
CS162 
Operating Systems and 
Systems Programming 

Lecture 22 
  

Distributed Decision Making (Finished), 
TCP/IP Networking, RPC 

April 21st, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the
bottom of that slide, in which case a full list of references is provided on the last
slide.

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 2

Recall: Distributed Consensus Making
• Consensus problem

– All nodes propose a value

– Some nodes might crash and stop responding

– Eventually, all remaining nodes decide on the same value from set of

proposed values

• Distributed Decision Making

– Choose between “true” and “false”

– Or Choose between “commit” and “abort”

• Equally important (but often forgotten!): make it durable!

– How do we make sure that decisions cannot be forgotten?

» This is the “D” of “ACID” in a regular database

– In a global-scale system?

» What about erasure coding or massive replication?

» Like BlockChain applications!

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 3

Recall: Two-Phase Commit
• Since we can’t solve the General’s Paradox (i.e. simultaneous action),

let’s solve a related problem

– Distributed transaction: Two machines agree to do something, or not do it,

atomically
• Two-Phase Commit protocol:

– Prepare Phase:
» The global coordinator requests that all participants will promise to commit

or rollback the transaction

» Participants record promise in log, then acknowledge

» If anyone votes to abort, coordinator writes “Abort” in its log and tells

everyone to abort; each records “Abort” in log

– Commit Phase:

» After all participants respond that they are prepared, then the coordinator
writes “Commit” to its log

» Then asks all nodes to commit; they respond with ack

» After receive acks, coordinator writes “Got Commit” to log

• Persistent stable log on each machine:

– Help nodes remember what they have said that they would do

» If a machine crashes, when it wakes up it first checks its log to recover state
of world at time of crash

» Log can be used to complete this process such that all machines either
commit or don’t commit

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 4

Two-Phase Commit: Setup

• One machine (coordinator) initiates the protocol

• It asks every machine to vote on transaction

• Two possible votes:

– Commit

– Abort

• Commit transaction only if unanimous approval

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 5

Two-Phase Commit: Preparing

Agree to Commit

• Machine has guaranteed that it will accept transaction

• Must be recorded in log so machine will remember this

decision if it fails and restarts

Agree to Abort

• Machine has guaranteed that it will never accept this

transaction

• Must be recorded in log so machine will remember this

decision if it fails and restarts

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 6

Two-Phase Commit: Finishing

Commit Transaction

• Coordinator learns all machines have agreed to commit

• Record decision to commit in local log

• Apply transaction, inform voters

Abort Transaction

• Coordinator learns at least on machine has voted to abort
• Record decision to abort in local log

• Do not apply transaction, inform voters

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 7

Two-Phase Commit: Finishing

Commit Transaction

• Coordinator learns all machines have agreed to commit

• Record decision to commit in local log

• Apply transaction, inform voters

Abort Transaction

• Coordinator learns at least on machine has voted to abort
• Record decision to abort in local log

• Do not apply transaction, inform voters

Be
cau

se
no

ma
chi

ne
can

 ta
ke

bac
k i

ts
dec

isio
n,

exa
ctl

y o
ne

of
the

se
wil

l h
app

en

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 8

Detailed Algorithm

Coordinator sends VOTE-REQ to all
workers

– Wait for VOTE-REQ from coordinator

– If ready, send VOTE-COMMIT to

coordinator

– If not ready, send VOTE-ABORT to

coordinator

– And immediately abort

– If receive VOTE-COMMIT from all N
workers, send GLOBAL-COMMIT to
all workers

– If don’t receive VOTE-COMMIT from
all N workers, send GLOBAL-ABORT
to all workers

– If receive GLOBAL-COMMIT then
commit

– If receive GLOBAL-ABORT then abort

Coordinator Algorithm Worker Algorithm

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 9

Failure Free Example Execution

coordinator

worker 1

time

VOTE-
REQ

VOTE-
COMMIT

GLOBAL-
COMMIT

worker 2

worker 3

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 10

State Machine of Coordinator

• Coordinator implements simple state machine:
INIT

WAIT

ABORT COMMIT

Recv: START

Send: VOTE-REQ

Recv: VOTE-ABORT

Send: GLOBAL-ABORT

Recv: all VOTE-COMMIT

Send: GLOBAL-COMMIT

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 11

State Machine of Workers

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ

Send: VOTE-ABORT Recv: VOTE-REQ

Send: VOTE-COMMIT

Recv:

GLOBAL-ABORT

Recv:

GLOBAL-COMMIT

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 12

Dealing with Worker Failures

• Failure only affects states in which the coordinator is
waiting for messages

• Coordinator only waits for votes in “WAIT” state

• In WAIT, if doesn’t receive N votes, it times out and sends

GLOBAL-ABORT

INIT

WAIT

ABORT COMMIT

Recv: START

Send: VOTE-REQ

Recv: VOTE-ABORT

Send: GLOBAL-ABORT

Recv: VOTE-COMMIT

Send: GLOBAL-COMMIT

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 13

Example of Worker Failure

coordinator

worker 1

time

VOTE-REQ

VOTE-
COMMIT

GLOBAL-
ABORT

INIT

WAIT

ABORT COMM timeout

worker 2

worker 3

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 14

Dealing with Coordinator Failure

• Worker waits for VOTE-REQ in INIT

– Worker can time out and abort (coordinator handles it)

• Worker waits for GLOBAL-* message in READY

– If coordinator fails, workers must BLOCK waiting for coordinator

to recover and send GLOBAL_* message

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ

Send: VOTE-ABORT

Recv: VOTE-REQ

Send: VOTE-COMMIT

Recv:

GLOBAL-ABORT

Recv:

GLOBAL-COMMIT

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 15

Example of Coordinator Failure #1

coordinator

worker 1

VOTE-
REQ

VOTE-
ABORT

timeout

INIT

READY

ABORT COMM

timeout

timeout

worker 2

worker 3

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 16

Example of Coordinator Failure #2

VOTE-
REQ

VOTE-
COMMIT

INIT

READY

ABORT COMM

block waiting for
coordinator

restarted

GLOBAL-
ABORT

coordinator

worker 1

worker 2

worker 3

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 17

Durability

• All nodes use stable storage to store current state

– stable storage is non-volatile storage (e.g. backed by disk) that

guarantees atomic writes.

– E.g.: SSD, NVRAM

• Upon recovery, nodes can restore state and resume:

– Coordinator aborts in INIT, WAIT, or ABORT
– Coordinator commits in COMMIT
– Worker aborts in INIT, ABORT
– Worker commits in COMMIT
– Worker “asks” Coordinator in READY

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 18

Blocking for Coordinator to Recover
• A worker waiting for global decision can ask fellow workers about

their state

– If another worker is in ABORT or  

COMMIT state then coordinator  
must have sent GLOBAL-*

» Thus, worker can safely  
abort or commit, respectively

– If another worker is still in  
INIT state then both workers  
can decide to abort

– If all workers are in ready, need to BLOCK (don’t know if
coordinator wanted to abort or commit)

INIT

READY

ABORT COMMIT

Recv: VOTE-REQ

Send: VOTE-ABORT

Recv: VOTE-REQ

Send: VOTE-COMMIT

Recv: GLOBAL-ABORT Recv: GLOBAL-COMMIT

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 19

Distributed Decision Making Discussion (1/2)

• Why is distributed decision making desirable?

– Fault Tolerance!

– A group of machines can come to a decision even if one or more

of them fail during the process

– After decision made, result recorded in multiple places

• Why is 2PC not subject to the General’s paradox?

– Because 2PC is about all nodes eventually coming to the same

decision – not necessarily at the same time!
– Allowing us to reboot and continue allows time for collecting and

collating decisions

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 20

Distributed Decision Making Discussion (2/2)

• Undesirable feature of Two-Phase Commit: Blocking

– One machine can be stalled until another site recovers:

» Site B writes "prepared to commit" record to its log, sends a "yes"
vote to the coordinator (site A) and crashes

» Site A crashes

» Site B wakes up, check its log, and realizes that it has voted "yes" on

the update. It sends a message to site A asking what happened. At
this point, B cannot decide to abort, because update may have
committed

» B is blocked until A comes back

– A blocked site holds resources (locks on updated items, pages

pinned in memory, etc) until learns fate of update

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 21

Alternatives to 2PC
• Three-Phase Commit: One more phase, allows nodes to fail or block

and still make progress.
• PAXOS: An alternative used by Google and others that does not have

2PC blocking problem

– Develop by Leslie Lamport (Turing Award Winner)

– No fixed leader, can choose new leader on fly, deal with failure

– Some think this is extremely complex!

• RAFT: PAXOS alternative from John Osterhout (Stanford)

– Simpler to describe complete protocol

• What happens if one or more of the nodes is malicious?

– Malicious: attempting to compromise the decision making

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 22

Byzantine General’s Problem

• Byazantine General’s Problem (n players):

– One General and n-1 Lieutenants

– Some number of these (f) can be insane or malicious

• The commanding general must send an order to his n-1 lieutenants such
that the following Integrity Constraints apply:

– IC1: All loyal lieutenants obey the same order

– IC2: If the commanding general is loyal, then all loyal lieutenants obey the

order he sends

General

Attack!

Attac
k!

Attack!
Retreat!

Attack!

Retreat!
Attack!

Attack!
Attack!

Lieutenant

Lieutenant

Lieutenant
Malicious!

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 23

Byzantine General’s Problem (con’t)
• Impossibility Results:

– Cannot solve Byzantine General’s Problem with n=3 because one malicious
player can mess up things

– With f faults, need n > 3f to solve problem

• Various algorithms exist to solve problem

– Original algorithm has #messages exponential in n

– Newer algorithms have message complexity O(n2)

» One from MIT, for instance (Castro and Liskov, 1999)

• Use of BFT (Byzantine Fault Tolerance) algorithm

– Allow multiple machines to make a coordinated decision even if some subset of
them (< n/3) are malicious

General

LieutenantLieutenant

Attack! Attack!

Retreat!

General

LieutenantLieutenant

Attack! Retreat!

Retreat!

Request Distributed
Decision

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 24

Is a BlockChain a Distributed Decision Making Algorithm?

• BlockChain: a chain of blocks connected by hashes to root block

– The Hash Pointers are unforgeable (assumption)

– The Chain has no branches except perhaps for heads

– Blocks are considered “authentic” part of chain when they have authenticity

info in them

• How is the head chosen?

– Some consensus algorithm

– In many BlockChain algorithms (e.g. BitCoin, Ethereum), the head is chosen by

solving hard problem

» This is the job of “miners” who try to find “nonce” info that makes hash over block

have specified number of zero bits in it

» The result is a “Proof of Work” (POW)

» Selected blocks above (green) have POW in them and can be included in chains

– Longest chain wins

Hash Ptr
Root

Block

The “Block Chain”

Tentative Head #2

Tentative Head #1

4/21/20 Kubiatowicz CS162 © UCB Spring 2020 25

Is a Blockchain a Distributed Decision Making Algorithm? (Con’t)

• Decision means: Proposal is locked into BlockChain

– Could be Commit/Abort decision

– Could be Choice of Value, State Transition, ….

• NAK: Didn’t make it into the block chain (must retry!)

• Anyone in world can verify the result of decision making!

Hash Ptr
Root

Block

Miner:

Tries to solve
POW problem

Hash Ptr
Root

Block

Miner:

Tries to solve
POW problem

Hash Ptr
Root

Block

Miner:

Tries to solve
POW problem

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

Proposal

Proposal

Epidemic

Replication

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

Hash Ptr
Root

Block

Observer:

Tracks state of 

BlockChain

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 26

Remote Procedure Call (RPC)

• Raw messaging is a bit too low-level for programming

– Must wrap up information into message at source

– Must decide what to do with message at destination

– May need to sit and wait for multiple messages to arrive

– And – what about machines with different byte order  

(“BigEndian” vs “LittleEndian”)

• Another option: Remote Procedure Call (RPC)

– Calls a procedure on a remote machine

– Client calls:  

remoteFileSystem→Read("rutabaga");
– Translated automatically into call on server : 

fileSys→Read("rutabaga");

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 27

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

Client

Stub

bundle

args

bundle

ret vals

unbundle

ret vals

send

receive

send

Server

Stub

unbundle

args

RPC Concept

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 28

Client (caller)

r = f(v1, v2);

Server (callee)

res_t f(a1, a2)

call

return receive

return

call

bundle

ret vals

unbundle

ret vals

send

receive

Machine A

Machine B

Packet
Handler

Packet
Handler

N
etw

orkN
et

w
or

k

Server

Stub

unbundle

args

send

Server

Stub

unbundle

args

RPC Information Flow

Client

Stub

bundle

args

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 29

RPC Implementation

• Request-response message passing (under covers!)

• “Stub” provides glue on client/server

– Client stub is responsible for “marshalling” arguments and
“unmarshalling” the return values

– Server-side stub is responsible for “unmarshalling” arguments and
“marshalling” the return values.

• Marshalling involves (depending on system)

– Converting values to a canonical form, serializing objects, copying

arguments passed by reference, etc.

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 30

RPC Details (1/3)
• Equivalence with regular procedure call

– Parameters ⇔ Request Message

– Result ⇔ Reply message

– Name of Procedure: Passed in request message

– Return Address: mbox2 (client return mail box)

• Stub generator: Compiler that generates stubs

– Input: interface definitions in an “interface definition language (IDL)”

» Contains, among other things, types of arguments/return

– Output: stub code in the appropriate source language

» Code for client to pack message, send it off, wait for result, unpack result and
return to caller

» Code for server to unpack message, call procedure, pack results, send them off

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 31

RPC Details (2/3)
• Cross-platform issues:

– What if client/server machines are different architectures/ languages?

» Convert everything to/from some canonical form

» Tag every item with an indication of how it is encoded (avoids

unnecessary conversions)

• How does client know which mbox (destination queue) to send to?

– Need to translate name of remote service into network endpoint

(Remote machine, port, possibly other info)

– Binding: the process of converting a user-visible name into a network

endpoint
» This is another word for “naming” at network level

» Static: fixed at compile time

» Dynamic: performed at runtime

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 32

RPC Details (3/3)
• Dynamic Binding

– Most RPC systems use dynamic binding via name service

» Name service provides dynamic translation of service → mbox

– Why dynamic binding?

» Access control: check who is permitted to access service

» Fail-over: If server fails, use a different one

• What if there are multiple servers?

– Could give flexibility at binding time

» Choose unloaded server for each new client

– Could provide same mbox (router level redirect)

» Choose unloaded server for each new request

» Only works if no state carried from one call to next

• What if multiple clients?

– Pass pointer to client-specific return mbox in request

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 33

Problems with RPC: Non-Atomic Failures

• Different failure modes in dist. system than on a single machine

• Consider many different types of failures

– User-level bug causes address space to crash
– Machine failure, kernel bug causes all processes on same

machine to fail
– Some machine is compromised by malicious party

• Before RPC: whole system would crash/die

• After RPC: One machine crashes/compromised while others keep

working

• Can easily result in inconsistent view of the world

– Did my cached data get written back or not?
– Did server do what I requested or not?

• Answer? Distributed transactions/Byzantine Commit

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 34

Problems with RPC: Performance
• RPC is not performance transparent:

– Cost of Procedure call « same-machine RPC « network RPC

– Overheads: Marshalling, Stubs, Kernel-Crossing, Communication

• Programmers must be aware that RPC is not free

– Caching can help, but may make failure handling complex

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 35

Cross-Domain Communication / Location Transparency

• How do address spaces communicate with one another?

– Shared Memory with Semaphores, monitors, etc…

– File System

– Pipes (1-way communication)

– “Remote” procedure call (2-way communication)

• RPC’s can be used to communicate between address spaces on
different machines or the same machine

– Services can be run wherever it’s most appropriate

– Access to local and remote services looks the same

• Examples of RPC systems:

– CORBA (Common Object Request Broker Architecture)

– DCOM (Distributed COM)

– RMI (Java Remote Method Invocation)

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 36

Microkernel operating systems
• Example: split kernel into application-level servers.

– File system looks remote, even though on same machine

• Why split the OS into separate domains?

– Fault isolation: bugs are more isolated (build a firewall)

– Enforces modularity: allows incremental upgrades of pieces of software

(client or server)

– Location transparent: service can be local or remote

» For example in the X windowing system: Each X client can be on a separate
machine from X server ;

App App

file system Windowing
NetworkingVM

Threads

App

Monolithic Structure

App File

sys windows

RPC address
spaces

threads

Microkernel Structure

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 37

Network-Attached Storage and the CAP Theorem

• Consistency:

– Changes appear to everyone in the same serial order

• Availability:

– Can get a result at any time

• Partition-Tolerance

– System continues to work even when network becomes partitioned

• Consistency, Availability, Partition-Tolerance (CAP) Theorem: Cannot have all
three at same time

– Otherwise known as “Brewer’s Theorem”

Network

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 38

Distributed File Systems

• Transparent access to files stored on a remote disk

• Mount remote files into your local file system

– Directory in local file system refers to remote files

– e.g., /home/oksi/162/ on laptop actually refers to /
users/oski on campus file server

Network
Read File

Data
ServerClient

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 39

Enabling Design: VFS
The System Call Interface

Process

Management

Memory 
Management

Filesystems
Device 
Control

Networking

Architectur
e

Dependent

Code

Memory 
Manager

Device 
Control

Network 
Subsystem

File System
Types

Block 
Devices

IF drivers

Concurrency, 
multitasking

Virtual 
memory

Files and dirs: 
the VFS

TTYs and 
device access Connectivity

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 40

Virtual Filesystem Switch (Con’t)

• VFS: Virtual abstraction similar to local file system

– Provides virtual superblocks, inodes, files, etc

– Compatible with a variety of local and remote file systems

» provides object-oriented way of implementing file systems

• VFS allows the same system call interface (the API) to be used for

different types of file systems

– The API is to the VFS interface, rather than any specific type of file system

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 41

Simple Distributed File System

• Remote Disk: Reads and writes forwarded to server

– Use Remote Procedure Calls (RPC) to translate file system calls into

remote requests

– No local caching/can be caching at server-side

• Advantage: Server provides completely consistent view of file system
to multiple clients

• Problems? Performance!

– Going over network is slower than going to local memory

– Lots of network traffic

– Server can be a bottleneck

Server

Read (RPC)

Return (Data)

Write
 (RPC)

ACK

cache
Client

Client

11/16/15 Kubiatowicz CS162 ©UCB Fall 2015 42

Server cache
F1:V1F1:V2

Read (RPC)
Return (Data)

Write
 (RP

C)

ACK

Client

cache

Client

cache

F1:V1

F1:V2

read(f1)

write(f1)

→V1
read(f1)→V1
read(f1)→V1

→OK

read(f1)→V1

read(f1)→V2

Crash!Crash!

• Idea: Use caching to reduce network load

– In practice: use buffer cache at source and destination

• Advantage: if open/read/write/close can be done locally, don’t need to
do any network traffic…fast!

• Problems:

– Failure:

» Client caches have data not committed at server

– Cache consistency!

» Client caches not consistent with server/each other

Use of caching to reduce network load

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 43

Dealing with Failures

• What if server crashes? Can client wait until it comes back and
just continue making requests?

– Changes in server's cache but not in disk are lost

• What if there is shared state across RPC's?

– Client opens file, then does a seek

– Server crashes

– What if client wants to do another read?

• Similar problem: What if client removes a file but server
crashes before acknowledgement?

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 44

Stateless Protocol

• A protocol in which all information required to service a
request is included with the request

• Even better : Idempotent Operations – repeating an operation
multiple times is same as executing it just once (e.g., storing to
a mem addr.)

• Client: timeout expires without reply, just run the operation
again (safe regardless of first attempt)

• Recall HTTP: Also a stateless protocol

– Include cookies with request to simulate a session

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 45

Network File System (Sun)

• Defines an RPC protocol for clients to interact with a file
server

– E.g., read/write files, traverse directories, …

– Stateless to simplify failure cases

• Keeps most operations idempotent

– Even removing a file: Return advisory error second time

• Don't buffer writes on server side cache

– Reply with acknowledgement only when modifications reflected

on disk

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 46

NFS Architecture

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 47

Network File System (NFS)
• Three Layers for NFS system

– UNIX file-system interface: open, read, write, close calls + file descriptors
– VFS layer : distinguishes local from remote files

» Calls the NFS protocol procedures for remote requests

– NFS service layer : bottom layer of the architecture

» Implements the NFS protocol

• NFS Protocol: RPC for file operations on server

– Reading/searching a directory

– manipulating links and directories

– accessing file attributes/reading and writing files

• Write-through caching: Modified data committed to server’s disk
before results are returned to the client

– lose some of the advantages of caching

– time to perform write() can be long

– Need some mechanism for readers to eventually notice changes! (more

on this later)

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 48

NFS Continued
• NFS servers are stateless; each request provides all arguments require

for execution

– E.g. reads include information for entire operation, such as
ReadAt(inumber,position), not Read(openfile)

– No need to perform network open() or close() on file – each operation
stands on its own

• Idempotent: Performing requests multiple times has same effect as
performing it exactly once

– Example: Server crashes between disk I/O and message send, client
resend read, server does operation again

– Example: Read and write file blocks: just re-read or re-write file block –
no side effects

– Example: What about “remove”? NFS does operation twice and second
time returns an advisory error

• Failure Model: Transparent to client system

– Is this a good idea? What if you are in the middle of reading a file and

server crashes?

– Options (NFS Provides both):

» Hang until server comes back up (next week?)

» Return an error. (Of course, most applications don’t know they are talking

over network)

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 49

• NFS protocol: weak consistency

– Client polls server periodically to check for changes

» Polls server if data hasn’t been checked in last 3-30 seconds (exact timeout
it tunable parameter).

» Thus, when file is changed on one client, server is notified, but other clients
use old version of file until timeout. 

– What if multiple clients write to same file?

» In NFS, can get either version (or parts of both)

» Completely arbitrary!

cache
F1:V2Write

 (RPC)

ACK

cache

cache

F1:V1

F1:V2

Client

Server
Client

F1:V2

NFS Cache consistency

F1 still ok?
No: (F1:V2)

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 50

• What sort of cache coherence might we expect?

– i.e. what if one CPU changes file, and before it’s done, another CPU reads

file?

• Example: Start with file contents = “A”

• What would we actually want?

– Assume we want distributed system to behave exactly the same as if all

processes are running on single system

» If read finishes before write starts, get old copy

» If read starts after write finishes, get new copy

» Otherwise, get either new or old copy

– For NFS:

» If read starts more than 30 seconds after write, get new copy; otherwise,

could get partial update

Sequential Ordering Constraints

Read: gets A

Read: gets A or B

Write B

Write C

Read: parts of B or CClient 1:
Client 2:
Client 3: Read: parts of B or C

Time

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 51

Andrew File System
• Andrew File System (AFS, late 80’s) → DCE DFS (commercial

product)

• Callbacks: Server records who has copy of file

– On changes, server immediately tells all with old copy

– No polling bandwidth (continuous checking) needed

• Write through on close

– Changes not propagated to server until close()

– Session semantics: updates visible to other clients only after the file is

closed

» As a result, do not get partial writes: all or nothing!

» Although, for processes on local machine, updates visible immediately to

other programs who have file open

• In AFS, everyone who has file open sees old version

– Don’t get newer versions until reopen file

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 52

Summary (1/3)

• TCP: Reliable byte stream between two processes on different
machines over Internet (read, write, flush)

– Uses window-based acknowledgement protocol

– Congestion-avoidance dynamically adapts sender window to account

for congestion in network

• Remote Procedure Call (RPC): Call procedure on remote machine

or in remote domain

– Provides same interface as procedure

– Automatic packing and unpacking of arguments without user

programming (in stub)

– Adapts automatically to different hardware and software

architectures at remote end

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 53

Summary (2/3)
• Distributed File System:

– Transparent access to files stored on a remote disk

– Caching for performance

• VFS: Virtual File System layer

– Provides mechanism which gives same system call interface for different

types of file systems

• Cache Consistency: Keeping client caches consistent with one another

– If multiple clients, some reading and some writing, how do stale cached
copies get updated?

– NFS: check periodically for changes

– AFS: clients register callbacks to be notified by server of changes

4/23/20 Kubiatowicz CS162 © UCB Spring 2020 54

Summary (3/3)

• Key-Value Store:

– Two operations

» put(key, value)

» value = get(key)

– Challenges

» Scalability ! serve get()’s in parallel; replicate/cache hot tuples

» Fault Tolerance ! replication

» Consistency ! quorum consensus to improve put() performance

