CS162
Operating Systems and
Systems Programming

Lecture 6

Synchronization:
Locks and Semaphores

February | [th, 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the

bottom of that slide, in which case a full list of references is provided on the last
slide.

Recall: How does a thread get started?

Other Thread

_ SetupNewThread (tNew) {

A TCB[tNew] .regs.sp = newStackPtr;
'F; TCB[tNew] .regs.retpc =
ol |B(while) &ThreadRoot;
60 TCB[tNew] .regs.r0 = fcnPtr
x| |yield TCB[tNew] .regs.rl = fcnArgPtr
S }
Ny

New Thread

« How do we make a new thread?!
— Setup TCB/kernel thread to point at new user stack and ThreadRoot code
— Put pointers to start function and args in registers
— This depends heavily on the calling convention (i.e. RISC-V vs x86)
* Eventually run new thread() will select this TCB and return into beginning of
ThreadRoot ()
2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall:VWWhat does ThreadRoot () look like?

e ThreadRoot () Iisthe root for the thread routine:

ThreadRoot (fcnPTR, fcnArgPtr) {
DoStartupHousekeeping();
UserModeSwitch(); /* enter user mode */
Call fcnPtr(fcnArgPtr);
ThreadFinish();

} Thread Code

wn

e Startup Housekeeping aEC N EE) g
— Includes things like recording -
start time of thread v3

— Other statistics Running Stack 3

-

 Stack will grow and shrink with
execution of thread

* Final return from thread returns into ThreadRoot ()
which calls ThreadFinish ()

—ThreadFinish() wake up sleeping threads

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 3

Recall: Multiprocessing vs Multiprogramming
* Remember Definitions:
— Multiprocessing = Multiple CPUs
— Multiprogramming = Multiple Jobs or Processes
— Multrthreading = Multiple threads per Process
* What does it mean to run two threads “concurrently’?

— Scheduler is free to run threads in any order and interleaving: FIFO,
Random, ...

— Dispatcher can choose to run each thread to completion or time-slice
In big chunks or small chunks

A _>
Multiprocessin B
iprocessing - >
A B C
Multiprogramming A B ,C A B , C B

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 4

Recall: Process

Sequential
stream of
iInstructions

2/11/20

(Unix) Process

a

A(int tmp) {
if (tmp<2)
BO:
printf(tmp);
}
B({
CO:
}
CO {
AQ);

)
ACD;

G

N

Kubiatowicz CS162 ©UCB Spring 2020

Memory

Stack

/O State
(e.g, file,
socket
contexts)

J Resources
T

CPU state
(PC, SR
registers..)

OS

Stored in

J

Recall: Processes vs. Threads

Process | Process N * Switch overhead:
threads threads — Same process: low
[| [| . .
\J 1 (\[) — Different proc.: high
Mem. Mem. ,
* Protection
10 O
state C s - state — Same proc: |OW
— Different proc: high
CPU CPU CPU CPU .
state state state state ° Sharlﬂ g ove rh e ad
— Same proc:
20 o — Different proc:lh|gh
sched. — Note that sharing always
iInvolves at least a context
| thread at switch!
a time

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 6

Recall: Processes vs. Threads (Multi-Core)

Process |
threads
'\
Mem.
1O

state

CPU CPU

state state

’—

2/11720

threads

Process N J

'\

Mem.

IO
state

CPU
state

CPU
state

Kubiatowicz CS162 ©UCB Spring 2020

OS

4 threads at
a time

Switch overhead:
— Same process: low

— Different proc.:

Protection
— Same proc: low

— Different proc:

Sharing overhead
— Same proc: low
— Different proc:

— May not need to switch a
alll

Recall: Hyper-Threading

Process | Process N
threads threads
[| | .
\{ \J e Switch overhead
Mem. Mem. between hardware-
S S threads: very-low (done

state

CPU CPU
state state

hardware-threads

state

CPU
state

CPU
sched.

Core 2 Core 3

CPU
state

OS5

8 threads at a
time

ICPU

Core 4

(hyperthreading)
\\
\
Core |
2/1120

Kubiatowicz CS162 ©UCB Spring 2020

in hardware)

* Contention for ALUs/
FPUs may hurt
performance

Kernel versus User-Mode Threads

* We have been talking about kernel threads
— Native threads supported directly by the kernel
— Every thread can run or block independently
— One process may have several threads waiting on different things

* Downside of kernel threads: a bit expensive
— Need to make a crossing into kernel mode to schedule

 Lighter weight option: User level Threads

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020

User-Mode Threads
* Lighter weight option: ; ;

— User program provides scheduler and
thread package

<«——user thread

NN

— May have several user threads per kernel
thread

— User threads may be scheduled
non-preemptively relative to each other
(only switch on yield())

— Cheap

k) «— kernel thread

 Downside of user threads:
— When one thread blocks on I/O, all threads block
— Kernel cannot adjust scheduling among all threads

— Option: Scheduler Activations
» Have kernel inform user level when thread blocks. ..

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 10

Some Threading Models

Simple One-to-One ; ; «— user thread
Threading Model

(PINTOS!)
<«——Kernel threaol

D 3 3 <«—— user thread D <«— user threag
% D
k) «<— kernel thread k k k) «<——Kkernel thread
Many-to-One Many-to-Many

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 'l

Classification

threads
Per AS:

of addr

* Most operating systems have erther
— One or many address spaces
— One or many threads per address space

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 12

Recall: ATM Bank Server

/\ y 2

L 7 — 1

—— C—————
| E—

— p— P

OoOonon
OoOonon
OoOonon

i

N\

OoOonon
OoOonon
OoOonon

i

_/%3

—l

OoOonon
OoOonon
OoOonon

OoOonon
OoOonon
OoOonon

—l

* ATM server problem:
— Service a set of requests
— Do so without corrupting database
— Don't hand out too much money

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020

Recall: ATM bank server example

e Suppose we wanted to implement a server process to handle
requests from an ATM network:

BankServer () {
while (TRUE) {
RecelveRequest (&op, &acctld, &amount);
ProcessRequest (op, acctId, amount);

}
}

ProcessRequest (op, acctlId, amount) {
1f (op == deposit) Deposit(acctId, amount);
else 1f ..

}

Deposit (acctId, amount) {
acct = GetAccount (acctId); /* may use disk I/0 */
acct->balance += amount;
StoreAccount (acct); /* Involves disk I/0 */

}
* How could we speed this up?
— More than one request being processed at once
— Event driven (overlap computation and 1/O)
— Multiple threads (multi-proc, or overlap comp and 1/O)

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 |4

Recall: Can Threads Make This Easier?

* Threads yield overlapped I/O and computation without
"deconstructing” code into non-blocking fragments

— One thread per request

* Requests proceeds to completion, blocking as required:

Deposit (acctId, amount) {
acct = GetAccount (actId);/* May use disk I/0 */
acct->balance += amount;
StoreAccount (acct) ; /* Involves disk I/0O */

}

* Unfortunately, shared state can get corrupted:

Thread | Thread 2
load rl, acct->balance

load rl, acct->balance
add rl, amount?2
store rl, acct->balance
add rl, amountl
store rl, acct->balance

2/11720 Kubiatowicz CS162 ©UCB Spring 2020

Administrivia

* Anything?

2/11720

Kubiatowicz CS162 ©UCB Spring 2020

Recall: Atomic Operations

To understand a concurrent program, we need to know what the
underlying indivisible operations are!

Atomic Operation: an operation that always runs to completion or
not at all

— [t is indivisible: it cannot be stopped in the middle and state cannot be
modified by someone else in the middle

— Fundamental building block — if no atomic operations, then have no
way for threads to work together

On most machines, memory references and assignments (1.e. loads
and stores) of words are atomic

Many instructions are not atomic
— Double-precision floating point store often not atomic

— VAX and IBM 360 had an instruction to copy a whole array

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 |7

Motivating Example:“Too Much Milk”

* Great thing about OS's — analogy between problems in
OS and problems in real life

— Help you understand real life problems better
— But, computers are much stupider than people

* Example: People need to coordinate:

Time Person A Person B

3:00 Look in Fridge. Out of milk

3:05 Leave for store

3:10 Arrive at store Look in Fridge. Out of milk
3:15 Buy milk Leave for store

3:20 Arrive home, put milk away Arrive at store

3:25 Buy milk

3:30 Arrive home, put milk away

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 18

Definitions

* Synchronization: using atomic operations to ensure cooperation
between threads

— For now, only loads and stores are atomic

— We are going to show that its hard to build anything useful with only
reads and writes

* Mutual Exclusion: ensuring that only one thread does a particular
thing at a time

— One thread excludes the other while doing its task

* Critical Section: piece of code that only one thread can execute at
once. Only one thread at a time will get into this section of code

— Critical section is the result of mutual exclusion

— Critical section and mutual exclusion are two ways of describing the
same thing

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 19

More Definitions

* Lock: prevents someone from doing something

— Lock before entering critical section and ‘ s

before accessing shared data

— Unlock when leaving, after accessing shared data
— Wait if locked

» Important idea: all synchronization involves waiting

* For example: fix the milk problem by putting a key on the
refrigerator
— Lock it and take key If you are going to go buy milk

— Fixes too much: roommate angry if only wants O]

— Of Course —

knowTow to make a lock yet

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 20

Too Much Milk: Correctness Properties

* Need to be careful about correctness of concurrent programs,
since non-deterministic

— Impulse Is to start coding first, then when it doesn’t work, pull
hair out

— Instead, think first, then code

— Always write down behavior first

* What are the correctness properties for the “Too much milk”
problem???

— Never more than one person buys
— Someone buys if needed

* Restrict ourselves to use only atomic load and store
operations as building blocks

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 2|

Too Much Milk: Solution #1

* Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock™)
— Remove note after buying (kind of “unlock™)
— Don't buy If note (wait)
. Suppos)e a computer tries this (remember; only memory read/write are
atomic):

if (noMilk) {
1f (noNote) {
leave Note;
buy milk;
remove note;

}

}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Too Much Milk: Solution #1

* Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock™)
— Remove note after buying (kind of “unlock™)
— Don't buy If note (wait)
* Suppose a computer tries this (remember; only memory read/write are
atomic):
Thread A Thread B

if (noMilk) {

if (noMilk) {
if (noNote) {

if (noNote) {
leave Note;

buy Milk;
remove Note;

leave Note;
buy Milk;
remove Note;

}
}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 23

Too Much Milk: Solution #1

Use a note to avoid buying too much milk:
— Leave a note before buying (kind of “lock™)
— Remove note after buying (kind of “unlock™)
— Don't buy If note (wait)
Suppose a computer tries this (remember; only memory read/write are

atomic):
if (noMilk) {
1f (noNote) {
leave Note;
buy milk;
remove note;
}
}
e Result?

— Still too much milk but only occasionally!
— Thread can get context switched after checking milk and note but before
buying milk!
Solution makes problem worse since fails intermittently
— Makes It really hard to debug...
— Must work desprte what the dispatcher does!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 24

Too Much Milk: Solution #1'4

 Clearly the Note is not quite blocking enough
— Let's try to fix this by placing note first

* Another try at previous solution:

leave Note;

if (noMilk) {
if (noNote) {
buy milk;
}

remove Note;

}

* What happens here!
— Well, with human, probably nothing bad
— With computer: no one ever buys milk

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 25

Too Much Milk Solution #2

* How about labeled notes?
— Now we can leave note before checking

* Algorithm looks like this:

Thread A Thread B

leave note A; leave note B;

if (noNote B) { if (noNoteA) {
if (noMilk) { if (noMilk) {

buy Milk; buy Milk;

} }

} }

remove note Aj; remove note Bj;

 Does this work?

* Possible for nerther thread to buy milk

— Context switches at exactly the wrong times can lead each to think
that the other is going to buy

* Really insidious:
— Extremely unlikely this would happen, but will at worse possible time
— Probably something like this in UNIX

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Too Much Milk Solution #2: problem!

* I'm not getting milk, You're getting milk
* This kind of lockup is called “starvation!”

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 27

Too Much Milk Solution #3

* Here Is a possible two-note solution:

Thread A Thread B

leave note A; leave note B;

while (note B) {\\X if (noNote A) {\\Y
do nothing; if (noMilk) {

} buy milk;

if (noMilk) { }
buy milk; }

} remove note B;

remove note A;
* Does this work! Yes. Both can guarantee that:
— It is safe to buy, or
— Other will buy, ok to quirt
* At X:
— If no note B, safe for A to buy,
— Otherwise wait to find out what will happen

« AtLY:
— If no note A, safe for B to buy
— Otherwise, A is either buying or waiting for B to quit

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Case |

* "leave note A" happens before“if (noNote A)"

2/11/20

leave note A; -\E@EEEE\~ leave note B;

while (note B) {\\X belore™——| if (noNote A) {\\F
do nothing; if (noMilk) {

}i buy milk;

}

}

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

Kubiatowicz CS162 ©UCB Spring 2020 29

Case |

* “leave note A"happensbefore”if (noNote A)”

2/11/20

leave note A; -\E@EEEE\~ leave note B;

while (note B) {\\X belore——| if (noNote A) {\\}
do nothing; if (noMilk) {

}s buy milk;

}

}

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

Kubiatowicz CS162 ©UCB Spring 2020 30

Case |

* “leave note A"happensbefore”if (noNote A)”

leave note A; -\E@EEEE\~ leave note B;
while (note B) {\\X belore——| if (noNote A) {\\}
do nothing; if (noMilk) {
}; buy milk;
L,
1Wait for note) }
1B to be
Iremoved _ _---—remove note Bj;
if (noMilk) {
buy milk; }

}

remove note A;

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 31

Case 2

* “1f (noNote A)'" happens before “leave note A"

2/11/20

leave note B:

h&ﬁd@d if (noNote A) {\\f
leave note A; T el if (noMilk) {
while (note B) {\\X buy milk;
do nothing; }
}i !

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

Kubiatowicz CS162 ©UCB Spring 2020 32

Case 2

* “if (noNote A)"happens before “leave note A"

2/11/20

leave note B:

h&ﬁd@d if (noNote A) {\\¥
leave note A; oo L (noMilk) {
while (note B) {\\X o1y HIELLES
do nothing; }
}i !

remove note B;

if (noMilk) {
buy milk; }
}

remove note A;

Kubiatowicz CS162 ©UCB Spring 2020 33

Case 2

* “if (noNote A)"happens before “leave note A"

2/11/20

leave note B:

if (noNote A) {\\

vmppened

pefore

leave note A:

while (note B) {\\X
do nothing;

:WMR&WHOE .
B to be _-"
removed .~

if (noMilk) {
buy milk; }
}

remove note A;

if (noMilk) {
buy milk;

}
}

_~- remove note Bj;

Kubiatowicz CS162 ©UCB Spring 2020

Solution #3 discussion

* QOur solution protects a single “Critical-Section” piece of code for each
thread:

1f (noMilk) {
buy milk;
}

* Solution #3 works, but it's really unsatisfactory

— Really complex — even for this simple an example
» Hard to convince yourself that this really works

— Als code is different from B's — what if lots of threads!?
» Code would have to be slightly different for each thread

— While A Is waiting, it is consuming CPU time
» This is called “busy-warting”
* There’s a better way
— Have hardware provide higher-level primitives than atomic load & store
— Build even higher-level programming abstractions on this hardware support

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 35

Too Much Milk: Solution #4

* Suppose we have some sort of implementation of a lock
—lock.Acquire () — wait until lock is free, then grab

—lock.Release() — Unlock, waking up anyone waiting

— These must be atomic operations — If two threads are waiting for the
lock and both see it's free, only one succeeds to grab the lock

* Then, our milk problem is easy:

milklock.Acquire();
if (nomilk)

buy milk;
milklock.Release();

* Once again, section of code between Acquire() and
Release () called a"Critical Section”

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 36

Where are we going with synchronization?

* We are going to implement various higher-level synchronization
primrtives using atomic operations

— Everything is pretty painful if only atomic primitives are load and store
— Need to provide primitives useful at user-level

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 37

How to Implement Locks!?

* Lock: prevents someone from doing something

— Lock before entering critical section and
before accessing shared data

— Unlock when leaving, after accessing shared data
— Wart if locked

» Important idea: all synchronization involves waiting
» Should sleep if waiting for a long time

* Atomic Load/Store: get solution like Milk #3
— Pretty complex and error prone

* Hardware Lock instruction
— Is this a good idea?
— What about putting a task to sleep!?

» What is the interface between the hardware and scheduler?
— Complexity?

» Done in the Intel 432

» Each feature makes HW more complex and slow

°

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 38

Naive use of Interrupt Enable/Disable

* How can we build multi-instruction atomic operations!
— Recall: dispatcher gets control in two ways.
» Internal: Thread does something to relinquish the CPU
» External: Interrupts cause dispatcher to take CPU
— On a uniprocessor, can avoid context-switching by:
» Avoiding internal events
» Preventing external events by disabling interrupts

« Consequently, naive ImBIementann of locks:
LockAcquire { disable Ints;
LockRelease { enable Ints; }
* Problems with this approach:

— Can't let user do this! Consider following:

LockAcquire () ;
While (TRUE) {;}

— Real-Time system—no guarantees on timing!
» Critical Sections might be arbrtrarily long

— What happens with I/O or other important events?
» "Reactor about to meltdown. Help?”

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 39

Better Implementation of Locks by Disabling Interrupts

* Key idea: maintain a lock variable and impose mutual exclusion
only during operations on that variable

int value = FREE; '@

Acquire() {
disable interrupts;

Release() {
disable interrupts;

if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue
Go to sleep(); Place on ready queue;
// Enable interrupts? } else {
} else { value = FREE;
- . }
) value BUSY; enable interrupts;

}

enable interrupts;

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 40

New Lock Implementation: Discussion

* Why do we need to disable interrupts at all?
— Avoid interruption between checking and setting lock value
— Otherwise two threads could think that they both have lock

Acquire() {
disable interrupts;

if (value == BUSY) { ™
put thread on wait queue;
Go to sleep(); Critical
// Enable interrupts? > .

} else { Section
value = BUSY;

} -

enable interrupts;

* Note: unlike previous solution, the critical section (inside
Acquire()) is very short

— User of lock can take as long as they like in their own critical section:
doesn’t impact global machine behavior

— Critical interrupts taken in timel!
2111120 Kubiatowicz CS162 ©@UCB Spring 2020 41

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?

2/11720

Acquire() {

disable interrupts;

if (value == BUSY) {
put thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}

enable interrupts;

Kubiatowicz CS162 ©UCB Spring 2020

42

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
pu% thread on wait queue;
Go to sleep();
} else {
value = BUSY;
}

enable interrupts;

Enable Position

* Before Putting thread on the wait queue?

2/11720 Kubiatowicz CS162 ©UCB Spring 2020

43

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?

Enable Position

Acquire() {

disable interrupts;
if (value == BUSY) {

pu% thread on wait queue;
Go to sleep();

} else {
value = BUSY;

}

enable interrupts;

.) .
» Before Putting thread on the wart queue?
— Release can check the queue and not wake up thread

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020

44

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?

Enable Position

Acquire() {

disable interrupts;
if (value == BUSY) {
pu; thread on wait queue;

Go to sleep();
} else {
value = BUSY;

}

enable interrupts;

}
* Before Putting thread on the wait queue?
— Release can check the queue and not wake up thread
* After putting the thread on the wart queue

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020

45

Interrupt Re-enable in Going to Sleep

* What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
Enable Position put thread on wait queue;

Go to sleep();

} else {
value = BUSY;

}

enable interrupts;

}
* Before Putting thread on the wait queue?
— Release can check the queue and not wake up thread
* After putting the thread on the wart queue

— Release puts the thread on the ready queue, but the thread still thinks it
needs to go to sleep

— Misses wakeup and still holds lock (deadlock!)

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 46

* What about re-enabling ints when going to sleep?
Acquire() {
disable interrupts;
if (value == BUSY) {
put thread on wait queue;

Enable Position Go to sleep();
} else {

value = BUSY;

}

enable interrupts;

}
* Before Putting thread on the wait queue?
— Release can check the queue and not wake up thread
* After putting the thread on the wart queue

— Release puts the thread on the ready queue, but the thread still thinks it
needs to go to sleep

— Misses wakeup and still holds lock (deadlock!)
* Want to put it after sleep (). But — how!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 47

How to Re-enable After Sleep()?

* In scheduler; since interrupts are disabled when you call sleep:

— Responsibility of the next thread to re-enable ints

— When the sleeping thread wakes up, returns to acquire and
re-enables interrupts

Thread A Thread B

disable ints
sleep

sleep return
SWitch enable ints

tdisable int
contex: __ sleep
sleep return “switch

enable ints

2/11720 Kubiatowicz CS162 ©UCB Spring 2020

48

Atomic Read-Modify-Write Instructions

* Problems with previous solution:
— Can't give lock implementation to users
— Doesn't work well on multiprocessor

» Disabling interrupts on all processors requires messages and would be very
time consuming

* Alternative: atomic instruction sequences
— These instructions read a value and write a new value atomically
— Hardware is responsible for implementing this correctly
» on both uniprocessors (not too hard)
» and multiprocessors (requires help from cache coherence protocol)

— Unlike disabling interrupts, can be used on both uniprocessors and
multiprocessors

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 49

Examples of Read-Modify-Write

e testé&set (&address) { /* most architectures */
result = M[address]; // return result from “address” and
M[address] = 1; // set value at “address” to 1

return result;

}

e swap (&address, register) { /* x86 */
temp = M[address]; // swap register’s value to
M[address] = register; // value at “address”

register = temp;
}

e compare&swap (&address, regl, reg2) { /* 68000 */
if (regl == M[address]) { // If memory still == reql,

M[address] = reg2; // then put reg2 => memory
return success;
} else { // Otherwise do not change memory

return failure;

}
}
e load-linkedé&store-conditional (&address) { /* R4000, alpha */

loop:
1ll rl, M[address];
movi r2, 1; // Can do arbitrary computation
sc r2, M[address];
beqz r2, loop;

2/11720 Kubiatowicz CS162 ©UCB Spring 2020

50

Using of Compare&Swap for queues
e compare&swap (&address, regl, reg2) { /* 68000 */

1f (regl == M[address]) {
M[address] = reg2;
return success;

} else {

return failure;

}

Here is an atomic add to linked-list function:
addToQueue (&object) {

do { // repeat until no conflict
1d rl, M[root] // Get ptr to current head
st rl, M[object] // Save link in new object

} until (compareé&swap (&root,rl,object));

|_root | next [~ next
next
New
Object
2/11/20 —‘Ilz'b—u atowicz CS162 ©UCB Spring 2020

51

Implementing Locks with test&set
* Another flawed, but simple solution:

int value = 0; // Free

Acquire() {
while (test&set(value)); // while busy

}

Release() {
value = 0;

}
* Simple explanation:

— If lock is free, test&set reads O and sets value=1, so lock is now busy. It
returns O so while exits.

— If lock Is busy, test&set reads | and sets value=1 (no change)
[t returns |, so while loop continues.

— When we set value = 0, someone else can get lock.

* Busy-Warting: thread consumes cycles while waiting

— For multiprocessors: every test&set() is a write, which makes value
ping-pong around in cache (using lots of network BW)
211120 Kubiatowicz CS162 ®UCB Spring 2020 52

Problem: Busy-WVaiting for Lock

Positives for this solution
— Machine can recelive interrupts
— User code can use this lock
— Works on a multiprocessor

Negatives
— This is very inefficient as thread will consume cycles waiting
— Wiarting thread may take cycles away from thread holding lock (no one
wins!)
— Priority Inversion: If busy-waiting thread has higher priority than thread
holding lock = no progress!

Priority Inversion problem with original Martian rover

For semaphores and monitors, waiting thread may wait for an
arbrtrary long time!
— Thus even If busy-waiting was OK for locks, definitely not ok for other
primrtives
— Homework/exam solutions should avoid busy-waiting!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 53

Multiprocessor Spin Locks: test&test&set

* A better solution for multiprocessors:

int mylock = 0; // Free
Acquire () {
do {

while (mylock) ; // Wait until might be free
} while (testé&set (&mylock)); // exit if get lock

Release () {
mylock = 0;
}

* Simple explanation:
— Wait until lock might be free (only reading — stays in cache)
— Then,try to grab lock with test&set
— Repeat If fail to actually get lock

* |Issues with this solution:

— Busy-Waiting: thread still consumes cycles while waiting
» However, it does not impact other processors!

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 54

Better Locks using test&set

* Can we build test&set locks without busy-waiting?
— Can't entirely, but can minimize!
— Idea: only busy-wart to atomically check lock value
int guard = 0;
int value = FREE;

O

Acquire() { Release() {
// Short busy-wait time // Short busy-wait time
while (testé&set(guard)); while (test&set(guard));
if (value == BUSY) { if anyone on wait queue {
: take thread off wait queue
put thread on wait queue;
Place on ready queue;
go to sleep() & guard = 0; } else {
t else { value = FREE;
value = BUSY; }

guard = 0; guard = 0;

}

* Note: sleep has to be sure to reset the guard variable

— Why can’t we do it just before or just after the sleep!?
211120 Kubiatowicz CS162 ©@UCB Spring 2020 55

Recall: Locks using Interrupts vs. test&set

Compare to “disable interrupt” solution

int value = FREE; ‘@

Acq?ire() { Release () {

disable interrupts; disable interrupts;

if (value == BUSY) { if (anyone on wait queue) {
put thread on wait queue; take thread off wait queue
Go to sleep():; Place on ready queue;
// Enable interrupts? } else {

} else { value = FREE ;
value = BUSY; }

} enable interrupts;
enable interrupts; }

}

Basically we replaced:
— disable interrupts - while (testé&set(guard));
— enable interrupts - guard = 0;

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 56

Recap: Locks using interrupts

int value = 0;
—=bAcquire () {
// Short busy-wait time
hequize) Sisebis interrpts;
isable i ,- i .
} disable interrupts put thread on wait-queue;
go to sleep() && Enab Ints
} else {
value = 1;
enable interrupts;

lock.Acquire() ;
critical section; }

lock.Release() ; =

Release () { ‘—FRelease() {
enable interrupts; // Short busy-wait time
} disable interrupts;

if anyone on wait queue {
take thread off wait-queue

(If one thread in critical h Place on ready queue;
section, no other } iﬁe{: 0;
activity (including OS) } _

enable interrupts;
\can run! Ji

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 57

Recap: Locks using test & set

int guard = 0;
int value = 0;
——pAcquire () {
// Short busy-wait time
while (testé&set (guard)) ;
if (value == 1) {
put thread on wait-queue;
go to sleep()& guard = 0;

int value = 0;
Acquire() {

//ﬂ while (testé&set (value)) ;
}

} else {

lock.Acquire() ; value = 1;

o guard = 0;

critical section; }

}
lock.Release() ; =
elease () { ‘—FRelease() {
value = 0; // Short busy-wait time
} while (testé&set(guard));

if anyone on wait queue {
take thread off wait-queue

~ N\ Place on ready queue;
Threads waiting to }oelse {
.) value = 0;
enter critical section }
busy-wait guard = 0;
\§ /) 1

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 58

Higher-level Primitives than Locks

» Goal of last couple of lectures:

— What is right abstraction for synchronizing threads that share
memory?

— Want as high a level primitive as possible

* Good primitives and practices important!

— Since execution is not entirely sequential, really hard to find bugs,
since they happen rarely

— UNIX is pretty stable now, but up until about mid-80s
(10 years after started), systems running UNIX would crash every
week or so — concurrency bugs

* Synchronization is a way of coordinating multiple concurrent
activities that are using shared state

— This lecture and the next presents some ways of structured sharing

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 59

Semaphores g‘

* Semaphores are a kind of generalized lock J
— First defined by Dijkstra in late 60s
— Main synchronization primritive used in original UNIX
* Definition: a Semaphore has a non-negative integer value and
supports the following two operations:

— P():an atomic operation that waits for semaphore to become positive,
then decrements it by |

» Think of this as the wait() operation

— V(): an atomic operation that increments the semaphore by |, waking
up a waiting B if any
» This of this as the signal() operation

— Note that P() stands for “proberen” (to test) and V() stands for
“verhogen” (to increment) in Dutch

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 60

Semaphores Like Integers Except

* Semaphores are like integers, except
— No negative values

— Only operations allowed are P andV — can’t read or write value, except
to set it inrtially

— Operations must be atomic
» Two P's together can't decrement value below zero

» Similarly, thread going to sleep in P won't miss wakeup fromV — even if
they both happen at same time

* Semaphore from railway analogy
— Here is a semaphore initialized to 2 for resource control:

3
E—— —

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 6l

Two Uses of Semaphores

Mutual Exclusion (initial value = |
* Also called "Binary Semaphore”.

 Can be used for mutual exclusion:

semaphore.P () ;
// Critical section goes here
semaphore.V () ;

Scheduling Constraints (initial value = 0)

* Allow thread | to wart for a signal from thread 2
— thread 2 schedules thread | when a given event occurs

* Example: suppose you had to implement Thread|oin which must
walit for thread to terminate:

Initial value of semaphore = 0

ThreadJoin
semaphore.P () ;

}

ThreadFinis
semaphore.V () ;

}

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 62

Producer-Consumer with a Bounded Buffer

Producer |—)-—) Consumer
Problem Definition

— Producer puts things into a shared buffer
— Consumer takes them out

— Need synchronization to coordinate producer/consumer

Don’t want producer and consumer to have to work in lockstep, so

/’; \ ‘I_nirsrnf

put a fixed-size buffer between them
— Need to synchronize access to this buffer
— Producer needs to wait if buffer is full
— Consumer needs to wait if buffer is empty

—~—
Z

DL,

4

4

—

* Example |: GCC compiler
—cpp | ccl | cc2 | as | 1d

* Example 2: Coke machine
— Producer can put limited number of Cokes in machine
— Consumer can't take Cokes out if machine is empty

DO

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 63

Correctness constraints for solution

e Correctness Constraints:

— Consumer must wait for producer to fill buffers, if none full (scheduling
constraint)

— Producer must wait for consumer to empty buffers, if all full (scheduling
constraint)

— Only one thread can manipulate buffer queue at a time (mutual
exclusion)

* Remember why we need mutual exclusion

— Because computers are stupid

— Imagine if in real life: the delivery person is filling the machine and
somebody comes up and tries to stick their money into the machine

* General rule of thumb:
Use a separate semaphore for each constraint

— Semaphore fullBuffers; // consumer’s constraint
— Semaphore emptyBuffers;// producer’s constraint
— Semaphore mutex; // mutual exclusion

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 64

Full Solution to Bounded Buffer

Semaphore fullSlots = 0; // Initially, no coke

Semaphore emptySlots = bufSize;
// Initially, num empty slots

Semaphore mutex = 1; // No one using machine

Producer (1item) {
emptySlots.P();
mutex.P () ;
Enqueue (item) ;
mutex.V () ;
fullSlots.V () ;

Wait until space
Wait until machine free

~ O
~ O

Tell consumers there 1is
more coke

~
~ O

}

Consumer () {

fullSlots.P(); // Check 1f there’s a coke
mutex.P () ; // Wait until machine free
item = Dequeue()

mutex.V () ;

emptySlots.V () ; // tell producer need more

return item;

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 65

2/11/20

Discussion about Solution

Why asymmetry?

— Producer does: emptyBuffer.P (),

Decrease # of
empty slots

v

Increase # of
occupled slots

~—
fullBuffer.V()

— Consumer does: fullBuffer&() , emptyBu;\er V()

s order of P's important?

s order of V's important?

VVhat It we have Z producers

or 2 consumers!?

Y

Decrease # of
occupled slots

Increase # of
empty slots

Producer (item) {

P mutex.P () ;
<:>ﬁmptySlots.P();

Enqueue (item) ;
mutex.V () ;

fullSlots.V () ;

}

Consumer () {
fullSlots.P();

mutex.P () ;
item

= Dequeue () ;

mutex.V () ;

ol ! o]

emptySlots.V () ;

return item;

}
Kubiatowicz CS162 ©UCB Spring 2020

66

Motivation for Monitors and Condition Variables

e Semaphores are a huge step up; just think of trying to do the
bounded buffer with only loads and stores

— Problem is that semaphores are dual purpose:
» They are used for both mutex and scheduling constraints

» Example: the fact that flipping of P's in bounded buffer gives deadlock
Is not immediately obvious. How do you prove correctness to
someone!

e Cleaner idea: Use locks for mutual exclusion and condition variables
for scheduling constraints

* Definition: Monitor: a lock and zero or more condition variables
for managing concurrent access to shared data

— Some languages like Java provide this natively
— Most others use actual locks and condition variables

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 6/

shared data

lqueues associated wﬁh{ ——I:l—»lj—-I:H
X, y conditions

~—

operations

initialization
code

* Lock: the lock provides mutual exclusion to shared data
— Always acquire before accessing shared data structure
— Always release after finishing with shared data
— Lock inttially free
» Condition Variable: a queue of threads walrting for something inside a
critical section

— Key idea: make it possible to go to sleep inside critical section by atomically
releasing lock at time we go to sleep

— Contrast to semaphores: Can't wait inside critical section

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 68

Simple Monitor Example (version |)

* Here is an (infinite) synchronized queue

Lock 1lock;
Queue queue;

AddToQueue(item) {

lock.Acquire(); // Lock shared data
queue.engueue(item); // Add item
lock.Release(); // Release Lock

}

RemoveFromQueue () {
lock.Acquire(); // Lock shared data
item = queue.dequeue();// Get next item or null
lock.Release(); // Release Lock
return(item); // Might return null

}
* Not very interesting use of “Monitor”

— It only uses a lock with no condition variables
— Cannot put consumer to sleep if no work!

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 69

Condition Variables

* How do we change the RemoveFromQueue() routine to wait until
something is on the queue!

— Could do this by keeping a count of the number of things on the queue
(with semaphores), but error prone

« Condition Variable: a queue of threads waiting for something inside a
crrtical section

— Key idea: allow sleeping inside critical section by atomically releasing lock
at time we go to sleep

— Contrast to semaphores: Can't wait inside critical section

* Operations:

—Wait (&lock):Atomically release lock and go to sleep. Re-acquire
lock later; before returning.

— Signal ():Wake up one waiter, if any
—Broadcast ():Wake up all warters

* Rule: Must hold lock when doing condition variable ops!

— In Birrell paper, he says can perform signal() outside of lock — IGNORE
HIM (this is only an optimization)

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 /0

Complete Monitor Example (with condition variable)

* Here is an (infinite) synchronized queue

Lock lock;
Condition dataready;
Queue queue;

AddToQueue(item) {

lock.Acquire(); // Get Lock
queue.engqueue(item); // Add item
dataready.signal(); // Signal any waiters
lock.Release(); // Release Lock

}

RemoveFromQueue () {
lock.Acquire(); // Get Lock
while (queue.isEmpty()) {
dataready.wait(&lock); // If nothing, sleep

}
item = gqueue.dequeue(); // Get next item
lock.Release(); // Release Lock

return(item);

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 71

Mesa vs. Hoare monitors

* Need to be careful about precise definition of signal and wait.
Consider a piece of our dequeue code:

while (queue.ilsEmpty()) {
dataready.wait (&lock); // If nothing, sleep
}

item = queue.dequeue(); // Get next item
— Why didn't we do this!

1f (queue.isEmpty()) {
dataready.wait (&lock); // If nothing, sleep
}

item = queue.dequeue(); // Get next item

* Answer: depends on the type of scheduling

— Hoare-style (most textbooks):
» Signaler gives lock, CPU to waiter; waiter runs immediately

» Walrter gives up lock, processor back to signaler when it exits critical section
or if it waits again

— Mesa-style (most real operating systems):
» Signaler keeps lock and processor
» Wailter placed on ready queue with no special priority
» Practically, need to check condition again after wait

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 72

Summary (1/2)

* Important concept: Atomic Operations
— An operation that runs to completion or not at all
— These are the primitives on which to construct various synchronization
primrtives
* Talked about hardware atomicity primitives:

— Disabling of Interrupts, test&set, swap, compare&swap,
load-locked & store-conditional

 Showed several constructions of Locks

— Must be very careful not to waste/tie up machine resources
» Shouldn't disable interrupts for long
» Shouldn't spin wait for long

— Key idea: Separate lock variable, use hardware mechanisms to protect
modifications of that variable

2/11/20 Kubiatowicz CS162 ©UCB Spring 2020 /3

Summary (2/2)

* Semaphores: Like integers with restricted interface

— Two operations:
» P ():Wait If zero; decrement when becomes non-zero
» V():Increment and wake a sleeping task (if exists)
» Can initialize value to any non-negative value

— Use separate semaphore for each constraint
* Monitors: A lock plus one or more condition variables
— Always acquire lock before accessing shared data

— Use condition variables to wait inside critical section
» Three Operations:Wait(),Signal(),and Broadcast()

2/11720 Kubiatowicz CS162 ©UCB Spring 2020 74

