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Recall: How the processor talks to the device

T
Processor Memory Bus Regular
Memory
Bus Bus S i ,)\\—
v Address + S
¥ Other Devices< Data Bus Hardware
Interrupt or Buses Interface ContrOIIer
Controller Interrupt Request Addressable
| . Memory
e CPU interacts with a Controller and/or
— Contains a set of registers that Registers Queues
can be read and written (port 0x20)

— May contain memory for request
queues or brt-mapped images

* Regardless of the complexity of the connections and buses, processor

accesses registers in two ways:
— /O instructions: infout instructions

Memory Mapped

Region: 0x8F008020

» Example from the Intel architecture:out 0x21,AL

— Memory mapped I/O: load/store instructions

» Registers/memory appear in physical address space
» 1/O accomplished with load and store instructions
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Recall: Memory-Mapped Display Controller

* Memory-Mapped:

— Hardware maps control registers and display memory 0x80020000

into physical address space
» Addresses set by HW jumpers or at boot time

— Simply writing to display memory (also called the
“frame buffer”) changes image on screen

» Addr: 0x8000FO00 — Ox8000FFFF

— Writing graphics description to cmd queue
» Say enter a set of triangles describing some scene
» Addr: 0x80010000 — 0x800 | FFFF

— Writing to the command register may cause on-
board graphics hardware to do something

» Say render the above scene
» Addr: 0x000/F004

* (Can protect with address translation
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Transferring Data To/From Controller
* Programmed I/O:

— Each byte transferred via processor infout or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

* Direct Memory Access:

— Give controller access to memory bus
— Ask it to transfer

1. device driver Is told
to transfer disk data @ CPU
data blocks to/from o buffor at addrase X
memory direcﬂy . DMA controller 2. device driver tells
transfers bytes to disk controller to
buffer X, increasing transfer C bytes
memory address from disk to buffer cache
: ' and decreasing C at address X
* Sample interaction and doore: —
' .when C = 0, DMA MBS X
with DMA controller Piren = o S0 e signa interrupt 2 )memory bus —| memory" | buffer
. transfer completion
(from OSC book):
] (3 ) — PCl bus
/ 4= 3. disk controller initiates
IDE disk DMA transfer

controller 4. disk controller sends
each byte to DMA

@ @ controller
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Transferring Data To/From Controller
* Programmed I/O:

— Each byte transferred via processor infout or load/store
— Pro: Simple hardware, easy to program
— Con: Consumes processor cycles proportional to data size

* Direct Memory Access:

— Give controller access to memory bus
— Ask it to transfer

1. device driver Is told
to transfer disk data CPU
data blocks to/from to buffer at address X| oy
memory direcﬂy . DMA controller 2. device driver tells i
transfers bytes to disk controller to

buffer X, increasing transfer C bytes
memory address from disk to buffe

cache

: ' and decreasing C at address X
* Sample interaction and decret Kk
. _ : us X
with DMA controller Piven = &ons interrupt [ CPU men’ “pus —| memorvs bufe
interrupts CPU to signal o L
_F . transfer completion conuoer / Nt
(from OSC book):
:l\‘ /) PCl bus
f 3. disk controller initiates

IDAdisk DMA transfer
controller 4. disk controller sends

each byte to DMA

@ @ controller
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/O Device Notifying the OS

* The OS needs to know when:
— The I/O device has completed an operation
— The I/O operation has encountered an error

* /O Interrupt:
— Device generates an interrupt whenever it needs service
— Pro: handles unpredictable events well
— Con: interrupts relatively high overhead
* Polling:
— OS periodically checks a device-specific status register
» 1/O device puts completion information in status register
— Pro: low overhead

— Con: may waste many cycles on polling if infrequent or unpredictable /O
operations

* Actual devices combine both polling and interrupts

— For instance — High-bandwidth network adapter:
» Interrupt for first incoming packet
»  Poll for following packets until hardware queues are empty
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Device Drivers

* Device Driver: Device-specific code in the kernel that interacts
directly with the device hardware

— Supports a standard, internal interface
— Same kernel I/O system can interact easily with different device drivers

— Special device-specific configuration supported with the ioct1 ()
system call

* Device Drivers typically divided into two pieces:
— Top half: accessed in call path from system calls

» Implements a set of standard, cross-device calls like open (), close(),
read(), write(), ioctl(), strategy()

» This is the kernel's interface to the device driver

» Top half will start I/O to device, may put thread to sleep until finished
— Bottom half: run as interrupt routine

» Gets input or transfers next block of output

» May wake sleeping threads if I/O now complete
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Life Cycle of An |I/O Request

U user 1/O completed,
ser request /O process input data available, or

output Completed
Program

system call

return from system cail

kernel

/O subsystem transfer data

(if appropriate) to process,
yes return completion
or error code

can already
satisfy request?

Kernel I/O
Subsystem

send request to device
driver, block process if ~ kernel
appropriate I/O subsystem

process request, issue

D evice D river commands to controller, device determine which O

completed, indicate state

configure controller to driver e
block until interrupted DHLE LIS
Top Half ;
AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEDR LA R R RERERRRERRRRRRRRERRERRRRRRERRRRRRRRRRRRNNNDHN.! EEEEN
. . ) receive interrupt, store
DeV|Ce Dl”lvel" device-controller commands lﬂ;%lljeprt data in device-driver buffer
if input, signal to unblock
Bottom Half ek e
AN EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEDR .........l..............................inte WIIIIIII EEEEN

device
1 monitor device, controller
Device interrupt when 110 /O completed,

completed generate interrupt
Hardware
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Basic Performance Concepts

* Response Time or Latency: Time to perform an
operation(s)

* Bandwidth or Throughput: Rate at which operations are
performed (op/s)

— Files: MB/s, Networks: Mb/s, Arithmetic: GFLOP/s

* Start up or"Overhead': time to Initiate an operation

* Most I/O operations are roughly linear in b bytes
— Latency(b) = Overhead + b/TransferCapacity
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Example (Fast Network)

* Considera | Gb/s link (BW = 125 MB/s)
— With a startup cost 5 = | ms

Performance of gbps link with 1 ms startup

7,000 r 120

100

80

60

Latency (us)

40

P20

"o
0 50,000 100,000 150,000 200,000 250,000 300,000 350,000 400,000 450,000 500,000

Length (b)
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Example: at 10 ms startup (like Disk)

Latency (us)

Performance of gbpslink with 10 ms startup
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Length (b)
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What Determines Peak BVV for I/O ?

* Bus Speed
— PCI-X: 1064 MB/s = 133 MHz x 64 bit (per lane)
— ULTRAWIDE SCSI: 40 MB/s
— Serial ATA & IEEE 1394 (firewire): 1.6 Gb/s full duplex (200MB/s)
— SAS-1: 3 Gb/s, SAS-2: 6 Gb/s, SAS-3: 12 Gb/s, SAS-4:22.5 GB/s
— USB 3.0 - 5 Gb/s
— Thunderbolt 3 — 40 Gb/s

* Device Transfer Bandwidth

— Rotational speed of disk
— Write / Read rate of NAND flash
— Signaling rate of network link

* Whatever is the bottleneck in the path...
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Storage Devices

* Magnetic disks
— Storage that rarely becomes corrupted
— Large capacity at low cost
— Block level random access (except for SMR — later!)
— Slow performance for random access
— Better performance for sequential access

* Flash memory
— Storage that rarely becomes corrupted
— Capacity at intermediate cost (5-20x disk)
— Block level random access
— Good performance for reads; worse for random writes
— Erasure requirement in large blocks
— Wear patterns issue
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Hard Disk Drives (HDDs)

Cover Mounting Holes
(Cover not shown)

Base Casting
Spindle
Slider (and Head)

Actuator Arm

Actuator Axis Case
Mounting
Actuator Heles Read/Write Head
Platters Side View
7 \ Ribbon Cable

(attaches heads

SCSI Interface to Logic Board)

Connector
Western Digital Drive
http://www.storagereview.com/guide/

IBM Personal Computer/AT (1986)
30 MB hard disk - $500

30-40ms seek time IBM/Hitachi Microdrive
0.7-1 MB/s (est.)
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The Amazing Magnetic Disk

o Unit of Transfer: Sector

Spindle —f]

— Ring of sectors form a track
— Stack of tracks form a cylinder

Surface

— Heads position on cylinders

* DiskTracks ~ | um (micron) wide
— Wavelength of light is ~ 0.5um
— Resolution of human eye: 50um
— 100K tracks on a typical 2.5" disk

Arm Assembly
—

* Separated by unused guard regions

— Reduces likelihood neighboring tracks are
corrupted during writes (still a small non-

d Z
Motor 7 Motor U
zero chance)
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The Amazing Magnetic Disk

* Track length varies across disk

— Outside: More sectors per track, pindle =
higher bandwidth

— Disk is organized into Surface
regions of tracks with Platter—»

same # of sectors/track

Surface —\..”

— Only outer half of radius is used

» Most of the disk area in the outer
regions of the disk

Arm Assembly
—

* Disks so big that some companies
(like Google) reportedly only use
part of disk for active data

— Rest Is archival data

/T

Motor wl Motor : U \
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Shingled Magnetic Recording (SMR)

Conventional Writes

) ——

§MR Writes

s
i

B Reader

Track N
Track N+1

Track N +...

* Overlapping tracks yields greater density, capacity
* Restrictions on writing, complex DSP for reading

* Examples: Seagate (81B), Hitachi (10TB)
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Review: Magnetic Disks

Track
* Cylinders: all the tracks under the Sector
head at a given point on all surface
Head |_OS
» Read/write data is a three-stage process: o ylinder
— Seek time: position the head/arm over the proper track Platter

— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Seek
AR Seek time = 4-8ms
S\ One rotation = 8-16ms
Original / ".._."-....Q'V""d?‘]“”“;‘l (3600-7200 RPM)
position o' : l latency
.‘“ { |
\ .
\ .__“__::/-
o Desired
gata
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Review: Magnetic Disks

Track
* Cylinders: all the tracks under the Sector
head at a given point on all surface
Head | ??:
* Read/write data is a three-stage process: ylinder
— Seek time: position the head/arm over the proper track Platter

— Rotational latency: wait for desired sector to rotate under r/w head
— Transfer time: transfer a block of bits (sector) under r/w head

Disk Latency = Queueing Time + Controller time +
Seek Time + Rotation Time + Xfer Time

Soft o
oftware 9 I —

= Media Time
be . . = (Seek+Rot+Xfer) A
- (Device Driver) Q3 -
D —
(@p)
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Typical Numbers for Magnetic Disk

Parameter Info / Range

Space/Density Space: 14TB (Seagate), 8 platters, in 372 inch form factor! Areal
Density: > | Terabit/square inch! (PMR, Helium, ...)

Average seek time Typically 4-6 milliseconds.
Depending on reference locality, actual cost may be
25-33% of this number.

Average rotational Most laptop/desktop disks rotate at 3600-7200 RPM
latency (16-8 ms/rotation). Server disks up to 15,000 RPM.
Average latency is halfway around disk so 8-4 milliseconds

Controller time Depends on controller hardware

Transfer time Typically 50 to 250 MB/s. Depends on:
* Transfer size (usually a sector): 512B — KB per sector
* Rotation speed: 3600 RPM to 5000 RPM
* Recording density: bits per inch on a track
* Diameter: ranges from | into 5.25in

Cost Used to drop by a factor of two every |.5 years (or even faster);
now slowing down
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Disk Performance Example

* Assumptions:
— lgnoring queuing and controller times for now
— Avg seek time of bms,
— /200RPM = Time for rotation: 60000 (ms/min) / 7200(rev/min) ~= 8ms

— Transfer rate of 50MByte/s, block size of 4Kbyte =
4096 bytes/50x |06 (bytes/s) = 81.92 x [0-6 sec =0.082 ms for | sector

* Read block from random place on disk:
— Seek (5ms) + Rot. Delay (4ms) + Transfer (0.082ms) = 9.082ms
— Approx 9ms to fetch/put data: 4096 bytes/9.082% [03s = 45|KB/s

* Read block from random place in same cylinder:
— Rot. Delay (4ms) + Transfer (0.082ms) = 4.082ms
— Approx 4ms to fetch/put data: 4096 bytes/4.082%x 103 s = [.03MB/s

 Read next block on same track:
— Transfer (0.082ms): 4096 bytes/0.082% |03 s = 50MB/sec

» Key to using disk effectively (especially for file systems) is to minimize seek and
rotational delays
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(Lots of) Intelligence in the Controller

Sectors contain sophisticated error correcting codes
— Disk head magnet has a field wider than track
— Hide corruptions due to neighboring track writes

Sector sparing
— Remap bad sectors transparently to spare sectors on the same surface

Slip sparing

— Remap all sectors (when there is a bad sector) to preserve sequential
behavior

Track skewing

— Sector numbers offset from one track to the next, to allow for disk head
movement for sequential ops
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Hard Drive Prices over Time

$/GB

104

102}

10t}

101}

104}

10°}

10°}

102}

103}

°5 - 1 | | | |
1990 1995 2000 2005 2010 2015

Disk cost-per-byte

e e actual data points 1990-2013
— linear fit to data points 1990-2010

—— range of industry projections 2013-2020 |

Year
Kubiatowicz CS162 © UCB Fall 2020
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Example of Current HDDs

* Seagate Exos X4 (2018)

— |14 TB hard disk |

» 8 platters, 16 heads
» Helium filled: reduce friction and power

— 4.1 6ms average seek time e
c 14TB  Giiike

' Ob%(0)
— 4096 byte physical sectors Eros™ X1 &
— /200 RPMs AR
— 6 Gbps SATA /12Gbps SAS interface
» 261 MB/s MAX transfer rate (COIPEML 7 i
» Cache size: 256MB e

— Price: $615 (< $0.05/GB)

* IBM Personal Computer/AT (1986)
— 30 MB hard disk
— 30-40ms seek time
— 0.7-1 MB/s (est.)
— Price: $500 ($17K/GB, 340,000x more expensive !l)
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Solid State Disks (SSDs)
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backed DRAM)

2009 — Use NAND Multi-Level Cell (2 or 3-bit/cell) flash memory
— Sector (4 KB page) addressable, but stores 4-64 “pages” per memory block

— Trapped electrons distinguish between | and O

No moving parts (no rotate/seek motors)
— Eliminates seek and rotational delay (0O.1-0.2ms access time)
— Very low power and lightweight
— Limited "write cycles”

Rapid advances In capacity and cost ever since!
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- ) 4
Buffer Flach

Host [€=> Mleimegger <€>| Memory
SATA | (software
Controller

kQueue) y g

¢

Em

Read 4 KB Page: ~25 usec
— No seek or rotational latency

— Transfer time: transfer a 4KB page
» SATA: 300-600MB/s => ~4 x103 b / 400 x 106 bps => 10 us

— Latency = Queuing Time + Controller time + Xfer Time
— Highest Bandwidth: Sequential OR Random reads
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SSD Architecture —Writes

* Writing data is complex! (~200us — [.7/ms)
— Can only write empty pages in a block
— Erasing a block takes ~1.5ms

— Controller maintains pool of empty blocks by coalescin
used pages (read, erase, write), also reserves some % 0
capacity

e Rule of thumb: writes |0Ox reads, erasure |Ox writes

Data written » AKB A KB
in 4 KB Pages

l 4 KB 4 KB 4 KB
Data erasec
in 256 KB <:| el

Blocks —

64 writable Pages AKB A KB A KB
in 1 erasable Block

Typical NAND Flash Pages and Blocks
https://en.wikipedia.org/wiki/Solid-state_drive
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https://en.wikipedia.org/wiki/Solid-state_drive

Some “Current’” 3.5in SSDs

* Seagate Nytro SSD: I5TB (2017)
— Dual 12Gb/s interface

;/).. AG
YNYTRO"

— Seq reads 860MB/s 15.3678

Nytro' 3330 $50

— Seqg writes 920MB/s

— Random Reads (IOPS): 102K

— Random Writes (IOPS): [ 5K

— Price (Amazon): $6325 ($0.41/GB)

* Nimbus SSD: [00TB (2019)

— Dual port: 12Gb/s interface

— Seq reads/writes: 500MB/s ExaDrive
— Random Read Ops (IOPS): 100K

— Unlimited writes for 5 years! @BUS

— Price: ~ $50K? ($0.50/GB) =%
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HDD vs SSD Comparison

$600
R = 08225 * 256 ® 250 — Linear (256) —Linear (250) Usually 10 000 or 15 000 rpm SAS drives
SN »
< A .
~ N ccess times
.“’—»” 0'1 ms SSDs exhibit virtually no access time 5'5 -~ 8'0 ms

$400 .PO\-\‘. o

SSDs deliver at least nandom I/n Performance HDDs reach up to

o
o
E $X B 000 |o/s SSDs are at least 15 times faster than HDDs 400 |°/s
4
5
e SSDs have a failure - ags, HDD"s failure rate
3 $20( rate of less than ne"ﬂbll'w fluctuates between
§ n 5 0 This makes SSDs 4 - 10 times more reliable 2 P 5 0/0
«J %
$10

SSDs consume between Energv savings HDDs consume between
e, Uaut 2 & 5 This means that on a large server like ours, 1 5
" watts approximately 100 watts are saved & watts

> > > > > > > > > > > > > >
) ) { O { ) ) O O O
- . . ~ . . « - 7 SSDs have an average HDDs' average I/0 wait
; ) a Y ' Y o s (e o 8 o o o 1O wait of cp“ puwer is abgul
Time You will have an extra 6%
1 D/n of CPU power for other operations 7 0/0

the average service time for the 1/0 request time with
an 1/0 request while running Input/ﬂutpllt HDDs during backup rises up

Price Grossover Point for HDD and SSD abeckasp remoine bokny request times o
20 ms SSDs allow for much 4nn~ 500 ms

faster data access

HDD 0.09 0.08 0.07 0.06 0.06 0.06 SSD backups ke sbout Backup Rates HDD backups take up 0
- 6 hours SSDs :"0::5 fo'r::- 5(rir:ets faster 20~24 hours
2.5 55D 0.99 0.68 0.55 0.39 0.24 0.17 ackups for your data

SSD prices drop much faster than HDD
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SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)

— No moving parts:
» Very light weight, low power, silent, very shock insensitive

— Read at memory speeds (limrited by controller and I/O bus)

e Cons

— Small storage (0.1-0.5x disk), expensive (3-20x disk)
» Hybrid alternative: combine small SSD with large HDD
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SSD Summary

* Pros (vs. hard disk drives):
— Low latency, high throughput (eliminate seek/rotational delay)
— No moving parts:

» Very light weight, low power, silent, very shock insensitive
— Read at memory speeds (limited by controller and I/O bus) |No longer

|
e Cons true!

— Srral-sterage{O01-05xdisk), EXpensive (3-ZUX aisK) 1

» Hybrid alternative: combine small SSD with large HDD

— Asymmetric block write performance: read pg/erase/write pg

» Controller garbage collection (GC) algorithms have major effect on
performance

— Limited drive lifetime
» |-10K writes/page for MLC NAND
» Avg failure rate is 6 years, life expectancy is 9—1 | years

* These are changing rapidly!
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Nano-Tube Memory (NANTERO)z

Bit lines

Word lines

BOTTOM ELECTRODE BOTTOM ELECTRODE

Crosspoint

* Yet another possibility: Nanotube memory

— NanoTubes between two electrodes, slight conductivity difference between ones
and zeros

— No wearout!

e Better than DRAM!?

— Speed of DRAM, no wearout, non-volatile!
— Nantero promises 512Gb/die for 8Tb/chip! (with |6 die stacking)
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/O Performance

300 | Response
Time (ms)

User
Thread

ﬁ —>

J3||0J43u0D)

. JI/O
Queue

[OS Paths] 100
Response Time = Queue + I/O device service time

* Performance of I/O subsystem ° 0% o 100%
— Metrics: Response Time, Throughput Throughput (Uilization)

. . . (% total BW)
— Effective BW per op = transfer size / response time
» EBW(n) =n/(S+n/B)=B/(l +SB/n)

# of ops

time per op

Fixed overhead
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/O Performance

300 | Response
Time (ms)

User
Thread

ﬁ —>

J3||0J43u0D)

. JI/O
Queue

[OS Paths] 100
Response Time = Queue + I/O device service time

* Performance of I/O subsystem 0 oy 100%
— Metrics: Response Time, Throughput Throughput (Utilization)
— Effective BW per op = transfer size / response time (% total BW)

» EMBW(n) =n/(S+n/B)=B/(l +SB/n)
— Contributing factors to latency:
» Software paths (can be loosely modeled by a queue)
» Hardware controller
» 1/O device service time
* Queuing behavior:

— Can lead to big increases of latency as utilization increases
— Solutions?
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A Simple Deterministic World

arrivals —> Queue —>—> departures
Te >

|
I To >)
<—TA >I< TA >I€ TA

i i
_ _
T, T —

* Assume requests arrive at regular intervals, take a fixed time to
process, with plenty of time between ...

\4

>

Service rate (U = |/T¢) - operations per second

Arrival rate: (A = 1/T,) - requests per second

» Utilization: U = My , where A < |

* Average rate Is the complete story
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Delivered Throughput

A ldeal Linear World

= Saturation

I a |
<
0.0
>
o
C
C
—
o
U
3
= mpty Queue nbounded
()

0 l O o !
Offered Load (T/T,) Offered Load (T¢/T

2 &

o] [0

O O

Q U

-] >

G.) U

=) -]

o > O >

time time
* What does the queue wait time look like?
— Grows unbounded at a rate ~ (T /T,) till request rate subsides
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A Bursty World

arrivals —>» Queue —> —> departures
Te >

Arrivals

Q depth I

v

oo [ —

* Requests arrive in a burst, must queue up till served

* Same average arrival time, but almost all of the requests
experience large queue delays

* Even though average utilization is low
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So how do we model the burstiness of arrival?

* Elegant mathematical framework if you start with exponential
distribution

— Probability density function of a continuous random variable with a
mean of /A

— f(X) = heM
— "Memoryless”

Likelihood of an event occurring
0.75

is independent of how long we’ve
been waiting

mean arrival interval (1/\)

05
Lots of short arrival intervals

(i.e., high instantaneous rate)

7.?

Few long gaps (i.e., low

. 5
instantaneous rate)

x (A)
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Background:
General Use of Random Distributions

* Server spends variable time (T) with customers 5
— Mean (Average) m = 2p(T)xT ?ﬁﬂﬁr’Q
— Variance (stddev?) 02 = 2p(T)x(T-m)2 = 2Zp(T)x2-m?2

— Squared coefficient of variance: C = g2/m?
Aggregate description of the distribution

Distribution
of service times

* Important values of C:

. L mean
— No variance or deterministic = C=0
— “"Memoryless” or exponential = C=|
» Past tells nothing about future Memoryless

» Poisson process — purely or completely random process

» Many complex systems (or aggregates)
are well described as memoryless

— Disk response times C = |.5 (majority seeks < average)
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Introduction to Queuing Theory

n ;
o
— 2 Disk >
. o IS
Arrivals = Departures
Queue 0
Queuing System

* What about queuing time??
— Let's apply some queuing theory
— Queuing Theory applies to long term, steady state behavior = Arrival
rate = Departure rate

* Arrivals characterized by some probabilistic distribution

* Departures characterized by some probabillistic distribution
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Little’s Law

departures

arrivals —/»
A

* In any stable system
— Average arrival rate = Average departure rate

* The average number of jobs/tasks in the system (N) is equal to arriva
time / throughput (A) times the response time (L

— N (jobs) =\ (jobs/s) x L (s)

* Regardless of structure, bursts of requests, variation in service
— Instantaneous variations, but it washes out in the average
— Overall, requests match departures
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Example

01234567 8 9 1011121314 1516
AN=AXL
* Eg,N=AxL=5
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Little’s Theorem: Proof Sketch

arrivals 7§°—+ departures
A

Job i | L(1) = response time of job i fk—L—
N(t) = number of jobs Iin system
at time ¢

time

" L(1)
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Little’s Theorem: Proof Sketch

arrivals 7§°—+ departures
A

Job i | L(1) = response time of job i fk—L—
N(t) = number of jobs Iin system
at time ¢

. time

[ T

What Is the system occupancy, I.e., average
number of jobs In the system!?
3/31/2020 Kubiatowicz CS162 © UCB Fall 2020 44




Little’s Theorem: Proof Sketch

arrivals 7&0—) departures
A

Job i | L(1) = response time of job i fk—L—
N(t) = number of jobs Iin system

at time ¢
S(1)=L@a) * 1 =LQ)

. time

T
S=S(1)+SQ2)+...+Sk) =L(1) +LQ2) +... + LK)
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Little’s Theorem: Proof Sketch

arrivals 7§°—+ departures
A

Job i | L(1) = response time of job i fk—L—
N(t) = number of jobs Iin system

at time ¢
S(1) =L@a) * 1 =LQ)

. time

Average occupancy (N ) = S/T

avg
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Little’s Theorem: Proof Sketch

arrivals 7&0—) departures
A

Job i | L(1) = response time of job i fk—L—
N(t) = number of jobs Iin system

at time ¢
S(1) =L@a) * 1 =LQ)

. time

T
N, = S/T=(L(1)+ ... + L))/
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Little’s Theorem: Proof Sketch

arrivals 7&0—) departures
A

Job i | L(1) = response time of job i fk—L—
N(t) = number of jobs Iin system

at time ¢
S(1)=L@a) * 1 =LQ)

. time

T
Navg = (L) + ... + L(K)/T = (N, /L) + ... + LK)/ Ny
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Little’s Theorem: Proof Sketch

arrivals 7&0—) departures
A

Job i | L(1) = response time of job i fk—L—
N(t) = number of jobs Iin system

at time ¢
S(1)=L@a) * 1 =LQ)

. time

[ T

Navg — (Ntotal/T)*(L(l) T T L(k))/Ntotal ~ 7\‘ x L

avg avg
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Little’s Theorem: Proof Sketch

arrivals 7&0—) departures
A

Job i | L(1) = response time of job i fk—L—
N(t) = number of jobs Iin system

at time ¢
S(1) =L@a) * 1 =LQ)

. time
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A Little Queuing Theory: Some Results

* Assumptions: Why d :
) _ - oes response/queuein
— System in equilibrium; No limit to the g del 4 E dqdl 5
— Time between successive arrivals is ran¢©€'dy 8row unboundedly even
though the utilization is < | ?
> —
Arrival Rate S¢ 300 | Response
A Time (ms)
» Parameters that describe our system: 200
— A mean number of arriving cust
— T mean time to service a custor
- C squared coefficient of variance 100
— M service rate = /T .
—u server utilization (Osusl):u = 4 .
. . 0% 100%
* Parameters we wish to compute:
_ Tq; Time spent in queue Throughput (Utilization)

. — % total BW
— Ly Length of queue = A (% to )

Results:

— Memoryless sgrvice distii
» Tq :Tser X

— General service distributipn (nO redrictions), | server (an "M/G/ 1 queue”):
» Tq= T X V2(11C) x
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Why unbounded response time!

* Assume deterministic arrival process and service time
— Possible to sustain utllization = | with bounded response time!

time

!

arrival service
time  time
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Why unbounded response time!

| | 300 | Response
* Assume stochastic arrival process Time (ms)

(and service time) 200
— No longer possible to achieve

utilization = | 100

This wasted time can never )

be reclaimed! Of?h hput (Utilizat '())0%
: — 1 roughput (Utilization

So cannot achieve u = |! (% total BW)

time
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A Little Queuing Theory: An Example

Example Usage Statistics:
— User requests |0 x 8KB disk I/Os per second
— Requests & service exponentially distributed (C=1.0)
— Avg. service = 20 ms (From controller+seek+rot+trans)
Questions:
— How utilized is the disk?
» Ans:server utilization,u = AT
— What is the average time spent in the queue?
» Ans: T
— What is the number of requests in the queue!?
» Ans: L

— What is the avg response time for disk request?
» AnsiT =T +T

"t osys q ser

Computation:

A (avg # arriving customers/s) = 10/s

u

L

T... (avg time to service customer) = 20 ms (0.02s)
(server utilization) = A xT__ = 10/s x .02s = 0.2

(avg time/customer In queaeé) =T, xu/(l —u)
= 20x0.2/(1-0.2) =20 x 0.25 = 5 ms (0 .005s)
(avg length of queue) = A x T =10/s x.005s = 0.05

T, (avgtime/customer in system) =T + T, =25 ms

Sys ser

-

ser
q
qd
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Queuing Theory Resources

» Resources page contains Queueing Theory Resources (under
Readings):
— Scanned pages from Patterson and Hennessy book that gives further

discussion and simple proof for general equation: https://
cs|62.eecs.berkeley.edu/static/readings/patterson_queue.pdf

— A complete website full of resources: http://web2.uwindsor.ca/math/hlynka/
gonline.htm|

* Some previous midterms with queueing theory questions

* Assume that Queueing Theory is fair game for Midterm [lI!
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Summary

Disk Performance:
— Queuing time + Controller + Seek + Rotational + Transfer
— Rotational latency: on average /2 rotation
— Transfer time: spec of disk depends on rotation speed and bit storage density

Devices have complex interaction and performance characteristics

— Response time (Latency) = Queue + Overhead + Transfer
» Effective BW = BW *T/(5+T)

— HDD: Queuing time + controller + seek + rotation + transfer
— SDD: Queuing time + controller + transfer (erasure & wear)

Systems (e.g., file system) designed to optimize performance and reliability
— Relative to performance characteristics of underlying device

Bursts & High Utilization introduce queuing delays
Queuing Latency:
— M/M/1and M/G/ 1 queues: simplest to analyze
— As utilization approaches 100%, latency — o
T, = T x 22(1+C) x u/(l —u))
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