

Mac OS X "Tiger"

Modern Car

Mouse Base Pairs

0 30 60 90 120

New Versions usually (much) larger older versions!

Recall: Increasing Software Complexity

Millions of Lines of Code
(source https://informationisbeautiful.net/visualizations/million-lines-of-code/)

Cars getting really complex!

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 5

Recall: How do we tame complexity?

• Every piece of computer hardware different
– Different CPU

» Pentium, PowerPC, ColdFire, ARM, MIPS
– Different amounts of memory, disk, …
– Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint readers
– Different networking environment

» Cable, DSL, Wireless, Firewalls,…
• Questions:

– Does the programmer need to write a single program that performs
many independent activities?

– Does every program have to be altered for every piece of hardware?
– Does a faulty program crash everything?
– Does every program have access to all hardware?

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 6

OS Abstracts underlying hardware

• Processor => Thread
• Memory => Address Space
• Disks, SSDs, … => Files
• Networks => Sockets
• Machines => Processes

Application

Operating System

Hardware
Physical Machine Interface

Abstract Machine Interface

• OS Goals:
– Remove software/hardware quirks (fight complexity)
– Optimize for convenience, utilization, reliability, … (help the programmer)

• For any OS area (e.g. file systems, virtual memory, networking,
scheduling):

– What hardware interface to handle? (physical reality)
– What’s software interface to provide? (nicer abstraction)

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 7

OS Goal: Protecting Processes & The Kernel

• Run multiple applications and:
– Keep them from interfering with or crashing the operating system
– Keep them from interfering with or crashing each other

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 8

Virtual Machines

• Virtualize every detail of a hardware configuration so perfectly that
you can run an operating system (and many applications) on top of
it.

– VMWare Fusion, Virtual box, Parallels Desktop, Xen, Vagrant
• Provides isolation
• Complete insulation from change
• The norm in the Cloud (server consolidation)
• Long history (60’s in IBM OS development)
• All our work will take place INSIDE a VM

– Vagrant (new image just for you)

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 9

System Virtual Machines: Layers of OSs
• Useful for OS development

– When OS crashes, restricted to one VM
– Can aid testing/running programs on other Oss

• Use for deployment
– Running different OSes at the same time

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 10

Containers virtualize the OS

• Roots in OS developments to provide protected systems
abstraction, not just application abstraction

– User-level file system (route syscalls to user process)
– Cgroups – predictable, bounded resources (CPU, Mem, BW)

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 11

Basic tool: Dual Mode Operation
• Hardware provides at least two modes:

1. Kernel Mode (or "supervisor" / "protected" mode)
2. User Mode

• Certain operations are prohibited when running in user mode
– Changing the page table pointer

• Carefully controlled transitions between user mode and kernel mode
– System calls, interrupts, exceptions

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 12

UNIX OS Structure

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 13

Today: Four Fundamental OS Concepts
• Thread: Execution Context

– Fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with or w/o translation)
– Set of memory addresses accessible to program (for read or write)
– May be distinct from memory space of the physical machine  

(in which case programs operate in a virtual address space)
• Process: an instance of a running program

– Protected Address Space + One or more Threads
• Dual mode operation / Protection

– Only the “system” has the ability to access certain resources
– Combined with translation, isolates programs from each other

and the OS from programs

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 14

OS Bottom Line: Run Programs

int main()
{ … ;
 }

ed
ito

r
Program Source

foo.c

Lo
ad

 &

Ex
ec

ut
e

M
em

ory

PC:

Processor

registers

0x000…

0xFFF…

instructions

data

heap

stack

OS

co
m

pi
le

r

Executable

a.out

data

instructions

• Load instruction and data segments of
executable file into memory
• Create stack and heap
• “Transfer control to program”
• Provide services to program
• While protecting OS and program

8/31/15 Kubiatowicz CS162 ©UCB Fall 2015 15

Stack vs. Heap

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 16

Recall (61C): Instruction Fetch/Decode/Execute

The instruction cycle

PC:

Instruction fetch

Registers

ALU

Execute

Memory

instruction

Decode decode

next

data

Processor

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 17

First OS Concept: Thread of Control

• Thread: Single unique execution context
– Program Counter, Registers, Execution Flags, Stack, Memory State

• A thread is executing on a processor (core) when it is resident in the processor registers
• Resident means: Registers hold the root state (context) of the thread:

– Including program counter (PC) register & currently executing instruction
» PC points at next instruction in memory
» Instructions stored in memory

– Including intermediate values for ongoing computations
» Can include actual values (like integers) or pointers to values in memory

– Stack pointer holds the address of the top of stack (which is in memory)
– The rest is “in memory”

• A thread is suspended (not executing) when its state is not loaded (resident) into the processor
– Processor state pointing at some other thread
– Program counter register is not pointing at next instruction from this thread
– Often: a copy of the last value for each register stored in memory

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 18

Fetch
Exec

R0
…
R31
F0
…
F30
PC

…
Data1
Data0
Inst237
Inst236

…
Inst5
Inst4
Inst3
Inst2 
Inst1
Inst0

Addr 0

Addr 232-1

Recall (61C): What happens during program execution?

• Execution sequence:
– Fetch Instruction at PC
– Decode
– Execute (possibly using registers)
– Write results to registers/mem
– PC = Next Instruction(PC)
– Repeat

PC
PC
PC
PC

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 19

x86 Registers

Complex mem-mem arch (x86) with
specialized registers and “segments”

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 20

Multiprogramming - Multiple Threads of Control

OS

Proc 1 Proc 2 Proc n
…

code
Static Data

heap

stack

code
Static Data

heap

stack

code
Static Data

heap

stack

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 21

Illusion of Multiple Processors

vCPU3vCPU2vCPU1

Shared Memory

• Assume a single processor (core). How do we provide the illusion of
multiple processors?

– Multiplex in time!
• Threads are virtual cores
• Contents of virtual core (thread):

– Program counter, stack pointer
– Registers

• Where is “it” (the thread)?
– On the real (physical) core, or
– Saved in chunk of memory – called the Thread Control Block (TCB)

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 22

Illusion of Multiple Processors (Continued)

• Consider :
– At T1: vCPU1 on real core, vCPU2 in memory
– At T2: vCPU2 on real core, vCPU1 in memory

• What happened?
– OS Ran [how?]
– Saved PC, SP, … in vCPU1's thread control block (memory)
– Loaded PC, SP, … from vCPU2's TCB, jumped to PC

• What triggered this switch?
– Timer, voluntary yield, I/O, other things we will discuss

vCPU3vCPU2vCPU1

Shared Memory

vCPU1 vCPU2 vCPU3 vCPU1 vCPU2

Time

T1 T2

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 23

OS object representing a thread?

• Traditional term: Thread Control Block (TCB)
• Holds contents of registers when thread is not running
• What other information?

• PINTOS? – read thread.h and thread.c

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 24

Administrivia: Getting started
• Start homework 0 immediately ⇒ Due next Monday (11/28)!
– Vagrant and VirtualBox – VM environment for the course

» Consistent, managed environment on your machine
– Get familiar with all the tools, submit via git

• TA Class
• Saturdy 12:30 to 13:30, RM 204

• Will announce when there is a class
• Any questions on class rules and regulations?
• Midterm Date:

– Any issues?

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 25

CE424 Collaboration Policy

Explaining a concept to someone in another group
Discussing algorithms/testing strategies with other groups
Helping debug someone else’s code (in another group)
Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group
Copying OR reading another group’s code or test cases
Copying OR reading online code or test cases from from
prior years

We compare all project submissions against prior year
submissions and online solutions and will take actions
(described on the course overview page) against offenders

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 26

Second OS Concept: Address Space

0x000…

0xFFF…

code

Static Data

heap

stack

• Address space ⇒ the set of accessible
addresses + state associated with them:

– For a 32-bit processor there are 232 = 4
billion addresses

• What happens when you read or write to an
address?

– Perhaps acts like regular memory
– Perhaps ignores writes
– Perhaps causes I/O operation

» (Memory-mapped I/O)
– Perhaps causes exception (fault)
– Communicates with another program
– ….

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 27

Address Space: In a Picture

Processor
registers

PC:

0x000…

0xFFF…

Code Segment

Static Data

heap

stack

instruction

SP:

• What’s in the code segment? Static data segment?
• What’s in the Stack Segment?

– How is it allocated? How big is it?
• What’s in the Heap Segment?

– How is it allocated? How big?

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 28

Previous discussion of threads: 
Very Simple Multiprogramming

• All vCPU's share non-CPU resources
– Memory, I/O Devices

• Each thread can read/write memory
– Perhaps data of others
– can overwrite OS ?

• Unusable?
• This approach is used in

– Very early days of computing
– Embedded applications
– MacOS 1-9/Windows 3.1 (switch only with voluntary yield)
– Windows 95-ME (switch with yield or timer)

• However it is risky…

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 29

Simple Multiplexing has no Protection
• Operating System must protect itself from user programs

– Reliability: compromising the operating system generally causes it to crash
– Security: limit the scope of what threads can do
– Privacy: limit each thread to the data it is permitted to access
– Fairness: each thread should be limited to its appropriate share of system

resources (CPU time, memory, I/O, etc)
• OS must protect User programs from one another

– Prevent threads owned by one user from impacting threads owned by
another user

– Example: prevent one user from stealing secret information from another
user

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 30

What can the hardware do to help the OS
protect itself from programs???

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 31

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program
address

0010…

1010…

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 32

Simple Protection: Base and Bound (B&B)

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

1100…

0100…

Bound

1100…

1000…

Base

>=

<

Program
address

0010…

1010…

• Still protects OS and isolates program
• Requires relocating loader
• No addition on address path

Addresses translated
when program loaded

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 33

61C Review: Relocation

• Compiled .obj file linked together in an .exe
• All address in the .exe are as if it were loaded at memory

address 00000000
• File contains a list of all the addresses that need to be adjusted

when it is “relocated” to somewhere else.

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 34

Simple address translation with Base and Bound

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

0000…

Program
address

Base Address

Bound <

1000…

1100…
0100…

• Hardware relocation
• Can the program touch OS?
• Can it touch other programs?

0010…
0010…

Addresses translated  
on-the-fly

1010…

0100…

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 35

x86 – segments and stacks

CS EIP

SS ESP

DS

ECXES

EDX

ESI
EDI

EAX

EBX

code
static data
heap

stack

code

static data

heap

stack

CS:
EIP:

SS:
ESP:

Processor Registers

Start address, length and
access rights associated with
each segment register

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 36

Another idea: Address Space Translation

• Program operates in an address space that is distinct from the
physical memory space of the machine

Processor Memory

0x000…

0xFFF…

translator

“v
irt

ua
l a

dd
re

ss
”

“p
hy

sic
al

 a
dd

re
ss

”

Registers

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 37

Paged Virtual Address Space

• What if we break the entire virtual address space into equal
size chunks (i.e., pages) have a base for each?
• Treat memory as page size frames and put any page into any

frame …

• Another cs61C review…

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 38

Paged Virtual Address

• Instructions operate on virtual addresses
– Instruction address, load/store data address

• Translated to a physical address (or Page Fault) through a Page Table by the
hardware

• Any Page of address space can be in any (page sized) frame in memory
– Or not-present (access generates a page fault)

• Special register holds page table base address (of the process)

Processor

Registers Page Table

Memory

<Virtual Address> =
<Page #> <Page Offset>

Page (eg, 4 kb)

<Page #>

<Frame Addr>

<Page Offset> instruction

PT Addr

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 39

Third OS Concept: Process
• Process: execution environment with Restricted Rights

– (Protected) Address Space with One or More Threads
– Owns memory (address space)
– Owns file descriptors, file system context, …
– Encapsulate one or more threads sharing process resources

• Application program executes as a process
– Complex applications can fork/exec child processes [later!]

• Why processes?
– Protected from each other!
– OS Protected from them
– Processes provides memory protection
– Threads more efficient than processes for parallelism (later)

• Fundamental tradeoff between protection and efficiency
• Communication easier within a process
• Communication harder between processes

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 40

Single and Multithreaded Processes

• Threads encapsulate concurrency: “Active” component
• Address spaces encapsulate protection: “Passive” part

– Keeps buggy program from trashing the system
• Why have multiple threads per address space?

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 41

Kernel code/data in process  
Virtual Address Space?

• Unix: Kernel space is mapped in high - but inaccessible to user
processes

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 42

Fourth OS Concept: Dual Mode Operation

• Hardware provides at least two modes:
– “Kernel” mode (or “supervisor” or “protected”)
– “User” mode: Normal programs executed

• What is needed in the hardware to support “dual mode” operation?
– A bit of state (user/system mode bit)
– Certain operations / actions only permitted in system/kernel mode

» In user mode they fail or trap
– User ! Kernel transition sets system mode AND saves the user PC

» Operating system code carefully puts aside user state then performs the necessary
operations

– Kernel ! User transition clears system mode AND restores appropriate user
PC

» return-from-interrupt

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 43

User/Kernel (Privileged) Mode

User Mode

Kernel Mode

Full HW accessLimited HW access

exec

syscall

exit
rtn

interrupt

rfi

exception

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 44

For example: UNIX System Structure

User Mode

Kernel Mode

Hardware

Applications

Standard Libs

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 45

Break!

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 46

Tying it together: Simple B&B: OS loads process

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base xxxx …

xxxx…Bound

xxxx…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 47

Simple B&B: OS gets ready to execute process

• Privileged Inst: set
special registers

• RTU (Return To
Usermode)

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

0001…uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…

RTU

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 48

Simple B&B: User Code Running

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

• How does  
kernel switch between
processes?

• First question: How to
return to system?

0001…

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 49

3 types of Mode Transfer

• Syscall
– Process requests a system service, e.g., exit
– Like a function call, but “outside” the process
– Does not have the address of the system function to call
– Like a Remote Procedure Call (RPC) – for later
– Marshall the syscall id and args in registers and exec syscall

• Interrupt
– External asynchronous event triggers context switch
– e. g., Timer, I/O device
– Independent of user process

• Trap or Exception
– Internal synchronous event in process triggers context switch
– e.g., Protection violation (segmentation fault), Divide by zero, …

• All 3 are an UNPROGRAMMED CONTROL TRANSFER
– Where does it go?

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 50

How do we get the system target address of the
“unprogrammed control transfer?”

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 51

Interrupt Vector

interrupt number (i)

intrpHandler_i () {
 ….
}

Address and properties of
each interrupt handler

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 52

Simple B&B: User => Kernel

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100…Bound

xxxx…uPC

regs

sysmode

…

0

PC

0000…

FFFF…

00FF…

• How to return
to system?

0000 1234

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 53

Simple B&B: Interrupt

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 1000 …

1100 …Bound

0000 1234uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00FF…
• How to save

registers and set
up system stack?

IntrpVector[i]

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 54

Simple B&B: Switch User Process

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

0000 0248uPC

regs

sysmode

…

1

PC

0000…

FFFF…

00D0…
• How to save

registers and set
up system stack?

0001 0124

1000 …

1100 …

0000 1234

regs

00FF…

RTU

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 55

Simple B&B: “resume”

OS

Proc 1 Proc 2 Proc n
…

code

Static Data

heap

stack

code

Static Data

heap

stack

code

Static Data

heap

stack

0000…

FFFF…

1000…

1100…

3000…

3080…

Base 3000 …

0080 …Bound

xxxx xxxxuPC

regs

sysmode

…

0

PC

0000…

FFFF…

00D0…
• How to save

registers and set
up system stack?

000 0248

1000 …

1100 …

0000 1234

regs

00FF…

RTU

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 56

Running Many Programs ???

• We have the basic mechanism to
– switch between user processes and the kernel,
– the kernel can switch among user processes,
– Protect OS from user processes and processes from each other

• Questions ???
• How do we decide which user process to run?
• How do we represent user processes in the OS?
• How do we pack up the process and set it aside?
• How do we get a stack and heap for the kernel?
• Aren’t we wasting are lot of memory?
• …

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 57

Process Control Block

• Kernel represents each process as a process control block
(PCB)

– Status (running, ready, blocked, …)
– Register state (when not ready)
– Process ID (PID), User, Executable, Priority, …
– Execution time, …
– Memory space, translation, …

• Kernel Scheduler maintains a data structure containing the
PCBs
• Scheduling algorithm selects the next one to run

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 58

Scheduler

if (readyProcesses(PCBs)) {
 nextPCB = selectProcess(PCBs);
 run(nextPCB);
} else {
 run_idle_process();
}

1/23/2020 Kubiatowicz CS162 ©UCB Spring 2020 59

Conclusion: Four Fundamental OS Concepts
• Thread: Execution Context

– Fully describes program state
– Program Counter, Registers, Execution Flags, Stack

• Address space (with or w/o translation)
– Set of memory addresses accessible to program (for read or write)
– May be distinct from memory space of the physical machine  

(in which case programs operate in a virtual address space)
• Process: an instance of a running program

– Protected Address Space + One or more Threads
• Dual mode operation / Protection

– Only the “system” has the ability to access certain resources
– Combined with translation, isolates programs from each other

and the OS from programs

