
CS162 
Operating Systems and 
Systems Programming 

Lecture 19 
  

File Systems (Con’t), 
MMAP, Buffer Cache

April 7th, 2020

Prof. John Kubiatowicz


http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course 
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.  
When slides are obtained from other sources, a reference will be noted on the 
bottom of that slide, in which case a full list of references is provided on the last 
slide.



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 2

Recall: A Little Queuing Theory: Some Results
• Assumptions:


– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:

– λ: 	 mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser 

• Parameters we wish to compute:

– Tq: 	 Time spent in queue
– Lq: 	 Length of queue = λ × Tq (by Little’s law)

• Results:

– Memoryless service distribution (C = 1): (an “M/M/1 queue”):


» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”): 

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
 λ

Queue Server
Service Rate

 µ=1/Tser



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 3

Recall: A Little Queuing Theory: Some Results
• Assumptions:


– System in equilibrium; No limit to the queue
– Time between successive arrivals is random and memoryless

• Parameters that describe our system:

– λ: 	 mean number of arriving customers/second
– Tser: mean time to service a customer (“m1”)
– C: squared coefficient of variance = σ2/m12

– μ: service rate = 1/Tser
– u: server utilization (0≤u≤1): u = λ/μ = λ × Tser 

• Parameters we wish to compute:

– Tq: 	 Time spent in queue
– Lq: 	 Length of queue = λ × Tq (by Little’s law)

• Results:

– Memoryless service distribution (C = 1): (an “M/M/1 queue”):


» Tq = Tser x u/(1 – u)
– General service distribution (no restrictions), 1 server (an “M/G/1 queue”): 

» Tq = Tser x ½(1+C) x u/(1 – u)

Arrival Rate
 λ

Queue Server
Service Rate

 µ=1/Tser

Why does response/queueing 
delay grow unboundedly even 
though the utilization is < 1 ?

100%

Response

Time (ms)

Throughput  (Utilization)

                   (% total BW)

0

100

200

300

0%



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 4

Components of a File System
File path

Directory 

Structure

File Index 

Structure

File number
“inumber”

…

Data blocks

“inode”

One file system block  
usually = multiple sectors

Ex: 512 sector,  4K block



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 5

Components of a file system

• Open performs Name Resolution

– Translates pathname into a “file number”

» Used as an “index” to locate the blocks
– Creates a file descriptor in PCB within kernel
– Returns a “handle” (another integer) to user process

• Read, Write, Seek, and Sync operate on handle

– Mapped to file descriptor and to blocks

file name

offset directory

file number

offset

Index 
structure Storage block



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 6

Directories



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 7

Directory
• Basically a hierarchical structure


• Each directory entry is a collection of

– Files

– Directories


» A link to another entries


• Each has a name and attributes

– Files have data


• Links (hard links) make it a DAG, not just a tree

– Softlinks (aliases) are another name for an entry



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 8

Directory Structure

• How many disk accesses to resolve “/my/book/count”?

– Read in file header for root (fixed spot on disk)

– Read in first data block for root


» Table of file name/index pairs.  Search linearly – ok since directories 
typically very small


– Read in file header for “my”

– Read in first data block for “my”; search for “book”

– Read in file header for “book”

– Read in first data block for “book”; search for “count”

– Read in file header for “count”

• Current working directory: Per-address-space pointer to a 
directory (inode) used for resolving file names


– Allows user to specify relative filename instead of absolute path (say 
CWD=“/my/book” can resolve “count”)



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 9

File

• Named permanent storage

• Contains


– Data
» Blocks on disk somewhere

– Metadata (Attributes)
» Owner, size, last opened, …
» Access rights

•R, W, X
•Owner, Group, Other (in Unix systems)
•Access control list in Windows system

…

Data blocks



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 10

• Open system call:

– Resolves file name, finds file control block (inode)
– Makes entries in per-process and system-wide tables
– Returns index (called “file handle”) in open-file table

In-Memory File System Structures



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 11

• Read/write system calls:

– Use file handle to locate inode

– Perform appropriate reads or writes 

In-Memory File System Structures



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 12

Our first filesystem: FAT (File Allocation Table)
• The most commonly used filesystem in the world!

• Assume (for now) we have a  

way to translate a path to  
a “file number”


– i.e., a directory structure
• Disk Storage is a collection of Blocks


– Just hold file data (offset o = < B, x >)
• Example: file_read 31, < 2, x >


– Index into FAT with file number

– Follow linked list to block

– Read the block from disk  

into memory

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

File number

memory



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 13

• File is collection of disk blocks

• FAT is linked list 1-1 with blocks

• File Number is index of root  

of block list for the file

• File offset (o = < B, x >)

• Follow list to get block #

• Unused blocks ⬄ Marked free (no 

ordering, must scan to find)

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

free

31:

File number



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 14

• File is collection of disk blocks

• FAT is linked list 1-1 with blocks

• File Number is index of root  

of block list for the file

• File offset (o = < B, x > )

• Follow list to get block #

• Unused blocks ⬄ Marked free (no 

ordering, must scan to find)

• Ex: file_write(31, < 3, y >)


– Grab free block

– Linking them into file

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

31:

memory

FAT Properties

File 31, Block 3

free

31:

File number



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 15

• File is collection of disk blocks

• FAT is linked list 1-1 with blocks

• File Number is index of root  

of block list for the file

• Grow file by allocating free blocks  

and linking them in

• Ex: Create file, write, write

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Properties

File 63, Block 1

File 63, Block 063:

free
31:

File 1 number

File 2 number



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 16

File 31, Block 3

• FAT32 (32 instead of 12 bits) used in Windows, USB drives,  
SD cards, … 


• Where is FAT stored?

– On Disk, on boot cache in memory, 

second (backup) copy on disk

• What happens when you format a disk?


– Zero the blocks, Mark FAT entries “free”

• What happens when you  

quick format a disk?

– Mark all entries in FAT as free


• Simple

– Can implement in 

device firmware

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

memory

FAT Assessment

File 63, Block 1

File 63, Block 063:

31:

File 1 number

File 2 number



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 17

• Time to find block (large files) ??


• Block layout for file ???


• Sequential Access ???


• Random Access ???


• Fragmentation ???

– MSDOS defrag tool


• Small files ???


• Big files ???

FAT Assessment – Issues 

File 31, Block 3

File 31, Block 0

File 31, Block 1

File 31, Block 2

Disk BlocksFAT

N-1:

0:0:

N-1:

File 63, Block 1

File 63, Block 063:

31:

File #1 

File #2



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 18

What about FAT directories?

• Directory is a file containing  <file_name: file_number> mappings
– Free space for new/deleted entries
– In FAT: file attributes are kept in directory (!!!)

– Each directory is a linked list of entries


• Where do you find root directory ( “/” )?

– At well-defined place on disk

– For FAT, this is at block 2 (there are no blocks 0 or 1)

– Remaining directories are accessed via their file_number



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 19

Many Huge FAT Security Holes!

• FAT has no access rights

– No way, even in principle, to track ownership of data

• FAT has no header in the file blocks

– No way to enforce control over data, since all processes 

have access of FAT table
– Just follow pointer to disk blocks

• Just gives an index into the FAT to read data

– (file number = block number)
– Could start in middle of file or access deleted data



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 20

Characteristics of Files



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 21

Unix File System (1/2)

• Original inode format appeared in BSD 4.1

– Berkeley Standard Distribution Unix
– Part of your heritage [if you are at Berkley]!
– Similar structure for Linux Ext2/3

• File Number is index into inode arrays

• Multi-level index structure


– Great for little and large files
– Asymmetric tree with fixed sized blocks



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 22

Unix File System (2/2)

• Metadata associated with the file

– Rather than in the directory that points to it

• UNIX Fast File System (FFS) BSD 4.2 Locality Heuristics:

– Block group placement
– Reserve space

• Scalable directory structure



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 23

Inode Structure

• inode metadata



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 24

File Attributes

• inode metadata

User

Group

9 basic access control bits 

   - UGO x RWX

Setuid bit

    - execute at owner permissions 
      rather than user

Setgid bit

    - execute at group’s permissions



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 25

Data Storage

• Small files: 12 pointers direct to data blocks

Direct pointers


4kB blocks ⇒ sufficient for 
files up to 48KB



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 26

Data Storage

• Large files: 1,2,3 level indirect pointers

Indirect pointers

  - point to a disk block 

     containing only pointers

  - 4 kB blocks => 1024 ptrs

     => 4 MB @ level 2

     => 4 GB @ level 3

     => 4 TB @ level 4 48 KB

+4 MB

+4 GB

+4 TB



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 27

UNIX BSD 4.2 (1984) (1/2)

• Same as BSD 4.1 (same file header and triply indirect blocks), except 
incorporated ideas from Cray Operating System:


– Uses bitmap allocation in place of freelist

– Attempt to allocate files contiguously
– 10% reserved disk space
– Skip-sector positioning (mentioned later) 



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 28

UNIX BSD 4.2 (1984) (2/2)

• Problem: When create a file, don’t know how big it will become (in 
UNIX, most writes are by appending)


– How much contiguous space do you allocate for a file?
– In BSD 4.2, just find some range of free blocks

» Put each new file at the front of different range
» To expand a file, you first try successive blocks in bitmap, then 

choose new range of blocks
– Also in BSD 4.2: store files from same directory near each other 

• Fast File System (FFS)

– Allocation and placement policies for BSD 4.2



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 29

Attack of the Rotational Delay
• Problem 2: Missing blocks due to rotational delay


– Issue: Read one block, do processing, and read next block.  In meantime, disk has 
continued turning: missed next block! Need 1 revolution/block!


– Solution1: Skip sector positioning (“interleaving”)

» Place the blocks from one file on every other block of a track: give time for processing 

to overlap rotation

» Can be done by OS or in modern drives by the disk controller


– Solution 2: Read ahead: read next block right after first, even if application hasn’t 
asked for it yet


» This can be done either by OS (read ahead) 

» By disk itself (track buffers) - many disk controllers have internal RAM that allows 

them to read a complete track

• Modern disks + controllers do many things “under the covers”


– Track buffers, elevator algorithms, bad block filtering

Skip Sector

Track Buffer
(Holds complete track)



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 30

Where are inodes Stored?

• In early UNIX and DOS/Windows’ FAT file system, headers stored 
in special array in outermost cylinders


• Header not stored anywhere near the data blocks

– To read a small file, seek to get header, seek back to data


• Fixed size, set when disk is formatted

– At formatting time, a fixed number of inodes are created

– Each is given a unique number, called an “inumber”



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 31

Where are inodes Stored?
• Later versions of UNIX moved the header information to be  

closer to the data blocks

– Often, inode for file stored in same “cylinder group” as parent directory 

of the file (makes an ls of that directory run fast)

• Pros: 


– UNIX BSD 4.2 puts bits of file header array on many cylinders

– For small directories, can fit all data, file headers, etc. in same cylinder ⇒ 

no seeks!

– File headers much smaller than whole block (a few hundred bytes), so 

multiple headers fetched from disk at same time

– Reliability: whatever happens to the disk, you can find many of the files 

(even if directories disconnected)

• Part of the Fast File System (FFS)


– General optimization to avoid seeks



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 32

4.2 BSD Locality: Block Groups
• File system volume is divided into a set of block groups


– Close set of tracks

• Data blocks, metadata, and free  

space interleaved within block group

– Avoid huge seeks between  

user data and system structure

• Put directory and its files in  

common block group



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 33

4.2 BSD Locality: Block Groups
• First-Free allocation of new file blocks


– To expand file, first try successive  
blocks in bitmap, then  
choose new range of blocks


– Few little holes at start, big  
sequential runs at end of group


– Avoids fragmentation

– Sequential layout for big files


• Important: keep 10% or more free!

– Reserve space in the Block Group



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 34

UNIX 4.2 BSD FFS First Fit Block Allocation

• Fills in the small holes at the start of block group

• Avoids fragmentation, leaves contiguous free space at end



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 35

UNIX 4.2 BSD FFS
• Pros


– Efficient storage for both small and large files
– Locality for both small and large files
– Locality for metadata and data
– No defragmentation necessary!

• Cons

– Inefficient for tiny files (a 1 byte file requires both an inode and a data 

block)
– Inefficient encoding when file is mostly contiguous on disk (no way to 

say "blocks 1026-4085" – need to write out each block number) 
– Need to reserve 10-20% of free space to prevent fragmentation



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 36

Linux Example: Ext2/3 Disk Layout
• Disk divided into block groups


– Provides locality
– Each group has two block-sized 

bitmaps  (free blocks/inodes)
– Block sizes settable  

at format time:  
1K, 2K, 4K, 8K…

• Actual inode structure similar to 
4.2 BSD


– with 12 direct pointers
• Ext3: Ext2 with Journaling


– Several degrees of protection 
with comparable overhead

• Example: create a file1.dat  
under /dir1/ in Ext3



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 37

A bit more on directories
• Stored in files, can be read, but typically don’t


– System calls to access directories

– open / creat traverse the structure
– mkdir /rmdir add/remove entries
– link / unlink (rm)

» Link existing file to a directory

• Not in FAT !


» Forms a DAG

• When can file be deleted?


– Maintain ref-count of links to the file

– Delete after the last reference is gone


• libc support

– DIR * opendir (const char *dirname)

– struct dirent * readdir (DIR *dirstream)

– int readdir_r (DIR *dirstream, struct dirent 
*entry, struct dirent **result)

/usr

/usr/lib4.3

/usr/lib4.3/foo

/usr/lib

/usr/lib/foo



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 38

Links

• Hard link

– Sets another directory entry to contain the file number for 

the file
– Creates another name (path) for the file
– Each is “first class”

• Soft link or Symbolic Link or Shortcut

– Directory entry contains the path and name of the file
– Map one name to another name



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 39

Large Directories: B-Trees (dirhash)

in FreeBSD, NetBSD, OpenBSD



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 40

NTFS

• New Technology File System (NTFS)

– Default on Microsoft Windows systems


• Variable length extents

– Rather than fixed blocks


• Everything (almost) is a sequence of <attribute:value> pairs

– Meta-data and data


• Mix direct and indirect freely


• Directories organized in B-tree structure by default



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 41

NTFS
• Master File Table


– Database with Flexible 1KB entries for metadata/data

– Variable-sized attribute records (data or metadata)

– Extend with variable depth tree (non-resident)


• Extents – variable length  
contiguous regions


– Block pointers cover  
runs of blocks


– Similar approach in  
Linux (ext4)


– File create can provide 
 hint as to size of file


• Journaling for reliability

– Discussed later

http://ntfs.com/ntfs-mft.htm



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 42

NTFS Small File

Create time, modify time, access time,

Owner id, security specifier, flags (RO, hidden, sys)

data attribute

Attribute list



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 43

NTFS Medium File



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 44

NTFS Multiple Indirect Blocks



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 45



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 46

Memory Mapped Files

• Traditional I/O involves explicit transfers between buffers in 
process address space to/from regions of a file


– This involves multiple copies into caches in memory, plus system 
calls


• What if we could “map” the file directly into an empty region of 
our address space


– Implicitly “page it in” when we read it

– Write it and “eventually” page it out


• Executable files are treated this way when we exec the 
process!!



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 47

Recall: Who Does What, When?

virtual address

MMU PTinstruction

physical address
page#

frame#

offsetpage fault

Operating System

exception

Page Fault Handler

load page from disk

update PT entry

Process

scheduler

retry frame#

offset



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 48

Using Paging to mmap() Files

virtual address

MMU PT
instruction

physical address

page#
frame#

offset
page fault

Process

File

mmap() file to region of  VAS

Create PT entries

for mapped region

as “backed” by file

Operating System

exception

Page Fault Handler

scheduler

retry

Read File 
contents


from memory!



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 49

mmap() system call

• May map a specific region or let the system find one for you

– Tricky to know where the holes are

• Used both for manipulating files and for sharing between processes



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 50

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */


int something = 162;


int main (int argc, char *argv[]) {

  int myfd;

  char *mfile;


  printf("Data  at: %16lx\n", (long unsigned int) &something);

  printf("Heap at : %16lx\n", (long unsigned int) malloc(1));

  printf("Stack at: %16lx\n", (long unsigned int) &mfile);


  /* Open the file */

  myfd = open(argv[1], O_RDWR | O_CREAT);

  if (myfd < 0) { perror("open failed!");exit(1); }


  /* map the file */

  mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);

  if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}


  printf("mmap at : %16lx\n", (long unsigned int) mfile);


  puts(mfile);

  strcpy(mfile+20,"Let's write over it");

  close(myfd);

  return 0;

}



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 51

An mmap() Example
#include <sys/mman.h> /* also stdio.h, stdlib.h, string.h, fcntl.h, unistd.h */


int something = 162;


int main (int argc, char *argv[]) {

  int myfd;

  char *mfile;


  printf("Data  at: %16lx\n", (long unsigned int) &something);

  printf("Heap at : %16lx\n", (long unsigned int) malloc(1));

  printf("Stack at: %16lx\n", (long unsigned int) &mfile);


  /* Open the file */

  myfd = open(argv[1], O_RDWR | O_CREAT);

  if (myfd < 0) { perror("open failed!");exit(1); }


  /* map the file */

  mfile = mmap(0, 10000, PROT_READ|PROT_WRITE, MAP_FILE|MAP_SHARED, myfd, 0);

  if (mfile == MAP_FAILED) {perror("mmap failed"); exit(1);}


  printf("mmap at : %16lx\n", (long unsigned int) mfile);


  puts(mfile);

  strcpy(mfile+20,"Let's write over it");

  close(myfd);

  return 0;

}

$ cat test

This is line one

This is line two

This is line three

This is line four

$ ./mmap test

Data  at:        105d63058

Heap at :     7f8a33c04b70

Stack at:     7fff59e9db10

mmap at :        105d97000

$ cat test

This is line one

ThiLet's write over its line three

This is line four




4/7/20 Kubiatowicz CS162 © UCB Spring 2020 52

Sharing through Mapped Files

• Also: anonymous memory between parents and children

– no file backing – just swap space

File

0x000…

0xFFF…

instructions

data

heap

stack

OS

0x000…

0xFFF…

instructions

data

heap

stack

OS

VAS 1 VAS 2

Memory



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 53

File System Caching
• Key Idea: Exploit locality by caching data in memory


– Name translations: Mapping from paths→inodes

– Disk blocks: Mapping from block address→disk content	


• Buffer Cache: Memory used to cache kernel resources, including disk 
blocks and name translations


– Can contain “dirty” blocks (blocks yet on disk)

• Replacement policy?  LRU


– Can afford overhead of timestamps for each disk block

– Advantages:


» Works very well for name translation

» Works well in general as long as memory is big enough to accommodate a 

host’s working set of files.

– Disadvantages:


» Fails when some application scans through file system, thereby flushing the 
cache with data used only once


» Example: find . –exec grep foo {} \;
• Other Replacement Policies?


– Some systems allow applications to request other policies

– Example, ‘Use Once’:


» File system can discard blocks as soon as they are used



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 54

File System Caching (con’t)
• Cache Size: How much memory should the OS allocate to the buffer 

cache vs virtual memory?

– Too much memory to the file system cache ⇒ won’t be able to run 

many applications at once

– Too little memory to file system cache ⇒ many applications may run 

slowly (disk caching not effective)

– Solution: adjust boundary dynamically so that the disk access rates for 

paging and file access are balanced

• Read Ahead Prefetching: fetch sequential blocks early


– Key Idea: exploit fact that most common file access is sequential by 
prefetching subsequent disk blocks ahead of current read request (if they 
are not already in memory)


– Elevator algorithm can efficiently interleave groups of prefetches from 
concurrent applications


– How much to prefetch?

» Too many imposes delays on requests by other applications

» Too few causes many seeks (and rotational delays) among concurrent file 

requests



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 55

File System Caching (con’t)
• Delayed Writes: Writes to files not immediately sent out to disk


– Instead, write() copies data from user space buffer to kernel buffer 
(in cache)


» Enabled by presence of buffer cache: can leave written file blocks in cache 
for a while


» If some other application tries to read data before written to disk, file 
system will read from cache 


– Flushed to disk periodically (e.g. in UNIX, every 30 sec)

– Advantages: 


» Disk scheduler can efficiently order lots of requests

» Disk allocation algorithm can be run with correct size value for a file

» Some files need never get written to disk! (e..g temporary scratch files 

written /tmp often don’t exist for 30 sec)

– Disadvantages


» What if system crashes before file has been written out?

» Worse yet, what if system crashes before a directory file has been written 

out? (lose pointer to inode!)



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 56

Important “ilities”
• Availability: the probability that the system can accept and process 

requests

– Often measured in “nines” of probability.  So, a 99.9% probability is 

considered “3-nines of availability”

– Key idea here is independence of failures


• Durability: the ability of a system to recover data despite faults

– This idea is fault tolerance applied to data

– Doesn’t necessarily imply availability: information on pyramids was very 

durable, but could not be accessed until discovery of Rosetta Stone

• Reliability: the ability of a system or component to perform its 

required functions under stated conditions for a specified period of 
time (IEEE definition)

– Usually stronger than simply availability: means that the system is not 
only “up”, but also working correctly


– Includes availability, security, fault tolerance/durability

– Must make sure data survives system crashes, disk crashes, other 

problems



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 57

File System Summary (1/2)
• File System:


– Transforms blocks into Files and Directories
– Optimize for size, access and usage patterns
– Maximize sequential access, allow efficient random access
– Projects the OS protection and security regime (UGO vs ACL)

• File defined by header, called “inode”

• Naming: translating from user-visible names to actual sys resources


– Directories used for naming for local file systems
– Linked or tree structure stored in files

• Multilevel Indexed Scheme

– inode contains file info, direct pointers to blocks, indirect blocks, 

doubly indirect, etc..
– NTFS: variable extents not fixed blocks, tiny files data is in header



4/7/20 Kubiatowicz CS162 © UCB Spring 2020 58

File System Summary (2/2)
• 4.2 BSD Multilevel index files


– Inode contains ptrs to actual blocks, indirect blocks, double indirect 
blocks, etc. 

– Optimizations for sequential access: start new files in open ranges 
of free blocks, rotational optimization

• File layout driven by freespace management

– Integrate freespace, inode table, file blocks and dirs into block group

• Deep interactions between mem management, file system, sharing

–mmap(): map file or anonymous segment to memory

• Buffer Cache: Memory used to cache kernel resources, including disk 
blocks and name translations


– Can contain “dirty” blocks (blocks yet on disk)


