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Recall: Implementation of Multi-Segment Model

Virtual Offset | offset

| »Error
Address

Base0 |Limit0 |V
Limitl

Base3 |Limit3 > Physical
Base4 [Limit4 |V Address
Base5 [Limit5 |N
Base6 |Limité |N
Base7 [Limit7 |V Check Valid
|
* Segment map resides in processor Acce'ss
— Segment number mapped into base/limit pair Error

— Base added to offset to generate physical address
— Error check catches offset out of range

* As many chunks of physical memory as entries
— Segment addressed by portion of virtual address

— However, could be included in instruction instead:
» x86 Example: mov [esibx]ax.

* What is "V/N" (valid / not valid)?

— Can mark segments as invalid; requires check as well
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Recall: Problems with Segmentation

. . . process 6 )
* Must fit variable-sized chunks into =
bhysical memory -
process 9 process 117
process 10
. move processes multiple times |
to it everything 5s

* Limited options for swapping to disk

* Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don't need all memory within allocated chunks
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Paging: Physical Memory in Fixed Size Chunks

* Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)

— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
001 10001 110001 101 ... 110010

» Each bit represents page of physical memory
| = allocated, 0 = free

* Should pages be as big as our previous segments!

— No: Could lead to lots of internal fragmentation
» Typically have small pages (IK-16K)
» Consequently: need multiple pages/segment

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020



How to Implement Simple Paging?

Virtual Address:

Offset i |

PageTablePtr »[page #0 VR y-offset \/
> page #1 :
. é page #2 Physical Address
IP;ageTakalZe I_> 1 page #3 V.R,W Check Perm
v age #4 N ;
Access Error ge s T Aecas
Error

* Page Table (One per process)
— Resides in physical memor
— Contains physical page ancrpermission for each virtual page
» Permissions include:Valid bits, Read, Write, etc
* Virtual address mapEing
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = [024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, 1.e. 4 million entries
» Physical page # copied from table into physical address
— Check Page Table bounds and permissions
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Simple Page Table Example
Example (4 byte pages)

oxo0 [0 0000 0x00 [—
b
: . \_>0 — 00010000 3, 0x04 [—
: d_1 00000100 . | 0x05!
: 0x04 S >1[3 0000 1100 |
. f e |
: 2 0000 0100
: 0x067? |g |—> 1 0x08 F—
: h o
: 0x08 [—] 0000 1000 Page |
; 0x097 Table f
: < g OxOE!
L h
— 0x10 =i
Virtual 0000 0110 ===3>0000 1110 E
Memory 0000 1001 ===>> 0000 0101 (cj
Physical
: Memory
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What about Sharing!?
Virtual Address

(Process A): [EgIOtee |

This physical page appears in
addrgssyspacg ogf bc|>3t|:f)1
processes

e But at DIFFERENT virtual
addresses!

— Will make sharing of
objects harder!

Virtual Address — Probably want to map at
(Process B): same place instead?
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Where is page sharing used ?

The “kernel region™ of every process has the same page table
entries

— The process cannot access it at user level

— But on U->K switch, kernel code can access it AS WELL AS the
region for THIS user

» What does the kernel need to do to access other user processes!

Different processes running same binary!
— Execute-only, but do not need to duplicate code segments

User-level system libraries (execute only)

Shared-memory segments between different processes

— Can actually share objects directly between processes
» Must map page into same place in address space!

— This is a limited form of the sharing that threads have within a
single process
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Example: Memory Layout for Linux 32-bit

(Pre-Meltdown patch!)

1GB

~

3GB <<

-

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault

0xc0000000 == TASK_SIZE

} Random stack offset

Stack (grows down)

RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

program break

U brk
Heap start_brk
Random brk offset
BSS segment

Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”;

Text segment (ELF)
Stores the binary image of the process (e.g., /bin/gonzo)

end_data

start_data
end_code

0x08048000

(%]

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png
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Some simple security measures

* Address Space Randomization: Limit the damage of buffer overflow attacks
(e.g. overwriting stack to point to arbitrary code)

— Position-Independent Code => can place user code region anywhere
In the address space

» Random start address makes much harder for attacker to cause jump to
code that it seeks to take over

— Stack & Heap can start anywhere, so randomize placement

» Kernel address space isolation

— Don't map whole kernel into each Kernel page-table isolation
process (Provide separate kernel
page tab|e) Kernel space Kernel space
— Meltdown protection = map none Kernel space
of kernel into user mode!
—)
User space User space User space
User mode Kernel mode User mode

Kernel mode
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Summary: Paging

Physical memory view

\—S‘l‘ack—-'ﬁooooo
—"e2P— 4111 000

0001 0000

A\ \

Virtual memory view Page Table
g T (T
1111 111 —— 11110 |11100
1111 0oool__Stack 11101 | null
l 11100 | null
11011 | null
11010 | null
11001 | null
1100 0000 11000 | null
10111 | null
10110 | null
10101 | null
I 10100 | null
10011 | null
Rean  — 1001010000
1000 0000 T "j0001 | 01111
\.10000 01110
01111 | null
01110 | null
01101 | null
01100 (| null
01011 01101
0100 0000 01010 | 01100
01001 | 01011
1000 | 01010
00111 | null
00110 | null
00100 | null
0000 0000 00011 | 00101
— "r' 0010 | 00100
page # offset 0001 | 00011
0000 | 00010
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Summary: Paging

/

Physical memory view

1110 0000

1l il

hpﬂp

i i ‘ ‘ A A y

A\ \

Virtual memory view Page Table

11111 (11101

L 1110 [11100
11100 | null

1110 0000 11011 | null
11010 | null

- 11001 | null
. 11000 | null

What happens if 10111 | null
10110 | null

stack grows to 10101 | null
1110 00007? 10100 | nuil
\_ 10011 | null
Rean  —_ 1001010000

1000 0000 T "j0001 | 01111
\.10000 01110

01111 | null

01110 | null

01101 | null

01100 (| null

01011 (01101

0100 0000 01010 | 01100
01001 | 01011

1000 | 01010

00111 | null

00110 | null

00100 | null

0000 08?_(’) \30011 00101

| 0010 | 00100
page # offset 0001 | 00011
0000 | 00010
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Summary: Paging
Page Table_

Virtual memory view 41111 1101 Physical memory view
1111 1111 1110 [11100

»11100 (10110

1110 0000 11011 | null

i 11010 | null
11001 | null
null
null

null _S't'a'Ck_

e
1l
nul Allocate new

52:)?10 - pages where

01110 room!

null
null
null
null
01101
01100
01011
01010
null
null

——code 00101 | null

00100 [ null

‘21(2’0000 00011 (00101
page#o‘ﬂg’et 0010 | 00100

0001 | 00011

0001 0000
0000 | 00010
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—stack—1110 0000

1100 0000

2l

1000 0000

0101 000
0100 0000

\%\




How big do things get!?

* 32-bit address space => 232 bytes (4 GB)
— Note:"b" = bit,and "B"” = byte
— And for memory:
» “K’(kilo) = 210= 1024 =~ 103 (But not quite!)
» “M”(mega) = 220 = (1024)2= 1,048,576 = 106 (But not quite!)
» "“G’(giga) = 230 = (1024)3= 1,073,741,824 = 10 (But not quite!)
* Typical page size: 4 KB
— how many bits of the address is that ! (remember 210 = [024)
— Ans — 4KB = 4x210 =212 = |2 bits of the address

* S0 how big is the simple page table for each process?
— 232/212 = )20 (that's about a million entries) x 4 bytes each =>4 MB
— When 32-bit machines got started (vax | /780, intel 80386), 16 MB was a LOT of memory

* How big is a simple page table on a 64-bit processor (x86_64)?

— 264/212 = )52(that's 4.5x 101> or 4.5 exa-entries)x8 bytes each =
36x 10> bytes or 36 exa-bytes!lll This is a ridiculous amount of memory!

— This is really a lot of space — for only the page tablelll

» Mostly, the address space is sparse, I.e. has holes in it that are not mapped to physical
memory

— S0, most of this space is taken up by page tables mapped to nothing
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Page Table Discussion

* What needs to be switched on a context switch?
— Page table pointer and limit
* What provides protection here!?
— Translation (per process) and dual-mode!
— Can't let process alter its own page table!
* Analysis
— Pros
» Simple memory allocation
» Easy to share
— Con:What If address space Is sparse!
» E.g, on UNIX code starts at O, stack starts at (23!-1)

» With |K pages, need 4 million page table entries!
— Con:What If table really big?

» Not all pages used all the time = would be nice to have working
set of page table in memory

* Simple Page table is way too big
— Does 1t all need to be in memory?
— How about multi-level paging!
— or combining paging and segmentation
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Fix for sparse address space: The two-level page table

Physical
ddress:

|0 bits |0 bits |2 bits

Virtual
Address:

—> 4 bytes 4

* Tree of Page Tables
— "Magic” 10b-10b-12b pattern!

* Tables fixed size (1024 entmeé)
— On context-switch: save single Page TablePtr
register (l.e. CR3)
* Valid brts on Page Table Entries
— Don't need every 2nd-level table
— Even when exist, 2nd-level tables can reside Or=—b4 bytes <—

disk if not in use
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Example: x86 classic 32-bit address translation

Linear Address
31 22 21 12 11 0

Directory Table Offset

12 4-KByte Page

/10 10  Page Table Physical Address
Page Directory

—> PTE —
20

—>» PDE with PS=0

20

fology: Top-level page-table called a “Page Directory”
“Page Directory Entries”
* CR3 provides physical address of the page directory
— This is what we have called the “Page TablePtr” in previous slides
— Change in CR3 changes the whole translation table!
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What is in a Page Table Entry (PTE)?
* What is in a Page Table Entry (or PTE)?

— Pointer to next-level page table or to actual page
— Permission bits: valid, read-only, read-write, write-only

* Example: Intel x86 architecture PTE:
— Address same format previous slide (10, 10, |2-bit offset)
— Intermediate page tables called “Directories”

Page Frame Number Free ‘ ‘ |W| ‘
(Physical Page Number) (0S)
31-12 11-9 8 7 5432|0
P: Present (same as "valid” bit in other arch|tectures)
% Writeable
U: User accessible
PWT: Page write transparent: external cache write-through

PCD: Page cache disabled (page cannot be cached)

A: Accessed: page has been accessed recently

D: Dirty (PTE only): page has been modified recently
PS: Page Size: PS=|=4MB page (directory only).
Bottom 22 bits of virtual address serve as offset
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Examples of how to use a PTE

How do we use the PTE!
— Invalid PTE can imply different things:

» Region of address space is actually invalid or
» Page/directory Is just somewhere else than memory

— Validity checked first
» OS can use other (say) 31 bits for location info
Usage Example: Demand Paging
— Keep only active pages in memory
— Place others on disk and mark their PTEs invalid

Usage Example: Copy on Write

— UNIX fork gives copy of parent address space to child
» Address spaces disconnected after child created

— How to do this cheaply?
» Make copy of parent’s page tables (point at same memory)
» Mark entries in both sets of page tables as read-only
» Page fault on write creates two copies

Usage Example: Zero Fill On Demand

— New data pages must carry no information (say be zeroed)

— Mark PTEs as invalid; page fault on use gets zeroed page

— Often, OS creates zeroed pages in background
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Sharing with multilevel page tables

|0 bits |0 bits |2 bits
Virtual

Address:

* Entire regions of the address space can be
eﬁﬁcien’tlf;Cg shared ’ —
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1111 1111

1171 0000

1100 0000

1000 0000

0100 0000-

page?2 #

Summary: Two-Level Paging

0111 000

0101 000

Virtual memory view Page Table Page Tables Physical memory view
(level 1) (level 2)
—stack— 11 (11101
10 (11100 110 0000
l 01 |10111
00 |10110 \
111 | o 11 | null
I 110 | null 10 {10000
101 | null 01 (01111
heap 100 o/ 00 |01110 \
= 011 | null
10| o__|
001 |pull | ———,
00| & 11 (01101 ——
10 01100 —
01 (01011
00 |01010
11 [00101
10 (00100 code
01 (00011 | —
—code— 00 {00010 ——

00d(-)l-6000
o

pagel # offset

3/10/20
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Summary: Two-Level Paging

Virtual memory view

1001 0000
(0x90)

3/10/20

stack—

l

)
1)
©

Page Table
(level 1)

111
110
101

null
null

11
010
001
000

null

o
null

Page Tables

(level 2)

11 111101
10 111100
01 (10111
00 10110

™1 | null

0t

o1 (01111
00 01110

11 101101
10 |01100
01 (01011
00 (01010

11 100101
10 100100
01 (00011
00 (00010

Kubiatowicz CS162 ©UCB Spring 2020

Physical memory view

——code

%110 0000

1000 0000
(0x80)

0001 0000

0000 0000
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Multi-level Translation: Segments + Pages

* \WWhat about a tree of tables?

— Lowest level page table = memory still allocated with bitmap
— Higher levels often segmented

* Could have any number of levels. Example (top segment):

Virtual
Address:
Base0 [Limit
Basel oticl |V
Base3 L!mit3 N page #4 N
Base4 L!m!t4 page #5 VRW
Base5 |Limith
Base6 |Limit6é |N \ 4
Base7 |Limit7 |V | (5>)—pAiccess

l

Physical Address

?Check Permissions

|
v

Access
Error

* What must be saved/restored on context switch?

— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)

3/10/20
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What about Sharing (Complete Segment)!?

Process A:

Process B:

3/10/20

page #0

V,R

page #1

V,R

page H#2

V,R,W

page #3

V,R,W

lpagchia

N

page #5

V,R,W

Shared Segment

\
Limit3 |N
Base4 |Limit4 |V ..’
Base5 |Limit5 [N N —
Base6 |Limit6é |N :’ Base0 tlmlt(l) x
Base7 |Limit7 |V & Imit
Limit3 |N
Base4 |Limit4 |V
Base5 |Limit5 ([N
Base6 |Limité6 [N
\

Limit7

Kubiatowicz CS162 ©UCB Spring 2020
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Multi-level Translation Analysis

* Pros:

— Only need to allocate as many page table entries as we need for
application

» In other wards, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing
» Share at segment or page level
* Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous

» However, the 10b-10b-12b configuration keeps tables to
exactly one page In size

— Two (or more, if >2 levels) lookups per reference
» Seems very expensivel
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Recall: Dual-Mode Operation

Can a process modify its own translation tables? NO!
— If it could, could get access to all of physical memory (no protection!)

To Assist with Protection, Hardware provides at least two modes (Dual-Mode
Operation):
— “Kernel” mode (or “supervisor’ or “protected”)

— “User” mode (Normal program mode)
— Mode set with bit(s) in control register only accessible in Kernel mode

— Kernel can easily switch to user mode; User program must invoke an exception
of some sort to get back to kernel mode

Note that x86 model actually has more modes:

— Traditionally, four “rings” representing priority; most OSes use only two:
» Ring 0 = Kernel mode, Ring 3 = User mode

» Called “Current Privilege Level” or CPL
— Newer processors have additional mode for hypervisor (“Ring -1")
Certain operations restricted to Kernel mode:
— Modifying page table base (CR3 in x86), and segment descriptor tables

» Have to transition into Kernel mode before you can change them!

— Also, all page-table pages must be mapped only in kernel mode

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 26



3/10/20

Making it real:
X86 Memory model with segmentation (16/32-bit)

Logical Address
(or Far Pointer)

el

Segment Selector from
instruction: mov eax, gs(0x0)

Segment
Selector inear Address
L | ' Space 2-level page table
{ in 10-10-12 bit address
, i Address
Global Descriptor L .
———» Dir | Table | Offset Physical
Table (GDT) l | | Address
Space
Segment
Segment Page Table Page
L Descriptor (| | (| L |
: Page Directory I > Phy. Addr.
Lin. Addr. ”_b Entry -
A, »|  Entry ,
Segment I
Base Address \
“F— Page Second level
Combined address called “table”
-hit “lIi » .
Is.32 bit “linear First level
Virtual address | called “directory” |
Segmentation Paging |

Kubiatowicz CS162 ©UCB Spring 2020
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X86 Segment Descriptors (32-bit Protected Mode)

* Segments are either implicit in the instruction (say for code segments) or actually part
of the instruction

— There are 6 registers: SS, CS, DS, ES, FS, GS

* What is in a segment register?
— A pointer to the actual segment description:

Segment selector [ |3 bits] L\_DI RPL

G/L selects between GDT and LDT tables (global vs local descriptor tables)
— RPL: Requestor’s Privilege Level (RPL of CS = Current Privilege Level)

* Two registers: GDTR and LDTR hold pointers to the global and local descriptor tables
in memory

— Includes length of table (for < 213) entries
* Descriptor forr;pat (64 bi’ts)&:1

23 20,19 16,15 12,11 8,7 0

[Basle c't:?Idrel3ss[(24i31)l G DB| A Lﬁ:vit(;6~1l9) P Dl:’L S ITylpel [Basle a:idr;SS l(lﬁ-lZB)l
U scamssiol | Seomewim@osy

G: Granularity of segment | Limit Size ]JQ'Q[O: | 6o1t, 1:4KIB unit)

DB: Default operand size (O: | 6bit, |: 32bit)
A: Freely available for use by software
P. Segment present |
DPL: Descriptor Privilege Level: Access requires Max(CPLRPL)=DPL
S: System Segment (O: System, |: code or data)

Type: Code, Data, Segment
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How are segments used!?

One set of global segments (GDT) for everyone, different set of local
segments (LDT) for every process
In legacy applications (|6-bit mode):

— Segments provide protection for different components of user programs

— Separate segments for chunks of code, data, stacks
» RPL of Code Segment =CPL (Current Privilege Level)

— Limited to 64K segments
Modern use in 32-bit Mode:

— Even though there is full segment functionality, segments are set up as “flattened”,
.e. every segment is 4GB in size

— One exception: Use of GS (or FS) as a pointer to “Thread Local Storage” (TLS)

» A thread can make accesses to TLS like this:
mov eax, gs(0x0)

Modern use in 64-bit (“long”) mode
— Most segments (SS, CS, DS, ES) have zero base and no length limits
— Only FS and GS retain their functionality (for use in TLS)
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X86_64: Four-level page table!

9 bits 9 bits 9 bits 9 bits 12 bits

48-bit Virtual
Address:

PageTablePtr

—> 8 bytes «—

4096-byte pages (12 bit offset)
Page tables also 4k bytes (pageable)

Physical

(40-50 bits)
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From x86 64 architecture specification

Linear Address
47 39 38 30 29 2120 12 1 0

| _PML4 | Directory Ptr | Directory Table |  Offset

J 9 Tl
9 dk 1o _4-KByte Page
L Physical Addr

PTE >
40

Page-Directory- PDE with PS=0 >
Pointer Table 40 Page Table

Jf Page-Directory
"> PDPTE 40

e

—>»| PML4E

-
-

40
——{ CR3

Figure 4-8. Linear-Address Translation to a 4-KByte Page using 4-Level Paging

* All current x86 processor support a 64 bit operation
* 64-bit words (so Ints are 8 bytes) but 48-brt addresses
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Larger page sizes supported as well

Linear Address
47 39 38 3029 2120 0
I PML4 I Directory Ptr l Directory ] Offset
9
2-MByte Page
Physical Addr
Page-Directory- PDE with PS=1 >
Pointer Table 31
Page-Directory Linear Address
Ly PDPTE 47 39 38 3029 0
40 I PML4 [ Directory Ptr Offset
° < — | 3
9
40
»| PML4E
Page-Directory- 1-GByte Page
> Pointer Table
40 Physical Addr
» PDPTE with PS=1 >
CR3 22
g g
Figure 4-9. Linear-Address Translation to a 2-MByte Page using 4-L 40
—>»| PML4E
40
CR3

Figure 4-10. Linear-Address Translation to a 1-GByte Page using 4-Level Paging

* Or larger page sizes, memory is now cheap
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|IA64: 64bit addresses: Six-level page table?!?

64bit 7 bits 9 bits 9 bits 9 bits 9 bits 9 bits 12 bits
Address:
No!
Too slow

Too many almost-empty tables
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Inverted Page Table

* With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as amount of virtual memory
allocated to processes

— Physical memory may be much less
» Much of process space may be out on disk or not in use

Offset

> Hash
Table

* Answer: use a hash table
— Called an “Inverted Page Table”
— Size Is independent of virtual address space
— Directly related to amount of physical memory
— Very attractive option for 64-bit address spaces
» PowerPC, UltraSPARC, |1A64
* Cons:
— Complexity of managing hash chains: Often in hardwarel!

31000 — Poor cache locality of page dabls 5 <. ine 2020 34



Inverted Page Table

* With all previous examples (“Forward Page Tables”)

— Size of page table is at least as large as amount of virtual memory
allocated to processes

— Physical memory may be much less
» Much of process space may be out on disk or not in use

Offset

> Hash
Table

* Answer: use a hash table
— Called an “Inverted Page Table”
— Sizd
— Dir] Total size of page table =~ number of pages used by

— Ver| program in physical memory. Hash more complex
»

* Cons:
— Complexity of managing hash chains: Often in hardwarel!

31000 — Poor cache locality of page dabls 5 <. ine 2020
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|A64: Inverse Page Table (IPT)

|dea: index page table by physical pages instead of VM

VMpageO [«
VMpage1 [¢

VMpage2 B

VMpage3 "\

Process id 0
Virtual memory

pid 0 \VMpageO

id 1]\

pid O

VMpage2

pid O

VMpage1

XX

free

pid 2

10/12/15

-

Ox0
Ox1

Ox2
0x3

Ox4
0x5
Ox6
Ox7

Inverse Page Table

0x0000
0x1000
0x2000
0x3000
0x4000
0x5000
0x6000
0x7000

Physical memory
in 4kB pages
Page numbers in red
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IPT address translation

* Need an associative map from VM page to IPT address:
— Use a hash map

Process 0 virtual address / Physical address \‘

A
0x0000

pid 0 |VMpageO |[OxO
pid 1 Ox1 0x1000

pid 0 [VMpage1 [0x2 / 0x2000
»
pid 0 |VMpage2 |O0x3 0x3000

Hash VM page #

XX free Ox4 0x4000
pid 2 0x5 0x5000
pid 1 0x6 0x6000

pid 0 |VMpage3 [0x7 0x7000

Inverse Page Table

10/12/15 Kubiatowicz €S162 ©UCB Fall 2015 37



Address Translation Comparison

Advantages

Disadvantages

Simple
Segmentation

Fast context switching:
Segment mapping
maintained by CPU

External fragmentation

Paging (single-level
page)

No external fragmentation,
fast easy allocation

Large table size ~ virtual memory
Internal fragmentation

Paged segmentation

Two-level pages

Table size ~ # of pages in
virtual memory, fast easy
allocation

Multiple memory references per
page access

Inverted Table

Table size ~ # of pages in
physical memory

Hash function more complex
No cache locality of page table

3/10/20
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Two Ciritical Issues in Address Translation

&
$
&

Processor

Registers

Ny
S . Memory
4

* How to translate addresses fast enough!?

— Every instruction fetch

— Plus every load / store
— EVERY MEMORY REFERENCE !
— More than one translation for EVERY instruction

* What to do if the translation fails?
— Page fault (Later!)

3/10/20

0x000...

OxFFF...
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Virtual
ddresses

What does the MMU need to do to translate an address!?

* |-level Page Table
— Read PTE from memory, check valid, merge address
— Set "accessed’ bit in PTE, Set “dirty bit” on write

* 2-level Page Table
— Read and check first level
— Read, check, and update PTE

N-level Page Table ...
MMU does page table Tree Traversal to translate each address

* How can we make this go REALLY fast!
— Fraction of a processor cycle
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Recall: Memory Hierarchy

Large memories are slow, only small memory is fast

Address Translation Page table lives here
needs to occur here (perhaps_cached)
ocessor
1%
Core
-
ARERE
= e &
7 & o
o 2l 2 Secondary
=
@ 01 L0 J : Secondary Storage
Main (Disk)
Core —_T Storage
2| [S] | s 0| | |(DRAM)
le] (@) = Q
— o Q ® O
7 QD o Q
» ® ®
100,000 10,000,000
: 0. 1 10-30 1 ’ VU
Speed (ns): 0.3 3 00 (0.1 ms) (10 ms)
Size (bytes): 100Bs 10kBs 100kBs  MBs GBs 100GBs TBs
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Where and What is the MMU ?

Physical
Memory

)
Processor o™ 02

(core)
page
tables

—— o o e oy

-

The processor requests READ Virtual-Address to memory system

— Through the MMU to the cache (to the memory)
Some time later, the memory system responds with the data stored at the
physical address (resulting from virtual = physical) translation

— Fast on a cache hit, slow on a miss

So what is the MMU doing!

On every reference (I-fetch, Load, Store) read (multiple levels of) page table
entries to get physical frame or FAULT
— Through the caches to the memory

— Then read/write the physical location
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Cache: a repository for copies that can be accessed more quickly than
the original

— Make frequent case fast and infrequent case less dominant
Caching underlies many techniques used today to make computers fast

— Can cache: memory locations, address translations, pages, file blocks,
file names, network routes, etc...

Only good if:
— Frequent case frequent enough and
— Infrequent case not too expensive

Important measure: Average Access time =
(Hit Rate x Hit Time) + (Miss Rate x Miss Time)
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Recall: In Machine Structures (eg. 61C) ...

* Caching is the key to memory system performance

Main
Memory
Processor [ . > (DRAM)
Access time = [00ns
Main
Cache Memory
Processor | >| (SRAM)  |€—¢ (DRAM)
| ns 100ns

Average Memory Access Time (AMAT)
= (Hit Rate x HitTime) + (Miss Rate x MissTime)
Where HitRate + MissRate = |

HitRate = 90% => AMAT = (09 x 1) + (0.1 x [0)=11.1 ns
HitRate = 99% => AMAT = (099 x ) + (0.0 x 101)=2.01 ns
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Another Major Reason to Deal with Caching

Virtual Offset |
Address: |
v page #0 V.R v
Basel page #2 R.W .
> Base2 ?age #3 VRW Ph)’SICaI Address
Basei 1 paée H4 N T
Base Limit =
#5 V.R,W
Base5> |Limit5 page Checkl Perm)
Base6 |Limité6 |N A\ 4 v
Base7 |Limit7 [V | (> —Access Access
Error Error

» Cannot afford to translate on every access
— At least three DRAM accesses per actual DRAM access
— Or: perhaps I/O if page table partially on disk!

* Solution? Cache translations!
— Translation Cache: TLB (“Translation Lookaside Buffer™)

3/10/20 Kubiatowicz CS162 ©UCB Spring 2020 45



Why Does Caching Help? Locality!

Probability
of reference

0 Address Space en-1

* Temporal Locality (Locality in Time):

— Keep recently accessed data items closer to processor
* Spatial Locality (Locality in Space):

— Move contiguous blocks to the upper levels

Lower Level
~ ToProcessor |Upper Level Memory
) Memory
Blk X -

\

From Processor - - BIkY
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Recall: Memory Hierarchy

- Take advantage of the principle of locality to:
- Present as much memory as in the cheapest technology
- Provide access at speed offered by the fastest technology

Processor
Core
=
ANERE
= (8] |8
] 2l 2 Secondary
@
® ©f L1 ] e Secondary Storage
Core —_ ain Storage (Disk)
r-
2| [S] | s 0| | |(DRAM)
Q (@) = Q
- @) Q D O
7] ) o o =
o | > — o
» ® e
Speed (ns): 0.3 1 3 10-30 100 2:‘1’":";’) "1’10(??;2‘)’0
Size (bytes): 100Bs 10kBs 100kBs  MBs GBs 100GBs TBs
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How do we make Address Translation Fast?

e (Cache results of recent translations !
— Different from a traditional cache
— Cache Page Table Entries using Virtual Page # as the key

Physical
Memory

Processor

(core)

V_Pg M, : <Phs_Frame #,, V, .. >

V_Pg M, : <Phs_Frame #,, V, .. >

V_Pg M, : <Phs_Frame #,, V, .. >
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3/10/20

Translation Look-Aside Buffer

Record recent Virtual Page # to Physical Frame # translation

If present, have the physical address without reading any of the
page tables !!!

— Even if the translation involved multiple levels

— Caches the end-to-end result

Was invented by Sir Maurice Wilkes — prior to caches

— People realized "If it's good for page tables, why not the rest of the
data in memory?”

On a TLB miss, the page tables may be cached, so only go to
memory when both miss
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Caching Applied to Address Translation

Virtual

Physical
Address

Data Read or Write
(untranslated)

* Question is one of page locality: does it exist!

— Instruction accesses spend a lot of time on the same page (since
accesses sequential)

— Stack accesses have definite locality of reference
— Data accesses have less page locality, but still some...

* Can we have a TLB hierarchy?
— Sure: multiple levels at different sizes/speeds
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What kind of Cache for TLB?

Set Size (k) - Associativity

\

# of Sets _
(N)

taqg data

\ J
1

line size (L)

* Remember all those cache design parameters and trade-offs!
— Amount of Data = N * L * K
— Tag is portion of address that identifies line (w/o line offset)
— Write Policy (write-thru, write-back), Eviction Policy (LRU, ...)
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3/10/20

How might organization of TLB differ from that

of a conventional instruction or data cache?

e [ et's do some review ...
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A Summary on Sources of Cache Misses

Compulsory (cold start or process migration, first reference): first
access to a block

— "Cold" fact of life: not a whole lot you can do about it

— Note: If you are going to run “billions” of instruction, Compulsory
Misses are insignificant

Capacity:
— Cache cannot contain all blocks access by the program
— Solution: increase cache size

Conflict (collision):
— Multiple memory locations mapped to the same cache location
— Solution |:increase cache size
— Solution 2: increase associativity

Coherence (Invalidation): other process (e.g., [/O) updates memory
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How is a Block found in a Cache!?

Set Select

Data Select
* Block is minimum quantum of caching

— Data select field used to select data within block

— Many caching applications don't have data select field
* Index Used to Lookup Candidates in Cache

— Index identifies the set
* Jag used to identify actual copy

— If no candidates match, then declare cache miss
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Review: Direct Mapped Cache

* Direct Mapped 2N byte cache;
— The uppermost (32 - N) bits are always the Cache Tag

— The lowest M bits are the Byte Select (Block Size = 2M)
* Example: | KB Direct Mapped Cache with 32 B Blocks

— Index chooses potential block

— Tag checked to verify block

o Byte select chooses byte within block o

4 0
Cache Tag A Cache Index Byte Select
Ex: 0x50 Ex: 0x01 Ex: 0x00
I
Valid Bit Cache Tag Cache Data
.............................................. Byte31.|......|Byte 1. .iBytel) 10
0x50 Byte 63| .. |Byte 33 [Byte 32 | £ +—
4 oo P oo T GO L EE L L L L L E L LT 5
3
Byte 1023 .. Byte 992 |31
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Review: Set Associative Cache

* N-way set associative: N entries per Cache Index
— N direct mapped caches operates in parallel

* Example: Two-way set associative cache

— Cache Index selects a “set” from the cache

— Two tags in the set are compared to input in parallel
;7 Data is selected based on the tag rgsult

Valid

r——1

3/10/20

4 0
Cache Tag Cache Index Byte Select
J
Cache Tag Cache Data Cache Data Cache Tag Valid
Cache Block 0 Cache Block 0
g
[ EEE— TS .I. ——————————————————————————————— I— ———————
—@ g S == /—CJ
Hit l Cache Block 56



Review: Fully Associative Cache

* Fully Associative: Every block can hold any line

— Address does not include a cache index

— Compare Cache Tags of all Cache Entries in Parallel
* Example: Block Size=32B blocks

— We need N 27/-bit comparators

— Still have byte select to choose from within block

31 4 0
Ex: 0x01
Cache Tag Valid Bit  Cache Data

Byte31| ..[Bytel [Byte0

Byte 63 .« |Byte 33 |Byte 32
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Where does a Block Get Placed in a Cache?

* Example: Block |2 placed in 8 block cache
32-Block Address Space:

Block

1111111111222222222233

no. 01234567890123456789012345678901

Direct mapped:

block 12 can go
only into block 4
(12 mod 8)

Block 01234567

no.

3/10/20

Set associative: Fully associative:
block 12 can go block 12 can go
anywhere in set 0 anywhere
(12 mod 4)
Block 01234567 Block 01234567
no. no.

Set Set Set Set
0 1 2 3
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Which block should be replaced on a miss!?

* Easy for Direct Mapped: Only one possibility
* Set Associative or Fully Associative:

— Random
— LRU (Least Recently Used)

 Miss rates for a workload:

2-way 4-way 8-way
Size LRU Random  |RU Random L RU Random

6 KB 529% 57% 47% 53%  44%  50%
64 KB 1.9%  2.0%  1.5% |.7% 4% 1.5%
256 KB 1.15% 1.17% 1.13% 1.13% 1.129% 1.12%
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Review:What happens on a write!?

* Write through: The information is written to both the block in the
cache and to the block in the lower-level memory

* Write back: The information is written only to the block in the cache

— Modified cache block is written to main memory only when it is
replaced

— Question is block clean or dirty?
* Pros and Cons of each?
— WT:
» PRO: read misses cannot result in writes

» CON: Processor held up on writes unless writes buffered
— WB:

» PRO: repeated writes not sent to DRAM
processor not held up on writes
» CON: More complex
Read miss may require writeback of dirty data
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Questions about caches ?

* How does operating system behavior affect cache
performance!?

* Switching threads!
* Switching contexts!
* Cache design! What addresses are used?

* What does our understanding of caches tell us about TLB
organization?
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What TLB Organization Makes Sense?

TLB p—*1Cache —

Memory

* Needs to be really fast
— Critical path of memory access

» In simplest view: before the cache

» Thus, this adds to access time (reducing cache speed)
— Seems to argue for Direct Mapped or Low Associativity

* However, needs to have very few conflicts!
— With TLB, the Miss Time extremely high! (PT traversal)

— Cost of Conflict (Miss Time) is high
— Hit Time — dictated by clock cycle

* Thrashing: continuous conflicts between accesses

— What if use low order bits of page as index into TLB?
» First page of code, data, stack may map to same entry

» Need 3-way associativity at least?

— What if use high order bits as index?

3/10/20

» TLB mostly unused for small programs
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TLB organization: include protection

* How big does TLB actually have to be!
—Usually small: 128-512 entries (larger now)

—Not very big, can support higher associativity
* Small TLBs usually organized as fully-associative cache
— Lookup is by Virtual Address
— Returns Physical Address + other info

* What happens when fully-associative is too slow!?

—Put a small (4-16 entry) direct-mapped cache in front
—Called a"TLB Slice”

* Example for MIPS R3000:

3/10/20

Virtual Address |Physical Address [Dirty |[Ref Valid |Access ASID
0xFAO00 0x0003 Y N Y RW 34
0x0040 0x0010 N Y Y R 0
0x0041 0x0011 N Y Y R 0
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Example: R3000 pipeline includes TLB “stages”

MIPS R3000 Pipeline

TLB

Inst Fetch Dcd/Reg |[ALU / E.A | Memory Write Reg
TLB | I-Cache RF Operation | = | WB
E.A. [TLB D-Cache

64 entry, on-chip, fully associative, software TLB fault handler

Virtual Address Space

ASID

V. Page Number

Offset

O T

Allows context switching among

20

12

64 user processes without TLB flush

3/10/20

0xx User segment (caching based on PT/TLB entry)
100 Kernel physical space, cached

101 Kernel physical space, uncached
11x Kernel virtual space
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3/10/20

Example: Pentium-M TLBs (2003)

* Four different TLBs
— Instruction TLB for 4K pages

» |28 entries, 4-way set associative

— Instruction TLB for large pages
» 2 entries, fully associative

— Data TLB for 4K pages

» |28 entries, 4-way set associative

— Data TLB for large pages

» 8 entries, 4-way set associative
* AllTLBs use LRU replacement policy

. \/\/hy? different TLBs for instruction, data, and page
sizes!
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Intel Nahelem (2008)

« LI DTLB

— 64 entries for 4 K pages and
— 32 entries for 2/4 M pages,

LI ITLB

— 128 entries for 4 K pages using 4-way associativity and
— |4 fully associative entries for 2/4 MiB pages

* unified 512-entry L2 TLB for 4 KiB pages, 4-way associative.
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Current Intel x86 (Skylake, Cascade Lake)

Front End Instruction )
Cache Tag| L1 Instruction Cache

MOP Cache 32KiB 8-Way Instruction
Tag TLB

16 Bytes/cycle
Branch
Predictor Instruction Fetch & PreDecode
(BPU) (16 B window)
MOP MOP MOP MOP MOP MOP

Instruction Queue
(50, 2x25 entries)

8124h2/av9

MoP MoP MopP MmopP MopP

MicroCode 5-Way Decode
seq;oehr;cer Complex|[ Simple |[ Simple |[ Simple |[ Simple
(MS ROM) Decoder || Decoder || Decoder || Decoder || Decoder Stack
1-4 poPs HOP HOP HOP HOP Eng ine
4 poPs
5 uOPs
Deooded(itor;ua::ger (DSB) 6 HOPs
60’5 window

Allocation Queue (IDQ) (128, 2x64 LOPs) ‘

MOP pOP pOP pOP pOP pOP Branch Order Buffer
‘ Register Alias Table (RAT) ‘ ak’ho (BOB) (48-entry)
»

Load
g —| |—| Rename / Allocate / Retirement ; ing 1di
§ FP. | Move Elimination ReOrder Buffer (224 entries) | Ones Idioms | | Zeroing Idioms |
]
B uopP Hop HoP Hop HopP uoP e uoP
8 Scheduler
= Integer Physical Register File eer " " Vector Physical Register File
§ . Unified Reservatlop Station (RS) (168 Registers)
2| | Storel (97 entries)
| Port0 | [ Portl | | Port5 | | Port6 | [ Port2 | [ Port3 | [ Portd | [ Port7 |
Hop Hop Hop uop uop Hop uopP uop
[}
= =r
m = o 64B/cycle
ALU]|[INT % e
MUL|[INT 8 = ToL3
MA Fi ; O|\ Ia)
=
Gl =5
QU
<
Execution Engine
g Store Buffer & Forwarding
(56 entries) g
\E
)
2 <
g Data TLB 2
Load Buffer| 2 | L1 Data Cachg 2
(72 entries) —!'é 32KiB 8-Way
g Line Fill Buffers (LFB)
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Current Example: Memory Hierarchy

* Caches (all 64 B line size)
— LI |-Cache: 32 KiB/core, 8-way set assoc.

— LI D Cache: 32 KiB/core, 8-way set assoc., 4-5 cycles load-to-use, Write-back
policy

— L2 Cache: | MiB/core, | 6-way set assoc., Inclusive, Write-back policy, 14 cycles
latency

— L3 Cache: 1.375 MiB/core, | |-way set assoc., shared across cores, Non-inclusive
victim cache, Write-back policy, 50-70 cycles latency

 TLB
— LI ITLB, 128 entries; 8-way set assoc. for 4 KB pages
» 8 entries per thread; fully associative, for 2 MiB / 4 MiB page

— LI DTLB 64 entries; 4-way set associative for 4 KB pages
» 32 entries; 4-way set associative, 2 MiB / 4 MiB page translations:
» 4 entries; 4-way associative, | G page translations:

— L2 STLB: 1536 entries; | 2-way set assoc. 4 KiB + 2 MiB pages

» |6 entries; 4-way set associative, | GIB page translations:
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What happens on a Context Switch!?

* Need to do something, since TLBs map virtual addresses to physical
addresses

— Address Space just changed, so TLB entries no longer valid!
* Options!
— Invalidate TLB: simple but might be expensive
» What if switching frequently between processes?
— Include ProcessID in TLB
» This is an architectural solution: needs hardware
* What If translation tables change!
— For example, to move page from memory to disk or vice versa...
— Must invalidate TLB entry!
» Otherwise, might think that page Is still in memory!

— Called "TLB Consistency”
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Putting Everything Together: Address Translation

Physical
Virtual Address: Memory:
4
T
Page TablePtr PhySjcal Aderess: \,

Page Table
(Ist level)

Page Table
(2nd level)
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Putting Everything Together: TLB

Physical
Virtual Address: Memory:
\ )
of |
PageTablePfr  Ps q Physical Aderess: \,
ysica
N\
Page Table
(Istlevel)
Page Table
(2nd level)
TLB:

—
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Putting Everything Together: Cache

Physical
Memory:

Physical A SHAY
VS'C?LT?I IOﬁ‘set

0
Itag Iindex Ibyte I
ache:
tag: block:




Two Ciritical Issues in Address Translation

&
$
&

Processor

Registers

Ny
S . Memory
>

* How to translate addresses fast enough!?

— Every instruction fetch

— Plus every load / store
— EVERY MEMORY REFERENCE !
— More than one translation for EVERY instruction

 Next:What to do if the translation fails?

0x000...

OxFFF...

— Page fault! This is a synchronous exception!

3/10/20
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Recall: User—Kernel
(Exceptions: Traps & Interrupts)

A system call instruction causes a synchronous exception (or “trap”)
— In fact, often called a software “trap” instruction
Other sources of Synchronous Exceptions (“Trap”):

— Divide by zero, lllegal instruction, Bus error (bad address, e.g. unaligned
access)

— Segmentation Fault (address out of range)
— Page Fault (for illusion of infinite-sized memory)
Interrupts are Asynchronous Exceptions:
— Examples: timer, disk ready, network, etc.. ..
— Interrupts can be disabled, traps cannot!
On system call, exception, or interrupt:
— Hardware enters kernel mode with interrupts disabled
— Saves PC, then jumps to appropriate handler in kernel
— Some processors (e.g. x86) also save registers, changes stack

Handler does any required state preservation not done by CPU:
— Might save registers, other CPU state, and switches to kernel stack
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3/10/20

Page Fault

* TheVirtual-to-Physical Translation fails

— PTE marked invalid, Priv. Level Violation, Access violation, or does not
exist

— Causes an Fault / Trap
» Not an interrupt because synchronous to instruction execution

— May occur on instruction fetch or data access
— Protection violations typically terminate the instruction

» Other Page Faults engage operating system to fix the situation and
retry the instruction

— Allocate an additional stack page, or
— Make the page accessible - Copy on Write,
— Bring page in from secondary storage to memory — demand paging

* Fundamental inversion of the hardware / software boundary
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Next Up:What happens when ...

Process virtual address
\ /

II’WSJEI”LM —>

MMU

retry exception A fault

Opkgratjng System
Page Fault Handler -~

scheduler
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Summary (1/3)

» Page Tables
— Memory divided into fixed-sized chunks of memory

— Virtual page number from virtual address mapped through page table
to physical page number

— Offset of virtual address same as physical address

— Large page tables can be placed into virtual memory

e Multi-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space

* Inverted Page Table
— Use of hash-table to hold translation entries

— Size of page table ~ size of physical memory rather than size of virtual
memory
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Summary (2/3)
* The Principle of Locality:

— Program likely to access a relatively small portion of the address
space at any instant of time.

» lemporal Locality: Locality in Time
» Spatial Locality: Locality in Space

* Three (+1) Major Categories of Cache Misses:
— Compulsory Misses: sad facts of life. Example: cold start misses.
— Conlflict Misses: increase cache size and/or associativity
— Capacity Misses: increase cache size
— Coherence Misses: Caused by external processors or /O devices

* Cache Organizations:
— Direct Mapped: single block per set
— Set associative: more than one block per set
— Fully associative: all entries equivalent
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Summary (3/3)

* “Translation Lookaside Buffer” (TLB)
— Small number of PTEs and optional process IDs (< 512)

— Fully Associative (Since conflict misses expensive)

— On TLB miss, page table must be traversed and if located PTE is
invalid, cause Page Fault

— On change in page table, TLB entries must be invalidated
— TLB is logically in front of cache (need to overlap with cache access)

* Next lime:What to do on a page fault?
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