
CS162  
Operating Systems and 
Systems Programming 

Lecture 11  
  

Scheduling (finished), Deadlock

March 3rd, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall: Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:

» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:

» Minimizing response time will lead to more context switching than if you
only maximized throughput

– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:

» Better average response time by making system less fair

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has the least amount of  
computation to do

– Sometimes called “Shortest Time to  
Completion First” (STCF)

• Shortest Remaining Time First (SRTF):
– Preemptive version of SJF: if job arrives and has a shorter time to

completion than the remaining time on the current job, immediately
preempt CPU

– Sometimes called “Shortest Remaining Time to Completion
First” (SRTCF)

• These can be applied either to a whole program or the current
CPU burst of each program

– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Recall: Multi-Level Feedback Scheduling

• Another method for exploiting past behavior
– First used in CTSS
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing exponentially

(highest:1ms, next:2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)

– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute  
Tasks Demoted to  

Low Priority

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 5

Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:

– We need to predict with confidence worst case response times for systems
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First),  

RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
• Soft Real-Time

– Attempt to meet deadlines with high probability
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Important for multimedia applications
– CBS (Constant Bandwidth Server)

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Recall: Realtime Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival (=release)
times

• Tasks have deadlines (D) and known computation times (C)
• Example Setup:

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 7

Recall: Round-Robin Scheduling Doesn’t Work

Time

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 8

• Tasks periodic with period P and computation C in each period: (,
) for each task

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close the

absolute deadline is (i.e. for each task!)
– The scheduler always schedules the active task with the closest absolute

deadline

• Schedulable when

𝑃𝑖
𝐶𝑖 𝑖

𝐷𝑡+1
𝑖 = 𝐷𝑡

𝑖 + 𝑃𝑖

𝑛

∑
𝑖=1 (𝐶𝑖

𝑃𝑖) ≤ 1

Recall: Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 9

Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to
Get CPU

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 10

A Final Word On Scheduling
• When do the details of the scheduling policy and fairness really

matter?
– When there aren’t enough resources to go around 

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay  

for itself in improved response time
» Perhaps you’re paying for worse response  

time in reduced productivity, customer angst,  
etc…

» Might think that you should buy a faster X  
when X is utilized 100%, but usually, response  
time goes to infinity as utilization⇒100%  

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of the load

curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse
tim

e 100%

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 11

Starvation vs Deadlock
• Starvation: thread waits indefinitely

– Example, low-priority thread waiting for resources constantly in use
by high-priority threads

• Deadlock: circular waiting for resources
– Thread A owns Res 1 and is waiting for Res 2  

Thread B owns Res 2 and is waiting for Res 1  

• Deadlock ⇒ Starvation but not vice versa
– Starvation can end (but doesn’t have to)
– Deadlock can’t end without external intervention

Res 2Res 1

Thread
B

Thread
A

Wait
For

Wait
For

Owned
By

Owned
By

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 12

Example: Single-Lane Bridge Crossing

CA 140 to Yosemite National Park

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 13

Bridge Crossing Example

• Each segment of road can be viewed as a resource
– Car must own the segment under them
– Must acquire segment that they are moving into

• For bridge: must acquire both halves
– Traffic only in one direction at a time
– Problem occurs when two cars in opposite directions on bridge: each

acquires one segment and needs next
• If a deadlock occurs, it can be resolved if one car backs up (preempt

resources and rollback)
– Several cars may have to be backed up

• Starvation is possible
– East-going traffic really fast ⇒ no one goes west

Ho
n

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 14

One Lane Bridge Revisited: Deadlock with Locks

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Nondeterministic Deadlock

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 15

Deadlock with Locks: Unlucky Case

Thread A
x.Acquire();

y.Acquire();
<stalled>
<unreachable>
…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire(); <stalled>
<unreachable>
…
x.Release();
y.Release();

Lock yLock x

Thread
B

Thread
A Wait

For

Wait
For

Owned
By

Owned
By

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 16

Deadlock with Locks: “Lucky” Case

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B

y.Acquire();

x.Acquire();
…
x.Release();
y.Release();

Sometimes schedule won’t trigger deadlock

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 17

Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Disallowed

By Rule

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 18

Other Types of Deadlock

• Threads often block waiting for resources
– Locks
– Terminals
– Printers
– CD drives
– Memory

• Threads often block waiting for other threads
– Pipes
– Sockets

• You can deadlock on any of these!

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 19

Deadlock with Space

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

If only 2 MB of space, we get same deadlock situation

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 20

Dining Lawyers Problem

• Five chopsticks/Five lawyers (really cheap restaurant)
– Free-for all: Lawyer will grab any one they can
– Need two chopsticks to eat

• What if all grab at same time?
– Deadlock!

• How to fix deadlock?
– Make one of them give up a chopstick (Hah!)
– Eventually everyone will get chance to eat

• How to prevent deadlock?
– Never let lawyer take last chopstick if no hungry lawyer has two

chopsticks afterwards

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 21

Four requirements for occurrence of Deadlock
• Mutual exclusion

– Only one thread at a time can use a resource.
• Hold and wait

– Thread holding at least one resource is waiting to acquire additional
resources held by other threads

• No preemption
– Resources are released only voluntarily by the thread holding the

resource, after thread is finished with it
• Circular wait

– There exists a set {T1, …, Tn} of waiting threads
» T1 is waiting for a resource that is held by T2

» T2 is waiting for a resource that is held by T3

» …
» Tn is waiting for a resource that is held by T1

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Symbols
Detecting Deadlock: Resource-Allocation Graph

• System Model
– A set of Threads T1, T2, . . ., Tn

– Resource types R1, R2, . . ., Rm
CPU cycles, memory space, I/O devices

– Each resource type Ri has Wi instances
– Each thread utilizes a resource as follows:

» Request() / Use() / Release()

• Resource-Allocation Graph:
– V is partitioned into two types:

» T = {T1, T2, …, Tn}, the set threads in the system.
» R = {R1, R2, …, Rm}, the set of resource types in system

– request edge – directed edge T1 → Rj

– assignment edge – directed edge Rj → Ti

R1

R2

T1 T2

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 23

Resource-Allocation Graph Examples

T1 T2 T3

R1 R2

R3
R4

Simple Resource
Allocation Graph

T1 T2 T3

R1 R2

R3
R4

Allocation Graph  
With Deadlock

T1

T2

T3

R2

R1

T4

Allocation Graph  
With Cycle, but
No Deadlock

• Model:
– request edge – directed edge T1 → Rj

– assignment edge – directed edge Rj → Ti

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 24

T1

T2

T3

R2

R1

T4

Deadlock Detection Algorithm
• Only one of each type of resource ⇒ look for loops
• More General Deadlock Detection Algorithm

– Let [X] represent an m-ary vector of non-negative  
integers (quantities of resources of each type):
[FreeResources]: Current free resources each type  
[RequestX]: Current requests from thread X  

[AllocX]: Current resources held by thread X
– See if tasks can eventually terminate on their own
[Avail] = [FreeResources]  
Add all nodes to UNFINISHED  
do {

done = true  
Foreach node in UNFINISHED {  

if ([Requestnode] <= [Avail]) {  
remove node from UNFINISHED  
[Avail] = [Avail] + [Allocnode]  
done = false  

}  
}  

} until(done)
– Nodes left in UNFINISHED ⇒ deadlocked

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 25

How should a system deal with deadlock?

• Four different approaches:
1. Deadlock prevention: write your code in a way that it isn’t

prone to deadlock
2. Deadlock recovery: let deadlock happen, and then figure out

how to recover from it
3. Deadlock avoidance: dynamically delay resource requests so

deadlock doesn’t happen
4. Deadlock denial: ignore the possibility of deadlock

• Modern operating systems:
– Make sure the system isn’t involved in any deadlock
– Ignore deadlock in applications

» “Ostrich Algorithm”

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Techniques for Preventing Deadlock
• Infinite resources

– Include enough resources so that no one ever runs out of resources.
Doesn’t have to be infinite, just large

– Give illusion of infinite resources (e.g. virtual memory)
– Examples:

» Bay bridge with 12,000 lanes. Never wait!
» Infinite disk space (not realistic yet?)

• No Sharing of resources (totally independent threads)
– Not very realistic

• Don’t allow waiting
– How the phone company avoids deadlock

» Call to your Mom in Toledo, works its way through the phone lines, but if
blocked get busy signal.

– Technique used in Ethernet/some multiprocessor nets
» Everyone speaks at once. On collision, back off and retry

– Inefficient, since have to keep retrying
» Consider : driving to San Francisco; when hit traffic jam, suddenly you’re

transported back home and told to retry!

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 27

(Virtually) Infinite Resources

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

With virtual memory we have “infinite” space
so everything will just succeed.

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Techniques for Preventing Deadlock
• Make all threads request everything they’ll need at the beginning.

– Problem: Predicting future is hard, tend to over-estimate resources
– Example:

» If need 2 chopsticks, request both at same time
» Don’t leave home until we know no one is using any intersection

between here and where you want to go; only one car on the Bay
Bridge at a time

• Force all threads to request resources in a particular order
preventing any cyclic use of resources

– Thus, preventing deadlock
– Example (x.Acquire(), y.Acquire(), z.Acquire(),…)

» Make tasks request disk, then memory, then…
» Keep from deadlock on freeways around SF by requiring everyone to go

clockwise

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Request Resources Atomically (1)

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A
Acquire_both(x, y);
…
y.Release();
x.Release();

Thread B
Acquire_both(y, x);
…
x.Release();
y.Release();

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 30

Request Resources Atomically (2)

Thread A
z.Acquire();
x.Acquire();
y.Acquire();
z.Release();
…
y.Release();
x.Release();

Thread B
z.Acquire();
y.Acquire();
x.Acquire();
z.Release();
…
x.Release();
y.Release();

Or consider this:

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Acquire Resources in Consistent Order

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Consider instead:
Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
x.Acquire();
y.Acquire();
…
x.Release();
y.Release();

Does it matter in
which order the
locks are released?

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 32

Review: Train Example (Wormhole-Routed Network)
• Circular dependency (Deadlock!)

– Each train wants to turn right
– Blocked by other trains
– Similar problem to multiprocessor networks

• Fix? Imagine grid extends in all four directions
– Force ordering of channels (tracks)

» Protocol: Always go east-west first, then north-south
– Called “dimension ordering” (X then Y)

Disallowed

By Rule

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 33

Techniques for Recovering from Deadlock
• Terminate thread, force it to give up resources

– In Bridge example, Godzilla picks up a car, hurls it into the river.
Deadlock solved!

– Hold dining lawyer in contempt and take away in handcuffs
– But, not always possible – killing a thread holding a mutex leaves world

inconsistent
• Preempt resources without killing off thread

– Take away resources from thread temporarily
– Doesn’t always fit with semantics of computation

• Roll back actions of deadlocked threads
– Hit the rewind button on TiVo, pretend last few minutes never

happened
– For bridge example, make one car roll backwards (may require others

behind him)
– Common technique in databases (transactions)
– Of course, if you restart in exactly the same way, may reenter deadlock

once again
• Many operating systems use other options

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 34

Pre-empting Resources

Thread A
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

With virtual memory we have “infinite” space
so everything will just succeed.

Alternative view: we are “pre-empting”
memory when paging out to disk, and giving it
back when paging back in

Thread B
AllocateOrWait(1 MB)
AllocateOrWait(1 MB)
Free(1 MB)
Free(1 MB)

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 35

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

Techniques for Deadlock Avoidance

• Idea: When a thread requests a resource, OS checks if it would
result in deadlock

– If not, it grants the resource right away
– If so, it waits for other threads to release resources

THIS DOES NOT WORK!!!!
• Example:

Wait…
But it’s too late…

Blocks…

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 36

Deadlock Avoidance: Three States

• Safe state
– System can delay resource acquisition to prevent deadlock

• Unsafe state
– No deadlock yet…
– But threads can request resources in a pattern that unavoidably

leads to deadlock

• Deadlocked state
– There exists a deadlock in the system
– Also considered “unsafe”

Deadlock avoidance:
prevent system from
reaching an unsafe state

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 37

Deadlock Avoidance

• Idea: When a thread requests a resource, OS checks if it would
result in deadlock an unsafe state

– If not, it grants the resource right away
– If so, it waits for other threads to release resources

• Example:

Wait until
Thread A
releases the
mutex

Thread A
x.Acquire();
y.Acquire();
…
y.Release();
x.Release();

Thread B
y.Acquire();
x.Acquire();
…
x.Release();
y.Release();

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 38

• Toward right idea:
– State maximum resource needs in advance
– Allow particular thread to proceed if:

(available resources - #requested) ≥ max  
remaining that might be needed by any thread

• Banker’s algorithm (less conservative):
– Allocate resources dynamically

» Evaluate each request and grant if some  
ordering of threads is still deadlock free afterward

» Technique: pretend each request is granted, then run deadlock detection
algorithm, substituting  
([Maxnode]-[Allocnode] <= [Avail]) for ([Requestnode] <= [Avail]) 
Grant request if result is deadlock free (conservative!)

» Keeps system in a “SAFE” state, i.e. there exists a sequence  
{T1, T2, … Tn} with T1 requesting all remaining resources, finishing, then T2
requesting all remaining resources, etc..

– Algorithm allows the sum of maximum resource needs of all current
threads to be greater than total resources

Banker’s Algorithm for Avoiding Deadlock

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 39

Banker’s Algorithm Example

• Banker’s algorithm with dining lawyers
– “Safe” (won’t cause deadlock) if when try to grab chopstick either :

» Not last chopstick
» Is last chopstick but someone will have two afterwards

– What if k-handed lawyers? Don’t allow if:
» It’s the last one, no one would have k
» It’s 2nd to last, and no one would have k-1
» It’s 3rd to last, and no one would have k-2
» …

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 40

Recall: Priority Scheduler

• Execution Plan
– Always execute highest-priority runable jobs to completion
– Each queue can be processed in RR with some time-quantum

• Problems:
– Starvation:

» Lower priority jobs don’t get to run because of higher priority jobs
– Priority Inversion:

» Not strictly a problem with priority scheduling, but happens when low priority task has
lock needed by high-priority task

» Usually involves third, intermediate priority task that keeps running even though high-
priority task should be running

– Are either of these problems examples of DEADLOCK?

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 41

Priority Donation as a remedy to Priority Inversion
• Does Priority Inversion cause Deadlock? Not usually.
• Consider :

– 3 threads, T1, T2, T3 in priority order (T3 highest)
– T1 grabs lock, T3 tries to acquire, then sleeps, T2 running
– Will this make progress?

» No, as long as T2 is running
» But T2 could stop at any time and the problem would resolve itself…
» So, this is not a deadlock (it is a livelock). But is could last a long time…

– Why is this a priority inversion?
» T3 is prevented from running by T2

• What is priority donation?
– When high priority Thread TB is about to sleep while waiting for a lock held by lower

priority Thread TA, it may temporarily donate its priority to the holder of the lock if that
lock holder has a lower priority

» So, Priority(TB) => TA until lock is released
– So, now, TA runs with high priority until it releases its lock, at which time its priority is

restored to its original priority
• How does priority donation help both above priority inversion scenario?

– Briefly raising T1 to the same priority as T3⇒T1 can run and release lock, allowing T3 to
run

– Does priority donation involve taking lock away from T1?
» NO! That would break semantics of the lock and potentially corrupt any information

protected by lock!

3/3/20 Kubiatowicz CS162 ©UCB Spring 2020 42

Summary
• Real-time scheduling

– Need to meet a deadline, predictability essential
– Earliest Deadline First (EDF) and Rate Monotonic (RM) scheduling

• Starvation vs. Deadlock
– Starvation: thread waits indefinitely
– Deadlock: circular waiting for resources

• Four conditions for deadlocks
– Mutual exclusion
– Hold and wait
– No preemption
– Circular wait

• Techniques for addressing Deadlock
– Deadlock prevention:

» write your code in a way that it isn’t prone to deadlock
– Deadlock recovery:

» let deadlock happen, and then figure out how to recover from it
– Deadlock avoidance:

» dynamically delay resource requests so deadlock doesn’t happen
» Banker’s Algorithm provides on algorithmic way to do this

– Deadlock denial:
» ignore the possibility of deadlock

