
CS162 
Operating Systems and 
Systems Programming 

Lecture 20 
  

Filesystems (Con’t) 
 Reliability, Transactions 

April 14th, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the
bottom of that slide, in which case a full list of references is provided on the last
slide.

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 2

Recall: Multilevel Indexed Files (Original 4.1 BSD)
• Sample file in multilevel  

indexed format:

– 10 direct ptrs, 1K blocks

– How many accesses for  

block #23? (assume file  
header accessed on open)?

» Two: One for indirect block,  
one for data

– How about block #5?

» One: One for data

– Block #340?

» Three: double indirect block,  

indirect block, and data

• UNIX 4.1 Pros and cons

– Pros: 	 Simple (more or less) 
Files can easily expand (up to a point) 
Small files particularly cheap and easy

– Cons:	 Lots of seeks (lead to 4.2 Fast File System Optimizations)

• Ext2/3 (Linux):

– 12 direct ptrs, triply-indirect blocks,  
settable block size (4K is common)

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 3

Memory Mapped Files

• Traditional I/O involves explicit transfers between buffers in
process address space to/from regions of a file

– This involves multiple copies into caches in memory, plus system
calls

• What if we could “map” the file directly into an empty region of
our address space

– Implicitly “page it in” when we read it

– Write it and “eventually” page it out

• Executable files are treated this way when we exec the
process!!

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 4

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry frame#

offset

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 5

Using Paging to mmap() Files

virtual address

MMU PT
instruction

physical address

page#
frame#

offset
page fault

Process

File

mmap() file to region of VAS

Create PT entries

for mapped region

as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

Read File
contents

from memory!

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 6

mmap() system call

• May map a specific region or let the system find one for you

– Tricky to know where the holes are

• Used both for manipulating files and for sharing between processes

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 7

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {

 int myfd;

 char *mfile;

 printf("Data at: %16lx\n", (long unsigned int) &something);

 printf("Heap at : %16lx\n", (long unsigned int) malloc(1));

 printf("Stack at: %16lx\n", (long unsigned int) &mfile);

 /* Open the file */

 myfd = open(argv[1], O_RDWR | O_CREAT);

 if (myfd < 0) { perror("open failed!");exit(1); }

 /* map the file */

 mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);

 if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

 printf("mmap at : %16lx\n", (long unsigned int) mfile);

 puts(mfile);

 strcpy(mfile+20,"Let's write over it");

 close(myfd);

 return 0;

}

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 8

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */

int something = 162;

int main (int argc, char *argv[]) {

 int myfd;

 char *mfile;

 printf("Data at: %16lx\n", (long unsigned int) &something);

 printf("Heap at : %16lx\n", (long unsigned int) malloc(1));

 printf("Stack at: %16lx\n", (long unsigned int) &mfile);

 /* Open the file */

 myfd = open(argv[1], O_RDWR | O_CREAT);

 if (myfd < 0) { perror("open failed!");exit(1); }

 /* map the file */

 mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);

 if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}

 printf("mmap at : %16lx\n", (long unsigned int) mfile);

 puts(mfile);

 strcpy(mfile+20,"Let's write over it");

 close(myfd);

 return 0;

}

$ cat test

This is line one

This is line two

This is line three

This is line four

$./mmap test

Data at: 105d63058

Heap at : 7f8a33c04b70

Stack at: 7fff59e9db10

mmap at : 105d97000

$ cat test

This is line one

ThiLet's write over its line three

This is line four

4/7/20 Kubiatowicz CS162 © UCB Spring 2020 9

Sharing through Mapped Files

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 10

Recall: Buffer Cache

• Kernel must copy disk blocks to main memory to access their
contents and write them back if modified

– Could be data blocks, inodes, directory contents, etc.

– Possibly dirty (modified and not written back)

• Key Idea: Exploit locality by caching disk data in memory

– Name translations: Mapping from paths→inodes

– Disk blocks: Mapping from block address→disk content	

• Buffer Cache: Memory used to cache kernel resources,
including disk blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 11

File System Buffer Cache

• OS implements a cache of disk blocks for efficient access to
data, directories, inodes, freemap

Memory

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB Reading

Writing

Blocks

State free free

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 12

File System Buffer Cache: open

• {load block of directory; search for map}+ ;

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB Reading

Writing

free freerddir

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 13

File System Buffer Cache: open

• {load block of directory; search for map}+ ; Load inode ;

• Create reference via open file descriptor

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB Reading

Writing

free inode

<name>:inumber

dir rd

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 14

File System Buffer Cache: Read?

• From inode, traverse index structure to find data block; load
data block; copy all or part to read data buffer

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB Reading

Writing

free

<name>:inumber

dir inode

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 15

File System Buffer Cache: Write?

• Process similar to read, but may allocate new blocks (update free map),
blocks need to be written back to disk; inode?

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB Reading

Writing

free

<name>:inumber

dir inode

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 16

File System Buffer Cache: Eviction?

• Blocks being written back to disc go through a transient state

Memory

Blocks

State

DiskData blocks

Dir Data blocks

iNodes

Free bitmap

file
desc

PCB Reading

Writing

free

<name>:inumber

dir dirty inode

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 17

Buffer Cache Discussion

• Implemented entirely in OS software

– Unlike memory caches and TLB

• Blocks go through transitional states between free and in-use

– Being read from disk, being written to disk

– Other processes can run, etc.

• Blocks are used for a variety of purposes

– inodes, data for dirs and files, freemap

– OS maintains pointers into them

• Termination – e.g., process exit – open, read, write

• Replacement – what to do when it fills up?

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 18

File System Caching
• Replacement policy? LRU

– Can afford overhead full LRU implementation

– Advantages:

» Works very well for name translation

» Works well in general as long as memory is big enough to accommodate a

host’s working set of files.

– Disadvantages:

» Fails when some application scans through file system, thereby flushing the
cache with data used only once

» Example: find . –exec grep foo {} \;
• Other Replacement Policies?

– Some systems allow applications to request other policies

– Example, ‘Use Once’:

» File system can discard blocks as soon as they are used

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 19

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate to the buffer

cache vs virtual memory?

– Too much memory to the file system cache ⇒ won’t be able to run

many applications at once

– Too little memory to file system cache ⇒ many applications may run

slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk access rates for

paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early

– Key Idea: exploit fact that most common file access is sequential by
prefetching subsequent disk blocks ahead of current read request (if they
are not already in memory)

– Elevator algorithm can efficiently interleave groups of prefetches from
concurrent applications

– How much to prefetch?

» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among concurrent file

requests

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 20

Delayed Writes

• Delayed Writes: Writes to files not immediately sent to disk

– So, Buffer Cache is a write-back cache

• write() copies data from user space buffer to kernel buffer

– Enabled by presence of buffer cache: can leave written file blocks in cache

for a while

– Other apps read data from cache instead of disk

– Cache is transparent to user programs

• Flushed to disk periodically

– In Linux: kernel threads flush buffer cache very 30 sec. in default setup

• Disk scheduler can efficiently order lots of requests

– Elevator Algorithm can rearrange writes to avoid random seeks

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 21

Delayed Writes

• Delay block allocation: May be able to allocate multiple blocks at
same time for file, keep them contiguous

• Some files never actually make it all the way to disk

– Many short-lived files

• But what if system crashes before buffer cache block is flushed to
disk?

• And what if this was for a directory file?

– Lose pointer to inode

• file systems need recovery mechanisms

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 22

Important “ilities”
• Availability: the probability that the system can accept and process

requests

– Often measured in “nines” of probability. So, a 99.9% probability is

considered “3-nines of availability”

– Key idea here is independence of failures

• Durability: the ability of a system to recover data despite faults

– This idea is fault tolerance applied to data

– Doesn’t necessarily imply availability: information on pyramids was very

durable, but could not be accessed until discovery of Rosetta Stone

• Reliability: the ability of a system or component to perform its

required functions under stated conditions for a specified period of
time (IEEE definition)

– Usually stronger than simply availability: means that the system is not
only “up”, but also working correctly

– Includes availability, security, fault tolerance/durability

– Must make sure data survives system crashes, disk crashes, other

problems

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 23

How to Make File System Durable?

• Disk blocks contain Reed-Solomon error correcting codes
(ECC) to deal with small defects in disk drive

– Can allow recovery of data from small media defects

• Make sure writes survive in short term

– Either abandon delayed writes or
– Use special, battery-backed RAM (called non-volatile RAM or

NVRAM) for dirty blocks in buffer cache

• Make sure that data survives in long term

– Need to replicate! More than one copy of data!
– Important element: independence of failure

» Could put copies on one disk, but if disk head fails…
» Could put copies on different disks, but if server fails…
» Could put copies on different servers, but if building is struck

by lightning….
» Could put copies on servers in different continents…

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 24

RAID: Redundant Arrays of Inexpensive Disks

• Classified by David Patterson, Garth A. Gibson, and Randy
Katz here at UCB in 1987

– Classic paper was first to evaluate multiple schemes

• Data stored on multiple disks (redundancy)

– Berkeley researchers were looking for alternatives to big

expensive disks
– Redundancy necessary because cheap disks were more error

prone

• Either in software or hardware

– In hardware case, done by disk controller ; file system may not even

know that there is more than one disk in use

• Initially, five levels of RAID (more now)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 25

RAID 1: Disk Mirroring/Shadowing

• Each disk is fully duplicated onto its “shadow”

– For high I/O rate, high availability environments
– Most expensive solution: 100% capacity overhead

• Bandwidth sacrificed on write:

– Logical write = two physical writes
– Highest bandwidth when disk heads and rotation fully synchronized

(hard to do exactly)
• Reads may be optimized

– Can have two independent reads to same data
• Recovery:

– Disk failure ⇒ replace disk and copy data to new disk
– Hot Spare: idle disk already attached to system to be used for

immediate replacement

recovery
group

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 26

• Data stripped across  
multiple disks

– Successive blocks  
stored on successive  
(non-parity) disks

– Increased bandwidth 
over single disk

• Parity block (in green)  
constructed by XORing  
data bocks in stripe

– P0=D0⊕D1⊕D2⊕D3

– Can destroy any one  

disk and still  
reconstruct data

– Suppose Disk 3 fails,  
then can reconstruct: 
D2=D0⊕D1⊕D3⊕P0

• Can spread information widely across internet for durability

– RAID algorithms work over geographic scale

RAID 5+: High I/O Rate Parity

Increasing
Logical
Disk
Addresses

Stripe
Unit

D0 D1 D2 D3 P0

D4 D5 D6 P1 D7

D8 D9 P2 D10 D11

D12 P3 D13 D14 D15

P4 D16 D17 D18 D19

D20 D21 D22 D23 P5

Disk 1 Disk 2 Disk 3 Disk 4 Disk 5

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 27

Allow more disks to fail!
• In general: RAIDX is an “erasure code”

– Must have ability to know which disks are bad

– Treat missing disk as an “Erasure”

• Today, Disks so big that: RAID 5 not sufficient!

– Time to repair disk sooooo long, another disk might fail in process!

– “RAID 6” – allow 2 disks in replication stripe to fail

• But – must do something more complex that just XORing together blocks!

– Already used up the simple XOR operation across disks

• Simple option: Check out EVENODD code in readings
– Will generate one additional check disks to support RAID 6

• More general option for general erasure code: Reed-Solomon codes
– Based on polynomials in GF(2k) (I.e. k-bit symbols)

» Gailois Field is finite version of real numbers

– Data as coefficients (aj), code space as values of polynomial:

» P(x)=a0+a1x1+… am-1xm-1

» Coded: P(0),P(1),P(2)….,P(n-1)

– Can recover polynomial (i.e. data) as long as get any m of n; allows n-m failures!

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 28

Higher Durability/Reliability through Geographic Replication

• Highly durable – hard to destroy all copies

• Highly available for reads

– Simple replication: read any copy

– Erasure coded: read m of n

• Low availability for writes

– Can’t write if any one replica is not up

– Or – need relaxed consistency model

• Reliability? – availability, security, durability, fault-tolerance

Replica/Frag #1

Replica/Frag #2

Replica/Frag #n

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 29

File System Reliability: (Difference from Block-level reliability)

• What can happen if disk loses power or software crashes?

– Some operations in progress may complete

– Some operations in progress may be lost

– Overwrite of a block may only partially complete

• Having RAID doesn’t necessarily protect against all such failures

– No protection against writing bad state

– What if one disk of RAID group not written?

• File system needs durability (as a minimum!)

– Data previously stored can be retrieved (maybe after some recovery

step), regardless of failure

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 30

Storage Reliability Problem

• Single logical file operation can involve updates to multiple physical
disk blocks

– inode, indirect block, data block, bitmap, …

– With sector remapping, single update to physical disk block can require

multiple (even lower level) updates to sectors

• At a physical level, operations complete one at a time

– Want concurrent operations for performance

• How do we guarantee consistency regardless of when crash occurs?

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 31

Threats to Reliability
• Interrupted Operation

– Crash or power failure in the middle of a series of related updates may
leave stored data in an inconsistent state

– Example: transfer funds from one bank account to another

– What if transfer is interrupted after withdrawal and before deposit?

• Loss of stored data

– Failure of non-volatile storage media may cause previously stored data

to disappear or be corrupted

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 32

Reliability Approach #1: Careful Ordering

• Sequence operations in a specific order

– Careful design to allow sequence to be interrupted safely

• Post-crash recovery

– Read data structures to see if there were any operations in progress

– Clean up/finish as needed

• Approach taken by

– FAT and FFS (fsck) to protect filesystem structure/metadata

– Many app-level recovery schemes (e.g., Word, emacs autosaves)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 33

FFS: Create a File
Normal operation:

• Allocate data block

• Write data block

• Allocate inode

• Write inode block

• Update bitmap of free blocks

and inodes

• Update directory with file

name → inode number

• Update modify time for

directory

Recovery:

• Scan inode table

• If any unlinked files (not in any

directory), delete or put in lost &
found dir

• Compare free block bitmap
against inode trees

• Scan directories for missing
update/access times

Time proportional to disk size

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 34

Reliability Approach #2: Copy on Write File Layout

• To update file system, write a new version of the file system
containing the update

– Never update in place

– Reuse existing unchanged disk blocks

• Seems expensive! But

– Updates can be batched

– Almost all disk writes can occur in parallel

• Approach taken in network file server appliances

– NetApp’s Write Anywhere File Layout (WAFL)

– ZFS (Sun/Oracle) and OpenZFS

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 35

COW with Smaller-Radix Blocks

• If file represented as a tree of blocks, just need to
update the leading fringe

Write

old version new version

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 36

ZFS and OpenZFS
• Variable sized blocks: 512 B – 128 KB

• Symmetric tree

– Know if it is large or small when we make the copy

• Store version number with pointers

– Can create new version by adding blocks and new pointers

• Buffers a collection of writes before creating a new version with
them

• Free space represented as tree of extents in each block group

– Delay updates to freespace (in log) and do them all when block group

is activated

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 37

More General Reliability Solutions

• Use Transactions for atomic updates

– Ensure that multiple related updates are performed atomically

– i.e., if a crash occurs in the middle, the state of the systems reflects

either all or none of the updates

– Most modern file systems use transactions internally to update

filesystem structures and metadata

– Many applications implement their own transactions

• Provide Redundancy for media failures

– Redundant representation on media (Error Correcting Codes)

– Replication across media (e.g., RAID disk array)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 38

Transactions
• Closely related to critical sections for manipulating shared data

structures

• They extend concept of atomic update from memory to stable
storage

– Atomically update multiple persistent data structures

• Many ad-hoc approaches

– FFS carefully ordered the sequence of updates so that if a crash

occurred while manipulating directory or inodes the disk scan on reboot
would detect and recover the error (fsck)

– Applications use temporary files and rename

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 39

Key Concept: Transaction

• An atomic sequence of actions (reads/writes) on a storage
system (or database)

• That takes it from one consistent state to another

consistent state 1 consistent state 2
transaction

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 40

Typical Structure

• Begin a transaction – get transaction id

• Do a bunch of updates

– If any fail along the way, roll-back
– Or, if any conflicts with other transactions, roll-back

• Commit the transaction

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 41

“Classic” Example: Transaction

UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

UPDATE branches SET balance = balance - 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = 'Alice');

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Bob';

UPDATE branches SET balance = balance + 100.00
WHERE name = (SELECT branch_name FROM accounts
WHERE name = 'Bob');

BEGIN; --BEGIN TRANSACTION

COMMIT; --COMMIT WORK

Transfer $100 from Alice’s account to Bob’s account

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 42

The ACID properties of Transactions
• Atomicity: all actions in the transaction happen, or none happen

• Consistency: transactions maintain data integrity, e.g.,

– Balance cannot be negative
– Cannot reschedule meeting on February 30

• Isolation: execution of one transaction is isolated from that of all
others; no problems from concurrency

• Durability: if a transaction commits, its effects persist despite
crashes

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 43

Concept of a log

• One simple action is atomic – write/append a basic item

• Use that to seal the commitment to a whole series of actions

Ge
t

10
$

fr
om

 a
cc

ou
nt

 A

Ge
t

7$
 f

ro
m
 a

cc
ou

nt
 B

Ge
t

13
$

fr
om

 a
cc

ou
nt

 C

Pu
t

15
$

in
to

 a
cc

ou
nt

 X
Pu

t
15

$
in
to

 a
cc

ou
nt

 Y

St
ar

t
Tr

an
 N

Co
m
m
it
 T

ra
n

N

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 44

Transactional File Systems

• Better reliability through use of log

– All changes are treated as transactions
– A transaction is committed once it is written to the log

» Data forced to disk for reliability

» Process can be accelerated with NVRAM

– Although File system may not be updated immediately, data preserved in
the log

• Difference between “Log Structured” and “Journaled”

– In a Log Structured filesystem, data stays in log form

– In a Journaled filesystem, Log used for recovery

• Journaling File System

– Applies updates to system metadata using transactions (using logs, etc.)

– Updates to non-directory files (i.e., user stuff) can be done in place

(without logs), full logging optional

– Ex: NTFS, Apple HFS+, Linux XFS, JFS, ext3, ext4

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 45

Journaling File Systems

• Instead of modifying data structures on disk directly, write changes to a
journal/log

– Intention list: set of changes we intend to make

– Log/Journal is append-only
– Single commit record commits transaction

• Once changes are in the log, it is safe to apply changes to data structures on
disk

– Recovery can read log to see what changes were intended

– Can take our time making the changes

» As long as new requests consult the log first

• Once changes are copied, safe to remove log

• But, …

– If the last atomic action is not done … poof … all gone

• Basic assumption:

– Updates to sectors are atomic and ordered

– Not necessarily true unless very careful, but key assumption

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 46

Example: Creating a File

• Find free data block(s)

• Find free inode entry

• Find dirent insertion point

• Write map (i.e., mark used)

• Write inode entry to point to block(s)

• Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory

entries

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 47

Ex: Creating a file (as a transaction)
• Find free data block(s)

• Find free inode entry

• Find dirent insertion point

• [log] Write map (used)

• [log] Write inode entry to point to
block(s)

• [log] Write dirent to point to inode

Data blocks

Free space
map

…

Inode table

Directory

entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 48

“Redo Log “ – Replay Transactions

• After Commit

• All access to file system first looks in
log

• Eventually copy changes to disk

Data blocks

Free space
map

…

Inode table

Directory

entries

Log: in non-volatile storage (Flash or Disk)

headtail

pending

done

st
ar

t

co
m

m
it

tail tail tail tail

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 49

Crash During Logging – Recover

• Upon recovery scan the log

• Detect transaction start with no
commit

• Discard log entries

• Disk remains unchanged

Data blocks

Free space
map

…

Inode table

Directory

entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 50

Recovery After Commit

• Scan log, find start

• Find matching commit

• Redo it as usual

– Or just let it happen later

Data blocks

Free space
map

…

Inode table

Directory

entries

Log: in non-volatile storage (Flash or on Disk)

headtail

pendingdone

st
ar

t

co
m

m
it

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 51

Journaling Summary

Why go through all this trouble?

• Updates atomic, even if we crash:

– Update either gets fully applied or discarded

– All physical operations treated as a logical unit

Isn't this expensive?

• Yes! We're now writing all data twice (once to log, once to

actual data blocks in target file)

• Modern filesystems offer an option to journal metadata

updates only

– Record modifications to file system data structures

– But apply updates to a file's contents directly

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 52

Going Further – Log Structured File Systems

• The log IS what is recorded on disk

– File system operations logically replay log to get result

– Create data structures to make this fast

– On recovery, replay the log

• Index (inodes) and directories are written into the log too

• Large, important portion of the log is cached in memory

• Do everything in bulk: log is collection of large segments

• Each segment contains a summary of all the operations within the

segment

– Fast to determine if segment is relevant or not

• Free space is approached as continual cleaning process of segments

– Detect what is live or not within a segment

– Copy live portion to new segment being formed (replay)

– Garbage collection entire segment

– No bit map

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 53

Example: F2FS: A Flash File System
• File system used on many mobile devices

– Including the Pixel 3 from Google

– Latest version supports block-encryption for security

– Has been “mainstream” in linux for several years now

• Assumes standard SSD interface

– With built-in Flash Translation Layer (FTL)

– Random reads are as fast as sequential reads

– Random writes are bad for flash storage

» Forces FTL to keep moving/coalescing pages and erasing blocks

» Sustained write performance degrades/lifetime reduced

• Minimize Writes/updates and otherwise keep writes “sequential”

– Start with Log-structured file systems/copy-on-write file systems

– Keep writes as sequential as possible

– Node Translation Table (NAT) for “logical” to “physical” translation

» Independent of FTL

• For more details, check out paper in Readings section of website

– “F2FS: A New File System for Flash Storage” (from 2015)

– Design of file system to leverage and optimize NAND flash solutions

– Comparison with Ext4, Btrfs, Nilfs2, etc

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 54

File System Summary (1/3)

• File System:

– Transforms blocks into Files and Directories

– Optimize for size, access and usage patterns

– Maximize sequential access, allow efficient random access

– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”

• Naming: translating from user-visible names to actual sys resources

– Directories used for naming for local file systems

– Linked or tree structure stored in files

• Multilevel Indexed Scheme

– inode contains file info, direct pointers to blocks, indirect blocks, doubly

indirect, etc..

– NTFS: variable extents not fixed blocks, tiny files data is in header

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 55

File System Summary (2/3)

• File layout driven by freespace management

– Optimizations for sequential access: start new files in open ranges of

free blocks, rotational optimization

– Integrate freespace, inode table, file blocks and dirs into block group

• FLASH filesystems optimized for :

– Fast random reads

– Limiting Updates to data blocks

• Buffer Cache: Memory used to cache kernel resources, including
disk blocks and name translations

– Can contain “dirty” blocks (blocks yet on disk)

4/14/20 Kubiatowicz CS162 © UCB Spring 2020 56

File System Summary (3/3)

• File system operations involve multiple distinct updates to blocks on
disk

– Need to have all or nothing semantics

– Crash may occur in the midst of the sequence

• Traditional file system perform check and recovery on boot

– Along with careful ordering so partial operations result in loose fragments,

rather than loss

• Copy-on-write provides richer function (versions) with much simpler

recovery

– Little performance impact since sequential write to storage device is

nearly free

• Transactions over a log provide a general solution

– Commit sequence to durable log, then update the disk

– Log takes precedence over disk

– Replay committed transactions, discard partials

