
CS162  
Operating Systems and 
Systems Programming 

Lecture 10  
  

Scheduling (con’t)

February 25th, 2020
Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 2

Recall: Scheduling

• Discussion of Scheduling:
– Which thread should run on the CPU next?

• Scheduling goals, policies
• Look at a number of different schedulers

if (readyThreads(TCBs)) {
nextTCB = selectThread(TCBs);
run(nextTCB);

} else {
run_idle_thread();

}

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 3

Recall: Scheduling Policy Goals/Criteria
• Minimize Response Time

– Minimize elapsed time to do an operation (or job)
– Response time is what the user sees:
» Time to echo a keystroke in editor
» Time to compile a program
» Real-time Tasks: Must meet deadlines imposed by World

• Maximize Throughput
– Maximize operations (or jobs) per second
– Throughput related to response time, but not identical:
» Minimizing response time will lead to more context switching than if you

only maximized throughput
– Two parts to maximizing throughput
» Minimize overhead (for example, context-switching)
» Efficient use of resources (CPU, disk, memory, etc)

• Fairness
– Share CPU among users in some equitable way
– Fairness is not minimizing average response time:
» Better average response time by making system less fair

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 4

Recall: Example of RR with Time Quantum = 20
• Example: Process Burst Time  

 P1 53 
 P2 8 
 P3 68 
 P4 24

– The Gantt chart is:

– Waiting time for P1=(68-20)+(112-88)=72
P2=(20-0)=20 

P3=(28-0)+(88-48)+(125-108)=85 
P4=(48-0)+(108-68)=88

– Average waiting time = (72+20+85+88)/4=66¼
– Average completion time = (125+28+153+112)/4 = 104½

• Thus, Round-Robin Pros and Cons:
– Better for short jobs, Fair (+)
– Context-switching time adds up for long jobs (-)

P1
0 20

P2
28

P3
48

P4
68

P1
88

P3
108

P4 P1 P3 P3
112 125 145 153

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 5

Comparisons between FCFS and Round Robin
• Assuming zero-cost context-switching time, is RR always better than

FCFS?
• Simple example: 10 jobs, each take 100s of CPU time 

RR scheduler quantum of 1s  
All jobs start at the same time

• Completion Times:

– Both RR and FCFS finish at the same time
– Average response time is much worse under RR!
» Bad when all jobs same length

• Also: Cache state must be shared between all jobs with RR but can be
devoted to each job with FIFO
– Total time for RR longer even for zero-cost switch!

Job # FIFO RR

1 100 991

2 200 992

… … …

9 900 999

10 1000 1000

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 6

Quantum

Completion
Time

Wait
Time

AverageP4P3P2P1

Earlier Example with Different Time Quantum
P2
[8]

P4
[24]

P1
[53]

P3
[68]

0 8 32 85 153

Best FCFS:

6257852284Q = 1

104½11215328125Q = 20

100½8115330137Q = 1

66¼ 88852072Q = 20

31¼885032Best FCFS

121¾14568153121Worst FCFS

69½32153885Best FCFS
83½121014568Worst FCFS

95½8015316133Q = 8

57¼5685880Q = 8

99½9215318135Q = 10

99½8215328135Q = 5

61¼68851082Q = 10

61¼58852082Q = 5

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 7

Handling Differences in Importance: Strict Priority Scheduling

• Execution Plan
– Always execute highest-priority runable jobs to completion
– Each queue can be processed in RR with some time-quantum

• Problems:
– Starvation:

» Lower priority jobs don’t get to run because higher priority jobs
– Deadlock: Priority Inversion

» Not strictly a problem with priority scheduling, but happens when low priority task has
lock needed by high-priority task

» Usually involves third, intermediate priority task that keeps running even though high-
priority task should be running

• How to fix problems?
– Dynamic priorities – adjust base-level priority up or down based on heuristics

about interactivity, locking, burst behavior, etc…

Priority 3

Priority 2

Priority 1

Priority 0 Job 5 Job 6

Job 1 Job 2 Job 3

Job 7

Job 4

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 8

Scheduling Fairness

• What about fairness?
– Strict fixed-priority scheduling between queues is unfair (run

highest, then next, etc):
» long running jobs may never get CPU
» Urban legend: In Multics, shut down machine, found 10-year-

old job ⇒ Ok, probably not…
– Must give long-running jobs a fraction of the CPU even when

there are shorter jobs to run
– Tradeoff: fairness gained by hurting avg response time!

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 9

Scheduling Fairness

• How to implement fairness?
– Could give each queue some fraction of the CPU

» What if one long-running job and 100 short-running ones?
» Like express lanes in a supermarket—sometimes express

lanes get so long, get better service by going into one of the
other lines

– Could increase priority of jobs that don’t get service
» What is done in some variants of UNIX
» This is ad hoc—what rate should you increase priorities?
» And, as system gets overloaded, no job gets CPU time, so

everyone increases in priority⇒Interactive jobs suffer

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 10

Lottery Scheduling

• Yet another alternative: Lottery Scheduling
– Give each job some number of lottery tickets
– On each time slice, randomly pick a winning ticket

» NOTE: Not a “real” random number generator; instead
pseudo-random number generators can make sure that every
ticket picked once before repeating!

– On average, CPU time is proportional to number of tickets
given to each job

• How to assign tickets?
– To help with responsiveness, give short running jobs more

tickets, long running jobs get fewer tickets
– To avoid starvation, every job gets at least one ticket

(everyone makes progress)
• Advantage over strict priority scheduling: behaves gracefully as

load changes
– Adding or deleting a job affects all jobs proportionally,

independent of how many tickets each job possesses

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 11

Lottery Scheduling Example (Cont.)

• Lottery Scheduling Example
– Assume short jobs get 10 tickets, long jobs get 1 ticket

– What if too many short jobs to give reasonable  
response time?

» If load average is 100, hard to make progress
» One approach: log some user out

short jobs/
long jobs

% of CPU each
short jobs gets

% of CPU each
long jobs gets

1/1 91% 9%

0/2 N/A 50%

2/0 50% N/A

10/1 9.9% 0.99%

1/10 50% 5%

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 12

How to Evaluate a Scheduling algorithm?
• Deterministic modeling

– takes a predetermined workload and compute the performance
of each algorithm for that workload

• Queueing models
– Mathematical approach for handling stochastic workloads

• Implementation/Simulation:
– Build system which allows actual algorithms to be run against

actual data – most flexible/general

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 13

How to Handle Simultaneous: Mix of Diff Types of Apps?

• Consider mix of interactive and high throughput apps:
– How to best schedule them?
– How to recognize one from the other?

» Do you trust app to say that it is “interactive”?
– Should you schedule the set of apps identically on servers, workstations, pads,

and cellphones?
• For instance, is Burst Time (observed) useful to decide which application gets

CPU time?
– Short Bursts ⇒ Interactivity ⇒ High Priority?

• Assumptions encoded into many schedulers:
– Apps that sleep a lot and have short bursts must be interactive apps – they

should get high priority
– Apps that compute a lot should get low(er?) priority, since they won’t notice

intermittent bursts from interactive apps
• Hard to characterize apps:
– What about apps that sleep for a long time, but then compute for a long time?
– Or, what about apps that must run under all circumstances (say periodically)

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 14

What if we Knew the Future?
• Could we always mirror best FCFS?
• Shortest Job First (SJF):

– Run whatever job has least amount of  
computation to do

– Sometimes called “Shortest Time to Completion First” (STCF)
• Shortest Remaining Time First (SRTF):

– Preemptive version of SJF: if job arrives and has a shorter time to
completion than the remaining time on the current job, immediately
preempt CPU

– Sometimes called “Shortest Remaining Time to Completion
First” (SRTCF)

• These can be applied to whole program or current CPU burst
– Idea is to get short jobs out of the system
– Big effect on short jobs, only small effect on long ones
– Result is better average response time

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 15

Discussion

• SJF/SRTF are the best you can do at minimizing average response
time

– Provably optimal (SJF among non-preemptive, SRTF among
preemptive)

– Since SRTF is always at least as good as SJF, focus on SRTF

• Comparison of SRTF with FCFS
– What if all jobs the same length?
» SRTF becomes the same as FCFS (i.e. FCFS is best can do if all jobs the

same length)
– What if jobs have varying length?
» SRTF: short jobs not stuck behind long ones

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 16

Example to illustrate benefits of SRTF

• Three jobs:
– A, B: both CPU bound, run for week 

C: I/O bound, loop 1ms CPU, 9ms disk I/O
– If only one at a time, C uses 90% of the disk, A or B could use 100%

of the CPU
• With FCFS:

– Once A or B get in, keep CPU for two weeks
• What about RR or SRTF?

– Easier to see with a timeline

C

C’s
I/O

C’s
I/O

C’s
I/O

A or B

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 17

SRTF Example continued:

C’s
I/O

CABAB… C

C’s
I/O

RR 1ms time slice

C’s
I/O

C’s
I/O

CA BC

RR 100ms time slice

C’s
I/O

AC

C’s
I/O

AA

SRTF

Disk Utilization:
~90% but lots of
wakeups!

Disk Utilization:
90%

Disk Utilization:
9/201 ~ 4.5%

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 18

• Starvation
– SRTF can lead to starvation if many small jobs!
– Large jobs never get to run

• Somehow need to predict future
– How can we do this?
– Some systems ask the user

» When you submit a job, have to say how long it will take
» To stop cheating, system kills job if takes too long

– But: hard to predict job’s runtime even for non-malicious users
• Bottom line, can’t really know how long job will take
– However, can use SRTF as a yardstick  

for measuring other policies
– Optimal, so can’t do any better

• SRTF Pros & Cons
– Optimal (average response time) (+)
– Hard to predict future (-)
– Unfair (-)

SRTF Further discussion

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 19

Predicting the Length of the Next CPU Burst

• Adaptive: Changing policy based on past behavior
– CPU scheduling, in virtual memory, in file systems, etc
– Works because programs have predictable behavior

» If program was I/O bound in past, likely in future
» If computer behavior were random, wouldn’t help

• Example: SRTF with estimated burst length
– Use an estimator function on previous bursts:  

Let tn-1, tn-2, tn-3, etc. be previous CPU burst lengths.  
Estimate next burst τn = f(tn-1, tn-2, tn-3, …)
– Function f could be one of many different time series estimation schemes

(Kalman filters, etc)
– For instance,  

exponential averaging 
τn = αtn-1+(1-α)τn-1  
with (0<α≤1)

 

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 20

Multi-Level Feedback Scheduling

• Another method for exploiting past behavior (first use in CTSS)
– Multiple queues, each with different priority

» Higher priority queues often considered “foreground” tasks
– Each queue has its own scheduling algorithm

» e.g. foreground – RR, background – FCFS
» Sometimes multiple RR priorities with quantum increasing exponentially (highest:

1ms, next: 2ms, next: 4ms, etc)
• Adjust each job’s priority as follows (details vary)
– Job starts in highest priority queue
– If timeout expires, drop one level
– If timeout doesn’t expire, push up one level (or to top)

Long-Running Compute 
Tasks Demoted to  

Low Priority

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 21

Scheduling Details

• Result approximates SRTF:
– CPU bound jobs drop like a rock
– Short-running I/O bound jobs stay near top

• Scheduling must be done between the queues
– Fixed priority scheduling:
» serve all from highest priority, then next priority, etc.

– Time slice:
» each queue gets a certain amount of CPU time
» e.g., 70% to highest, 20% next, 10% lowest

Long-Running Compute 
Tasks Demoted to  

Low Priority

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 22

Scheduling Details

• Countermeasure: user action that can foil intent of  
the OS designers

– For multilevel feedback, put in a bunch of meaningless I/O to keep
job’s priority high

– Of course, if everyone did this, wouldn’t work!
• Example of Othello program:

– Playing against competitor, so key was to do computing at higher
priority the competitors.
» Put in printf ’s, ran much faster!

Long-Running Compute 
Tasks Demoted to  

Low Priority

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 23

Case Study: Linux O(1) Scheduler

• Priority-based scheduler : 140 priorities
– 40 for “user tasks” (set by “nice”), 100 for “Realtime/Kernel”
– Lower priority value ⇒ higher priority (for nice values)
– Highest priority value ⇒ Lower priority (for realtime values)
– All algorithms O(1)

» Timeslices/priorities/interactivity credits all computed when job finishes time slice
» 140-bit bit mask indicates presence or absence of job at given priority level

• Two separate priority queues: “active” and “expired”
– All tasks in the active queue use up their timeslices and get placed on the

expired queue, after which queues swapped
• Timeslice depends on priority – linearly mapped onto timeslice range

– Like a multi-level queue (one queue per priority) with different timeslice at
each level
– Execution split into “Timeslice Granularity” chunks – round robin through

priority

Kernel/Realtime Tasks User Tasks

0 100 139

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 24

O(1) Scheduler Continued
• Heuristics
– User-task priority adjusted ±5 based on heuristics

» p->sleep_avg = sleep_time – run_time
» Higher sleep_avg ⇒ more I/O bound the task, more reward (and vice versa)

– Interactive Credit
» Earned when a task sleeps for a “long” time
» Spend when a task runs for a “long” time
» IC is used to provide hysteresis to avoid changing interactivity for temporary

changes in behavior
– However, “interactive tasks” get special dispensation

» To try to maintain interactivity
» Placed back into active queue, unless some other task has been starved for too

long…
• Real-Time Tasks
– Always preempt non-RT tasks
– No dynamic adjustment of priorities
– Scheduling schemes:

» SCHED_FIFO: preempts other tasks, no timeslice limit
» SCHED_RR: preempts normal tasks, RR scheduling amongst tasks of same

priority

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 25

Linux Completely Fair Scheduler (CFS)
• First appeared in 2.6.23, modified in 2.6.24
• “CFS doesn't track sleeping time and doesn't use heuristics to

identify interactive tasks—it just makes sure every process gets a
fair share of CPU within a set amount of time given the number of
runnable processes on the CPU.”

• Inspired by Networking “Fair Queueing”
– Each process given their fair share of resources
– Models an “ideal multitasking processor” in which N processes

execute simultaneously as if they truly got 1/N of the processor
» Tries to give each process an equal fraction of the processor

– Priorities reflected by weights such that increasing a task’s priority by
1 always gives the same fractional increase in CPU time – regardless
of current priority

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 26

Real-Time Scheduling (RTS)
• Efficiency is important but predictability is essential:
– We need to predict with confidence worst case response times for systems
– In RTS, performance guarantees are:

» Task- and/or class centric and often ensured a priori
– In conventional systems, performance is:

» System/throughput oriented with post-processing (… wait and see …)
– Real-time is about enforcing predictability, and does not equal fast computing!!!

• Hard Real-Time
– Attempt to meet all deadlines
– EDF (Earliest Deadline First), LLF (Least Laxity First),  

RMS (Rate-Monotonic Scheduling), DM (Deadline Monotonic Scheduling)
• Soft Real-Time

– Attempt to meet deadlines with high probability
– Minimize miss ratio / maximize completion ratio (firm real-time)
– Important for multimedia applications
– CBS (Constant Bandwidth Server)

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 27

Example: Workload Characteristics

• Tasks are preemptable, independent with arbitrary arrival (=release)
times

• Tasks have deadlines (D) and known computation times (C)
• Example Setup:

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 28

Example: Round-Robin Scheduling Doesn’t Work

Time

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 29

• Tasks periodic with period P and computation C in each period: (,
) for each task

• Preemptive priority-based dynamic scheduling:
– Each task is assigned a (current) priority based on how close the

absolute deadline is (i.e. for each task!)
– The scheduler always schedules the active task with the closest absolute

deadline

• Schedulable when

𝑃𝑖
𝐶𝑖 𝑖

𝐷𝑡+1
𝑖 = 𝐷𝑡

𝑖 + 𝑃𝑖

𝑛

∑
𝑖=1 (𝐶𝑖

𝑃𝑖) ≤ 1

Earliest Deadline First (EDF)

0 5 10 15

)1,4(1 =T

)2,5(2 =T

)2,7(3 =T

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 30

Choosing the Right Scheduler

I Care About: Then Choose:

CPU Throughput FCFS

Avg. Response Time SRTF Approximation

I/O Throughput SRTF Approximation

Fairness (CPU Time) Linux CFS

Fairness – Wait Time to
Get CPU

Round Robin

Meeting Deadlines EDF

Favoring Important Tasks Priority

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 31

A Final Word On Scheduling
• When do the details of the scheduling policy and fairness really

matter?
– When there aren’t enough resources to go around 

• When should you simply buy a faster computer?
– (Or network link, or expanded highway, or …)
– One approach: Buy it when it will pay  

for itself in improved response time
» Perhaps you’re paying for worse response  

time in reduced productivity, customer angst,  
etc…
» Might think that you should buy a faster X  

when X is utilized 100%, but usually, response  
time goes to infinity as utilization⇒100%  

• An interesting implication of this curve:
– Most scheduling algorithms work fine in the “linear” portion of the load

curve, fail otherwise
– Argues for buying a faster X when hit “knee” of curve

Utilization

R
esponse
tim

e 100%

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 32

Summary (1 of 2)
• Scheduling Goals:

– Minimize Response Time (e.g. for human interaction)
– Maximize Throughput (e.g. for large computations)
– Fairness (e.g. Proper Sharing of Resources)
– Predictability (e.g. Hard/Soft Realtime)

• Round-Robin Scheduling:
– Give each thread a small amount of CPU time when it executes; cycle

between all ready threads
– Pros: Better for short jobs

• Shortest Job First (SJF)/Shortest Remaining Time First (SRTF):
– Run whatever job has the least amount of computation to do/least

remaining amount of computation to do
– Pros: Optimal (average response time)
– Cons: Hard to predict future, Unfair

• Multi-Level Feedback Scheduling:
– Multiple queues of different priorities and scheduling algorithms
– Automatic promotion/demotion of process priority in order to

approximate SJF/SRTF

2/25/2020 Kubiatowicz CS162 ©UCB Fall 2020 33

Summary (2 of 2)
• Lottery Scheduling:

– Give each thread a priority-dependent number of tokens (short
tasks⇒more tokens)

• Linux CFS Scheduler : Fair fraction of CPU
– Approximates a “ideal” multitasking processor

• Realtime Schedulers such as EDF
– Guaranteed behavior by meeting deadlines
– Realtime tasks defined by tuple of compute time and period
– Schedulability test: is it possible to meet deadlines with proposed set of

processes?

