CS162
Operating Systems and
Systems Programming

Lecture |8

Queueing Theory,
Disk scheduling & File Systems

April 2nd, 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the

bottom of that slide, in which case a full list of references is provided on the last
slide.



Review: Magnetic Disks

Track
* Cylinders: all the tracks under the Sector
head at a given point on all surface
Head | ??:
* Read/write data is a three-stage process: ylinder
— Seek time: position the head/arm over the proper track Platter

— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Soft o
oftware 9 I —

= Media Time
be . . = (Seek+Rot+Xfer) A
- (Device Driver) Q3 -
D —
(@p)

N

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020



Flash Memory (Con’t)

Data written »
in4 KB Pages

Data erased
in 256 KB
Blocks

&

64 writable Pages
in 1 erasable Block

— Cannot be addressed at byte level
— Random access at block level for reads (no locality advantage)

Typical NAND Flash Pages and Blocks

4 KB 4 KB 4 KB
4 KB 4 KB 4 KB

One block

L

L

L

One page H

Ai

|

-
—

4{

4!54&4&

‘|

‘|

G G G

* Data read and written in page-sized chunks (e.g. 4K)

— Writing of new blocks handled in order (kinda like a log)
* Before writing, must be erased (256K block at a time)

— Requires free-list management

) WA N

BN [ B

— CANNOT write over existing block (Copy-on-Write is normal case)

4/2/20

Kubiatowicz CS162 ©UCB Spring 2020

e e

NN | S N i



Recall: SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)

— No moving parts:
» Very light weight, low power; silent, very shock insensitive

— Read at memory speeds (limited by controller and I/O bus)
« Cons

— Small storage (0.1-0.5x disk), expensive (3-20x disk)
» Hybrid alternative: combine small SSD with large HDD

— Wear-out happens because of writing

$10,000
%o $10,000

$1,000
HDD

Price

@
=
13
S

SSD Cheaper ¢«—f—» HDD Cheape, / $1,000 /

‘Total System Cost

$100
\/

—SSD

$10
—HDD

$10
st 500GB 1TB 2TB 4TB 8TB

& Capacity

q'p@é" 0& S L Nkp‘" @é’ bhe‘" &cﬁ’ ﬁ?,bc? S @'@
Storage Capacity
L3
2019 perspective

2007 perspective (Storage Newsle'r'rer'g|62 OUCR Sorine 2030
pring

4/2/20 Kubiatowicz C



Recall: I/O Performance

300 | Response
Time (ms)

User
Thread

ﬁ —>

J3||0J43u0D)

. JI/O
Queue

[OS Paths] 100
Response Time = Queue + I/O device service time

* Performance of /O subsystem 0 oy 100%
— Metrics: Response Time, Throughput Throughput (Utilization)

— Effective BW per op = transfer size / response time (% total BW)

» EMBW({N) =n/(S+n/B)=B/ (I +SB/n)
— Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» 1/O device service time

* Queuing behavior:
— (Can lead to big increases of latency as utilization increases
— Solutions!

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 5



A Simple Deterministic World

arrivals —> Queue —>—> departures

To > — T, >

N TA > TA TA

\4
v

>

=

* Assume requests arrive at regular intervals, take a fixed time to
process, with plenty of time between ...

Tq

Service rate (U = |/T¢) - operations per second

Arrival rate: (A = 1/T,) - requests per second

» Utilization: U = My , where A < |

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020



A ldeal Linear World

= = Saturation
a | a |
e L
60 60
> >
O 9
e C
= =
O O
o o
() Qv
2 = mpty Queue nbounded
[ [
Q0 | Qo |
Offered Load (T/T,) Offered Load (T¢/T
) )
o] v o
O O
) )
> > | 4
) ()
> >
o > O >
time time

* What does the queue wait time look like during overload?
— Grows unbounded at a rate ~ (T./T,) till request rate subsides

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 7



Reality: A Bursty World

arrivals —>» Queue —> —> departures
Te >

To >

Arrivals

Q depth I

v

e [ —

* Requests arrive In a burst, must queue up till served

* Same average arrival time, but:
— Almost all of the requests experience large queue delays
— Even though average utilization is low!

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020



So how do we model the burstiness of arrival?

* Elegant mathematical framework if you start with exponential
distribution

— Probability density function of a continuous random variable with a
mean of /A

— f(X) = heM
— "Memoryless”

Likelihood of an event occurring
is independent of how long we’ve °73
been waiting

1
|
I
|
|
' mean arrival interval (I/A)
|

05
Lots of short arrival ingé€rvals

—
(i.e., high instantaneous rate) \\

Few long gaps (i.e., low 0 &—

. —_ S 2.5 5 7.5 10
instantaneous rate) 0
X

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 9




Background:
General Use of Random Distributions

* Server spends variable time (T) with customers 5
— Mean (Average) m = 2p(T)xT ?ﬁﬂﬁr’Q
— Variance (stddev?) 02 = 2p(T)x(T-m)2 = 2Zp(T)x2-m?2

— Squared coefficient of variance: C = g2/m?
Aggregate description of the distribution

Distribution
of service times

* Important values of C:

. L mean
— No variance or deterministic = C=0
— “"Memoryless” or exponential = C=|
» Past tells nothing about future Memoryless

» Poisson process — purely or completely random process

» Many complex systems (or aggregates)
are well described as memoryless

— Disk response times C = |.5 (majority seeks < average)

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 0]



Introduction to Queuing Theory

n ;
o
— 2 Disk >
. o IS
Arrivals = Departures
Queue 0
Queuing System

* What about queuing time??
— Let's apply some queuing theory
— Queuing Theory applies to long term, steady state behavior = Arrival
rate = Departure rate

* Arrivals characterized by some probabilistic distribution

* Departures characterized by some probabillistic distribution

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 I



Little’s Law

departures

arrivals —/»
A

* In any stable system
— Average arrival rate = Average departure rate

* The average number of jobs/tasks in the system (N) Is equal to
arrival time / throughput (A) times the response time (L)

— N (jobs) =\ (jobs/s) x L (s)

* Regardless of structure, bursts of requests, variation in service
— Instantaneous variations, but it washes out in the average
— Overall, requests match departures

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 12



Example

01234567 8 9 1011121314 1516
AN=AXL
* Eg,N=AxL=5

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020

time



A Little Queuing Theory: Some Results

Assumptions:
— System in equilibrium; No limit to the queue
— Time between successive arrivals is random and memoryless

Arrival Rat: Service Rate
. p=l1 /Tser
» Parameters that describe our system:
— A mean number of arriving customers/second
S mean time to service a customer (“m ")
- C squared coefficient of variance = 02/m 2
— M service rate = /T .
—u: server utilization (Osusl)u=AMy=AxT_,
* Parameters we wish to compute:
— Ty Time spent In queue
- Ly Length of queue = A x T, (by Little’s law)

Results:
— Memoryless service distribution (C = 1): (an "M/M/| queue”):
» Tq= T xU/(l =)
— General service distribution (no restrictions), | server (an "M/G/| queue”):
» Tq = T x V2(1+C) x /(1 —u)
4/2120 Kubiatowicz CS162 ©@UCB Spring 2020 14



A Little Queuing Theory: Some Results

* Assumptions: Why d :
) _ - oes response/queuein
— System in equilibrium; No limit to the g del 4 E dqdl 5
— Time between successive arrivals is ran¢©€'dy 8row unboundedly even
though the utilization is < | ?
> —
Arrival Rate S¢ 300 | Response
A Time (ms)
» Parameters that describe our system: 200
— A mean number of arriving cust
— T mean time to service a custor
- C squared coefficient of variance 100
— M service rate = /T .
—u server utilization (Osusl):u = 4 .
. . 0% 100%
* Parameters we wish to compute:
_ T Time spent in queue Throughput (Utilization)
; _ (% total BW)
- Ly Length of queue = A °
* Results:

:(an "M/M/ 1 queue™):

— Memoryless seadeascistribUt|
» To= T pul(l - )| -
— General service distribyflanacestrictions), | server (an "M/G/ | queue”):

» Tq = T x 2(1+C) u/(l —u)
4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 15



Why unbounded response time!

* Assume deterministic arrival process and service time
— Possible to sustain utllization = | with bounded response time!

time

!

arrival service
time  time

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 16



Why unbounded response time!

| | 300 | Response
* Assume stochastic arrival process Time (ms)

(and service time) 200
— No longer possible to achieve

utilization = | 100

This wasted time can never )

be reclaimed! Of?h hput (Utilizat '())0%
: — 1 roughput (Utilization

So cannot achieve u = |! (% total BW)

time

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 17



A Little Queuing Theory: An Example

* Example Usage Statistics:
— User requests |0 x 8KB disk I/Os per second
— Requests & service exponentially distributed (C=1.0)
— Avg. service = 20 ms (From controller+seek+rot+trans)

o Questions:

— How utilized is the disk?
» Ans:server utilization,u = AT

— What is the average time spent in the queue?
» Ans: T

— What is the number of requests in the queue!?
» Ans: L

— What is the avg response time for disk request?

» AnstT =T+ T,

Computation:

A (avg # arriving customers/s) = 10/s
u

L

T... (avg time to service customer) = 20 ms (0.02s)
(server utilization) = A xT__ = 10/s x .02s = 0.2

ser
(avg time/customer in queue) =T . x u/(l —u)

=20 x0.2/(1-0.2) =20 x 0.25 = 5 ms (0 .005s)
(avg length of queue) = A x T =10/s x.005s = 0.05

(avg time/customer in system) =T_+ T ,,= 25 ms

sys ser
4/2/20 Kubiatowicz CS162 ©UCB Spring 2020

-

ser
q
qd



Queuing Theory Resources

» Resources page contains Queueing Theory Resources (under
Readings):
— Scanned pages from Patterson and Hennessy book that gives further

discussion and simple proof for general equation: https://
cs|62.eecs.berkeley.edu/static/readings/patterson_queue.pdf

— A complete website full of resources: http://web2.uwindsor.ca/math/hlynka/
gonline.htm|

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 19


https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
https://cs162.eecs.berkeley.edu/static/readings/patterson_queue.pdf
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html
http://web2.uwindsor.ca/math/hlynka/qonline.html

Optimize /O Performance

User
Thread

Response Time =

g 300
- g B :I/ec\)lice
— 200
Queue 0]
[OS Paths]
100
Queue + 1/0 device service time
0

* How to improve performance!

— Make everything faster ©

— More Decoupled (Parallelism) systems
» multiple independent buses or controllers

— Optimize the bottleneck to increase service rate
» Use the queue to optimize the service

— Do other useful work while waiting
* Queues absorb bursts and smooth the flow
* Admissions control (finite queues)

— Limits delays, but may introduce unfairness and livelock
Kubiatowicz CS162 ©UCB Spring 2020

4/2/20

Response
Time (ms)

0% 100%

Throughput (Utilization)
(% total BW)

20



4/2/20

/O Scheduling Discussion

What happens when two processes are accessing storage In
different regions of the disk ?

What can the driver do?

How can buffering help?

What about non-blocking 1/O?

Or threads with blocking [/O?

What limits how much reordering the OS can do!?

Kubiatowicz CS162 ©UCB Spring 2020

21



When is Disk Performance Highest!

* When there are big sequential reads, or

* When there is so much work to do that they can be piggy backed
(reordering queues—one moment)

OK to be inefficient when things are mostly idle
* Bursts are both a threat and an opportunity

» <your idea for optimization goes here>
— Waste space for speed!

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 22



Disk Scheduling (1/2)

* Disk can do only one request at a time; What order do you choose to

do queued requests!

User :> NN
NININ
Requests
— Fair among requesters, but order of arrival may be

* FIFO Order
to random spots on the disk = Very long seeks
* SSTF: Shortest seek time first
— Pick the request that's closest on the disk
— Although called SSTF, today must include
rotational delay in calculation, since
rotation can be as long as seek
— Con: SSTF good at reducing seeks, but
may lead to starvation

0l°€

PeoH 3isia

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 23



Disk Scheduling (2/2)

* Disk can do only one request at a time; What order do you choose to

do queued requests!
User "B'.‘Sii g ¥ ‘Heﬂ?\
Requests
* SCAN: Implements an Elevator Algorithm: take the closest request in

the direction of travel
— No starvation, but retains flavor of SSTF

0l°€

14 37 53 65 67 98 122 124 183
1 I [ 11 I | | [ |

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 24



Disk Scheduling (2/2)

* Disk can do only one request at a time; What order do you choose to

do queued requests!
NN
—lw ‘Head ??:

User ‘ NlUN
NININ
Requests

o C-SCAN: Circular-Scan: only goes in one direction
— Skips any requests on the way back
— Fairer than SCAN, not biased towards pages in middle

0l°€

0 14 37 53 65 67 98 122 124 183 199

|1 | [ 11 | | ||
I |

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 25



Recall: How do we Hide I/O Latency!?

* Blocking Interface: “Wart”

— When request data (e.g, read() system call), put process to sleep
until data Is ready

— When write data (e.g, write() system call), put process to sleep
until device Iis ready for data

* Non-blocking Interface:"Don’t Wart”

— Returns quickly from read or write request with count of bytes
successfully transferred to kernel

— Read may return nothing, write may write nothing
* Asynchronous Interface: " Tell Me Later”

— When requesting data, take pointer to user’s buffer; return
immediately; later kernel fills buffer and notifies user

— When sending data, take pointer to user’s buffer, return
immediately; later kernel takes data and notifies user

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 26



From Storage to File Systems

syscalls

Logical Index,
Typically 4 KB

Hardware

. Flash Trans. Layer
Devices

Phys. Block
Phys Index.,

Physical Index, 4KB

512B or 4KB Erasure Page

HDD SSD

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 27



4/2/20

/O & Storage Layers

Application / Service

High Level I/O
Low Level I/O

Syscall

I/O Driver

Obperations, Entities and Interface

streams

handles

registers

file open, file read, .. on struct file * & void *
File System descriptors we are here

Commands and Data Transfers

Kubiatowicz CS162 ©UCB Spring 2020 28



Recall: C Low level I/O

* Operations on File Descriptors — as OS object representing the
state of a file

— User has a “handle” on the descriptor

#include <fcntl.h>
#include <unistd.h>
#include <sys/types.h>

int flagsl [,/mode t mode])
ename, mode t mode)

int open (const char *filenam
int create (const char *£fi
int close (int filed

Bit vector of: Bit vect £ Permission Bits:
« Access modes (Rd,Wr, ...) it vector of Permission Bits:

* User|Group|Other X R|W|X

* Open Flags (Create,...)

* Operating modes (Appends, ...)

http://www.gnu.org/software/libc/manual/htm| node/Opening-and-Closing-Files.html
4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 29



http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html
http://www.gnu.org/software/libc/manual/html_node/Opening-and-Closing-Files.html

Recall: C Low Level Operations

ssize t read (int filedes, void *buffer, size t maxsize)
- returns bytes read, 0 => EOF, -1 => error

ssize t write (int filedes, const void *buffer, size t size)
- returns bytes written

off t lseek (int filedes, off t offset, int whence)
- set the file offset

* 1f whence == SEEK SET: set file offset to “offset”

* 1f whence == SEEK CRT: set file offset to crt location +
“offset”

* 1f whence == SEEK END: set file offset to file size + “offse

int fsync (int fildes)
— wait for i/o of filedes to finish and commit to disk
void sync (void) — wait for ALL to finish and commit to disk

* When write returns, data is on its way to disk and can be readq,
but It may not actually be permanent!

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 30



Building a File System

* File System: Layer of OS that transforms block interface of disks (or
other block devices) into Files, Directories, etc.

* File System Components
— Naming: Interface to find files by name, not by blocks
— Disk Management: collecting disk blocks into files
— Protection: Layers to keep data secure

— Reliability/Durability: Keeping of files durable despite crashes,
media failures, attacks, etc.

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 31



Recall: User vs. System View of a File

* User's view:
— Durable Data Structures
* System’s view (system call interface):

— Collection of Bytes (UNIX)

— Doesn't matter to system what kind of data structures you
want to store on disk!
* System’s view (inside OS):
— Collection of blocks (a block is a logical transfer unit, while a
sector Is the physical transfer unit)
— Block size = sector size; in UNIX, block size i1s 4KB

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 32



Translating from User to Systems View

2~EF-0-=

* What happens if user says: "give me bytes 2 — [ 2¢"

— Fetch block corresponding to those bytes
— Return just the correct portion of the block

* What about writing bytes 2 — 12¢

— Fetch block, modify relevant portion, write out block

* Everything inside file system in terms of whole-size blocks
— Actual disk /O happens in blocks
— read/write smaller than block size needs to translate and buffer

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 33



Disk Management Policies

* Basic entities on a disk:
— File: user-visible group of blocks arranged sequentially in logical space
— Directory: user-visible index mapping names to files

* Access disk as linear array of sectors. Two Options:
— |dentify sectors as vectors [cylinder, surface, sector], sort in cylinder
major order, not used anymore
— Logical Block Addressing (LBA): Every sector has integer address
from zero up to max number of sectors
— Controller translates from address = physical position
» First case: OS/BIOS must deal with bad sectors
» Second case: hardware shields OS from structure of disk

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 34



4/2/20

What does the file system need?

Track free disk blocks
— Need to know where to put newly written data

Track which blocks contain data for which files
— Need to know where to read a file from

Track files in a directory
— Find list of file's blocks given its name

Where do we maintain all of this?
— Somewhere on disk

Kubiatowicz CS162 ©UCB Spring 2020

35



Data Structures on Disk

* Different than data structures in memory

* Access a block at a time
— Can't efficiently read/write a single word
— Have to read/write full block containing it
— |deally want sequential access patterns
* Durability
— Ideally, file system iIs in meaningful state upon shutdown
— This obviously isn't always the case...

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020

36



4/2/20

Designing a File System ...

What factors are critical to the design choices!

Durable data store => it's all on disk
(Hard) Disks Performance !l!

— Maximize sequential access, minimize seeks
Open before Read/Write

— Can perform protection checks and look up where the actual file
resource are, in advance

Size I1s determined as they are used !

— Can write to expand the file

— Start small and grow, need to make room
Organized into directories

— What data structure (on disk) for that?
Need to allocate / free blocks

— Such that access remains efficient

Kubiatowicz CS162 ©UCB Spring 2020

37



Components of a File System

File path

Directory File Index

Structure )
File number

“inumber”

Data blocks

“inode”

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020

eams One Block = multiple sectors
Ex: 512 sector, 4K block



Components of a file system

file name N file number Index
offset  directory offset structure

> Storage block

* Open performs Name Resolution
— Translates pathname into a "“file number”
» Used as an "index” to locate the blocks
— Creates a file descriptor in PCB within kernel
— Returns a “handle” (another integer) to user process

* Read, Write, Seek, and Sync operate on handle
— Mapped to file descriptor and to blocks

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 39



Directories

[ NN ] [ website
< EH oo ol 58 v 0 © | ¥~
Favorites Name ~  Date Modified Size Kind
23 Dropbox v [ static Feb 10, 2016, 12:45 PM - Folder
» [ css Jan 14, 2016, 11:51 AM --  Folder
< iCloud Drive » [ exams Mar 10, 2016, 9:03 PM - Folder
@) AirDrop » [ fonts Jan 14, 2016, 11:51 AM -~ Folder
v [ hw Mar 1, 2016, 7:29 PM --  Folder
(] Desktop = hwo.pdf Jan 20, 2016, 3:19 PM 175KB  PDF Document
k) . y y 90
£} adj = hwi1.pdf Feb 11, 2016, 9:42 AM 128KB  PDF Document
s8¢ Applications = hw2.pdf Feb 16, 2016, 9:00 PM 180 KB  PDF Document
= hw3.pdf Mar 1, 2016, 7:29 PM 200 KB PDF Document
[§ Documents > s Jan 14, 2016, 11:51 AM --  Folder
© Downloads » [ lectures Apr 1, 2016, 5:41 PM -~ Folder
E Movies » [ pics Jan 18, 2016, 6:13 PM -~ Folder
> ! profiles Jan 25, 2016, 3:32 PM -- Folder
[ Box Sync » [ projects Mar 26, 2016, 10:07 AM - Folder
ES Google Drive v [ readings Jan 14, 2016, 11:51 AM -~ Folder
= endtoend.pdf Jan 14, 2016, 11:51 AM 38 KB PDF Document
Devices = FFS84.pdf Jan 14, 2016, 11:51 AM 1.3MB  PDF Document
Remote Disc = garman_bug_81.pdf Jan 14, 2016, 11:51 AM 610 KB PDF Document
= Jacobson-congestion.pdf Jan 14, 2016, 11:51 AM 1.2MB PDF Document
i = Original_Byzantine.pdf Jan 14, 2016, 11:51 AM 1.2MB  PDF Document
[ adj-MBP = patterson_queue.pdf Jan 14, 2016, 11:51 AM 1.3MB  PDF Document
& adj-mini = TheracNew.pdf Jan 14, 2016, 11:51 AM 299 KB PDF Document
v [ sections Mar 17, 2016, 10:03 AM --  Folder
@ fido = section1.pdf Jan 18, 2016, 6:13 PM 130KB  PDF Document
@ All... = section2.pdf Jan 26, 2016, 7:13 PM 108 KB PDF Document
= section2sol.pdf Jan 28, 2016, 10:10 AM 127 KB PDF Document
Tags = section3.pdf Feb 5, 2016, 10:15 AM 115KB  PDF Document
= section3sol.pdf Feb 5, 2016, 10:15 AM 134 KB  PDF Document
= sectiond.pdf Feb 10, 2016, 12:45 PM 114KB  PDF Document
= sectiondsol.pdf Feb 11, 2016, 9:42 AM 134 KB PDF Document
i A ndf EFah 18 _2N1A_1-55 PAM 1iNQ KR PNE Nacumant

& Macintosh HD »

| Users » 4 adj » [ly) Documents » GitHub » website

4/2/20

51 items, 39.01 GB available

Kubiatowicz CS162 ©UCB Spring 2020

40




4/2/20

Directory

Basically a hierarchical structure

Each directory entry is a collection of
— Files
— Directories
» A link to another entries

Fach has a name and attributes
— Files have data

Links (hard links) make it a DAG, not just a tree
— Softlinks (aliases) are another name for an entry

Kubiatowicz CS162 ©UCB Spring 2020

41



File

* Named permanent storage
Data blocks

e Contains
— Data
» Blocks on disk somewhere
— Metadata (Attributes)

» Owner, size, last opened, ...

» Access rights
*R,W, X
* Owner, Group, Other (in Unix systems)

* Access control list in Windows system

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 42



In-Memory File System Structures

open (file name)

directory structure

=

directory structure

file-control block

user space

kernel memory

secondary storage

* Open system call:

— Resolves file name, finds file control block (inode)

— Makes entries in per-process and system-wide tables

— Returns index (called “file handle™) in open-file table

4/2/20

Kubiatowicz CS162 ©UCB Spring 2020

43




In-Memory File System Structures

index

N

F

per-process
open-file table

read (index)

—

—

system-wide
open-file table

L

data blocks

H

file-control block

user space kernel memory

secondary storage

* Read/write system calls:
—Use file handle to locate inode

—Perform appropriate reads or writes

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020

44




Our first filesystem: FAT (File Allocation Table)

Assume (for now) we have a

way to translate a path to

d

“file number”

— Just hold file data (offset 0 = < B, x >)

* Example:file_read 31, < 2, x>

4/2/20

— Index into FAT with file number
— Follow linked list to block

— Read the block from disk
into memory

memory

0:

File number
— Le, a directory structure \ 3

Disk Storage is a collection of Blocks

N-1I:

Kubiatowicz CS162 ©UCB Spring 2020

The most commonly used filesystem in the world!

FAT

1]

‘.—

Disk Blocks

File 31, Block O

File 31, Block |

File 31, Block 2

N-1I:




FAT Properties

e Fle is collection of disk blocks

e FAT is linked list |-1 with blocks

* File Number is index of root

of block list for the file File number \
31

* File offset (o = < B, x >)

* Follow list to get block #

* Unused blocks « Marked free (no

ordering, must scan to find)

free

memory

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020

FAT

0:

N-1I:

Disk Blocks

File 31, Block O

File 31, Block |

File 31, Block 2

N-1I:




FAT Properties

e Fle is collection of disk blocks

e FAT is linked list |-1 with blocks

* File Number is index of root

of block list for the file File number \
31

* File offset (0 = <B,x>)

* Follow list to get block #

* Unused blocks « Marked free (no

ordering, must scan to find)
* bEx:file_write(31,< 3,y >)
— Grab free block
— Linking them into file

free

memory

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020

FAT

0:

A

N-1I:

Disk Blocks

File 31, Block O

File 31, Block |

File 31, Block 3

File 31, Block 2

N-1I:




FAT Properties

e Fle is collection of disk blocks

o FAT is linked list -1 with blocks FAT Disk Blocks

* File Number is index of root 0: 0:

of block list for the file ~ File I number \%y

« Grow file by allocating free blocks .':] A3 Sl 2

and linking them in free L File 31, Block |
. . < File 63, Block |
o Ex: Create file, write, write
R File 31, Block 3
63: File 63, Block 0
File 2 number / - File 31, Block 2

N-1I: N-1I:

memory
42120 Kubiatowicz CS162 ©UCB Spring 2020




FAT Assessment

FAT32 (32 instead of |2 bits) used in Windows, USB drives,

SD cards, ... FAT Disk Blocks
* Where is FAT stored!? , 0: 0:
, File | number RpRD:
— On Disk, on boot cache in memory, \ S
second (backup) copy on disk 31: "1 File 31, Block 0
- File 31, Block |

* What happens when you format a disk?

. , < File 63, Block |
— Zero the blocks, Mark FAT entries “free
* What happens when you
quick format a disk? ) File 31, Block 3

— Mark all entries in FAT as free 63: File 63, Block 0

File 2 number /

f 4_ .
) Slmp/e File 31 0 Block 2
— Can implement in
device firmware N-1: N-1:

memory
42120 Kubiatowicz CS162 ©UCB Spring 2020




FAT Assessment — Issues

Time to find block (large files) ??

FAT Disk Blocks
* Block layout for file ¢ 0- 0-
File | number \ T
* Sequential Access ¥ 31: "‘J File 31, Block 0
~ File 31, Block |
* Random Access “ Fl 8, e |
* Fragmentation {7 31 Block 3
— MSDOS defrag tool 63: File 63, Block 0
« Small files 777 File 2 number <] |File 31, Block 2
* Big files ¢ N-I: N-1I:

memory
42120 Kubiatowicz CS162 ©UCB Spring 2020




What about the Directory!?

file 5268830 end
“/home/tom” e
Name | Music Work Free | footxt | Free
File Number 5268830 88026158 35002320 85200219 66212871 Space
Next |

Space ‘/J \¥;

Essentially a file containing
<file_name: file_number> mappings

* Free space for new entries

In FAT: file attributes are kept in directory (Il

* Each directory a linked list of entries

Where do you find root directory (/" )?

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 51



Directory Structure (cont’d)

* How many disk accesses to resolve “/my/book/count™
— Read in file header for root (fixed spot on disk)

— Read in first data block for root

» Table of file name/index pairs. Search linearly — ok since directories
typically very small

— Read in file header for “my”
— Read in first data block for “my"; search for “book”
— Read in file header for “book”
— Read in first data block for “book’; search for “count”
— Read In file header for “count”
* Current working directory: Per-address-space pointer to a
directory (inode) used for resolving file names

— Allows user to specify relative filename instead of absolute path (say
CWD="/my/book’™ can resolve “count”)

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 52



Many Huge FAT Security Holes!

* FAT has no access rights
 FAT has no header in the file blocks

* Just gives an index into the FAT

— (file number = block number)

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020

53



Summary

* Bursts & High Utilization introduce queuing delays
* Queuing Latency:
— M/M/1and M/G/ 1 queues: simplest to analyze
— As utilization approaches 100%, latency — o
T, =T x 2(1+C) x u/(l —u))
* File System:
— Transforms blocks into Files and Directories
— Optimize for access and usage patterns
— Maximize sequential access, allow efficient random access
* File (and directory) defined by header, called “inode”
* File Allocation Table (FAT) Scheme
— Linked-list approach
— Very widely used: Cameras, USB drives, SD cards
— Simple to implement, but poor performance and no security
* Look at actual file access patterns — many small files, but large files take up
all the space!

4/2/20 Kubiatowicz CS162 ©UCB Spring 2020 54



