CS162
Operating Systems and
Systems Programming

Lecture |2

Address Translation

March 5th, 2020
Prof. John Kubiatowicz
http://cs| 62.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the QOperating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a reference will be noted on the

bottom of that slide, in which case a full list of references is provided on the last
slide.

Recall: Starvation vs Deadlock

* Starvation: thread waits indefinitely
— Example, low-priority thread waiting for resources constantly in use
by high-priority threads
* Deadlock: circular waiting for resources

— Thread A owns Res | and is waiting for Res 2
Thread B owns Res 2 and is waiting for Res |

e Deadlock = Starvation but not vice versa
— Starvation can end (but doesn’t have to)
— Deadlock cant end without external intervention

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 2

Recall: Four requirements for Deadlock

Mutual exclusion
— Only one thread at a time can use a resource.

Hold and walit

— Thread holding at least one resource Is waiting to acquire additional
resources held by other threads

No preemption

— Resources are released only voluntarily by the thread holding the
resource, after thread is finished with it

Circular wart
— There exists a set {7, ..., T} of waiting threads
» T, 1s waiting for a resource that is held by T,
» T, 1s waiting for a resource that is held by T;

» ...
» T is waiting for a resource that is held by T,

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

Recall: Banker’s Algorithm

* Banker's algorithm assumptions:
— Every thread pre-specifies is maximum need for resources
» However, it doesn't have to ask for the all at once... (key advantage)
— Threads may now request and hold dynamically up to the maximum
specified number of each resources
* Simple use of the deadlock detection algorithm

— For each request for resources from a thread:

» lechnique: pretend each request is granted, then run deadlock detection
algorithm, and grant request if result is deadlock free (conservative!)

— Keeps system in a “"SAFE" state, i.e. there exists a sequence {T,T,,... T }
with T, requesting all remaining resources, finishing, then T, requesting all
remaining resources, etc..

* Banker's algorithm prevents deadlocks involving threads and resources
by stalling requests that would lead to deadlock

— Can't fix all issues — e.g. thread going into an infinite loop!

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 4

Revisit: Deadlock Avoidance using: Banker’s Algorithm

* |dea:When a thread requests a resource, OS checks if it would
result in deadleck an unsafe state

— If not, it grants the resource right away
— If so, it waits for other threads to release resources

* Example:
Thread A Thread B
x.Acquire(); Y.Acquire(); ...dB
y.Acquire(); Xx.Acquire(); Waits until
Thread A
y.Release(); x.Release(); releases
X .Release(); Y.Release(); resources..

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 5

Recall: Does Priority Inversion Cause Deadlock!?

* Definition: Priority Inversion

— A low priority task prevents a high-priority task from running
* Does Priority Inversion cause Deadlock?

» Consider typical case (requires 3 threads):
— 3 threads, T1,T2,T3 in priority order (T3 highest)
— T grabs lock, T3 tries to acquire, then sleeps, T2 running
— Will this make progress?
» No, as long as T2 is running

» But T2 could stop at any time and the problem would resolve itself...
» 50, this is not a deadlock (it is a livelock). But is could last a long time...

— Why is this a priority inversion?
» T3 Is prevented from running by T2

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

Priority Donation as a remedy to Priority Inversion

* What is priority donation?

— When high priority Thread 1B is about to sleep while waiting for a lock
held by lower priority Thread TA, it may temporarily donate its priority to
the holder of the lock if that lock holder has a lower priority

» S0, Priority(TB) =>TA until lock is released

— 50, now, TA runs with high priority until it releases its lock, at which time
its priority is restored to rts original priority

* How does priority donation help the priority inversion scenario?! [T1 has
lock, T2 running, T3 blocked on lock]

— Briefly raise T| to the same priority as T3=T1 can run and release lock,
allowing T3 to run

— Does priority donation involve taking lock away from T |

» NO!'That would break semantics of the lock and potentially corrupt any
information protected by lock!

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 7

Next Objective

* Dive deeper into the concepts and mechanisms of memory
sharing and address translation

* Enabler of many key aspects of operating systems

- Protgctlon | n Ve Systg,
— Multi-programming 0(,0\ @
— |solation o e %
B 2 GO 3

Memory resource management g " . =
— /O efﬂciency %‘ O intro \ gg

i 2 7z, (C/,t
— Sharing o @@/@‘ 9) foyens™? \?@
— Inter-process communication W »°
| o8 , (9)%

— Debugging Bingeyed

— Demand paging
* Joday: Translation

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 8

Recall: Four Fundamental OS Concepts

Thread: Execution Context
— Fully describes program state
— Program Counter, Registers, Execution Flags, Stack

Address space (with or w/o translation)
— Set of memory addresses accessible to program (for read or write)

— May be distinct from memory space of the physical machine
(in which case programs operate in a virtual address space)

* Process: an instance of a running program
— Protected Address Space + One or more Threads

Dual mode operation / Protection
— Only the “system”™ has the abllity to access certain resources

— Combined with translation, isolates programs from each other
and the OS from programs

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

THE BASICS: Address/Address Space

Address Space:

Address: — 2k “thi ngs"

"Things" here usually

Y means "bytes” (8 bits)
k bits

=—

* What is 210 bytes (where a byte is appreviated as “B")?
— 210B = 1024B = | KB (for memory, |K = 1024, not 1000)

* How many bits to address each byte of 4KB page!
— 4KB = 4x KB = 4x 210=212= |2 bits

e How much memory can be addressed with 20 bits? 32 bits! 64 bits?
— Use 2k

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 10

Address Space, Process Virtual Address Space

o Definition: Set of accessible addresses and the
state associated with them

— 232 = ~4 billion bytes on a 32-bit machine
e How many 32-bit numbers fit in this address
space!
— 32-bits = 4 bytes, so 232/4 = 230=~billion
* What happens when processor reads or writes
to an address!

0x000...

code

Static Data

heap

stack

OxFFF...

— Perhaps acts like regular memory
— Perhaps causes I/O operation
» (Memory-mapped I/O)
— Causes program to abort (segfault)?
— Communicate with another program

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

Recall: Process Address Space: typical structure

0x000...
» Code Segment
p. o Static Data
heap
Processor vV isbrk syscall
registers
A
+ Stack Segment
OxFFF...

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 12

Virtualizing Resources

* Physical Reality:
Ditferent Processes/ Threads share the same hardware
— Need to multiplex CPU (Just finished: scheduling)
— Need to multiplex use of Memory (starting today)
— Need to multiplex disk and devices (later in term)

* Why worry about memory sharing?

— The complete working state of a process and/or kernel is defined by its data
in memory (and registers)

— Consequently, cannot just let different threads of control use the same
memory

» Physics: two different pieces of data cannot occupy the same locations in
memory

— Probably don't want different threads to even have access to each other’s
memory If in different processes (protection)

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 13

Recall: Single anc

Multithreaded Processes

code data files code data files
registers stack registers ||| registers ||| registers
stack stack stack

thread — ; «—— thread

single-threaded process

* Threads encapsulate concurrency

multithreaded process

— "Active” component of a process

* Address spaces encapsulate protection
— Keeps buggy program from trashing the system
— “Passive” component of a process

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

3/5/20

Recall: Key OS Concept: Address Translation

* Program operates in an address space that is distinct from
the physical memory space of the machine

Processor

Registers

>| translator .

- J

Kubiatowicz CS162 ©UCB Spring 2020

0x000...

OxFFF...

Important Aspects of Memory Multiplexing

* Protection:

— Prevent access to private memory of other processes

» Different pages of memory can be given special behavior (Read Only,
Invisible to user programs, etc).

» Kernel data protected from User programs
» Programs protected from themselves
» Controlled overlap:

— Separate state of threads should not collide in physical memory.
Obviously, unexpected overlap causes chaos!

— Conversely, would like the ability to overlap when desired (for
communication)
* Translation:

— Abillity to translate accesses from one address space (virtual) to a
different one (physical)

— When translation exists,(frocessor uses virtual addresses, physical
memory uses physical aadresses

— Side effects:
» Can be used to avoid overlap
» Can be used to give uniform view of memory to programs

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 16

3/5/20

Recall: Loading

Threads
Address Spaces Windows
Processes Files Sockets

Software OS Hardware Virtualization

Hardware ISA Memory

Processor

Boundary

—_

Displays

¥ Inputs

i Protection

Kubiatowicz CS162 ©UCB Spring 2020

Binding of Instructions and Data to Memory

Process view of memory

é;;alz

start:

loop:

%Efckit:

dw

1w
jal

bnz

checkit E
addi rl1, rl1, -1

3 N

rl,0(datal)

rl, loop

/

3/5/20

Physical addresses
0x0300 00000020

8C2000CO
0C00

2021FFFF
14200242

0x0900
0x0904
0x0908
0x090C

0x

Kubiatowicz CS162 ©UCB Spring 2020

0x0000

0x0300

0x0900

)

OxXFFFF

Physical
Memory

00000020

8C2000C0
0C000280
2021FFFF
14200242

Second copy of program from previous example

Process view of memory

é;;alz

start:

loop:

dw

1w
jal

addi rl1, ril,

bnz

%Efckit: .

32 \ 0x0300

rl,0(datal) 0x0900
checkit E 0x0904

-1 0x0908
rl, loop 0x090C

/ OQOAoo

3/5/20

Physical addresses

00000020

8C2000CO0
0C000280
2021FFFF
14200242

Need address translation!

Kubiatowicz CS162 ©UCB Spring 2020

Physical
Memory

0x0000

0x0300

ox0900| APP X

f?

N

OxXFFFF

Second copy of program from previous example

Process view of memory

é;;alz

start:

loop:

{Efckit: -

dw 32 ‘\\

1w rl,0(datal)
jal checkit E
addi rl1l, rl1, -1

bnz rl, loop

/

0x1300

0x1900
0x1904
0x1908
0x190C

0x

Physical addresses

00000020

8C2004CO
0C00

2021FFFF
14200642

* One of many possible translations!
* Where does translation take place!?

0x0000

0x0300

0x0900

0x1300

0Xi900

OXFFFF

Compile time, Link/Load time, or Execution time!?
Kubiatowicz CS162 ©UCB Spring 2020

3/5/20

Physical
Memory

App X

00000020

8C2004CO0
0C000680
2021FFFF
14200642

20

Multi-step Processing of a Program for Execution

* Preparation of a program for execution
involves components at:

— Compile time (i.e., "“gcc”)
— Link/Load time (UNIX"Id” does link)
— Execution time (e.g., dynamic libs)
* Addresses can be bound to final values
anywhere In this path
— Depends on hardware support
— Also depends on operating system

* Dynamic Libraries
— Linking postponed until execution

— Small piece of code (i.e. the stub), locates
appropriate memory-resident library routine

— Stub replaces itself with the address of the
routine, and executes routine

other
object
modules

system
library

dynamicall
loaded
system
library

source
program

compiler or
assembler

}

object
module

linkage
editor

load
module

loader

h 4

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

dynamic
linking

in-memory
binary
memory
image

|

compile
time

L load

time

time (ru
time)

execuﬁ?1

21

Recall: Uniprogramming

* Uniprogramming (no Translation or Protection)

— Application always runs at same place in physical memory since
only one application at a time

— Application can access any physical address

OxFFFFFFFF
Operating
System
59
S
™M o
=l
$ 2
Application
0x00000000

— Application given illusion of dedicated machine by giving It reality
of a dedicated machine

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 22

Multiprogramming (primitive stage)

* Multiprogramming without Translation or Protection
— Must somehow prevent address overlap between threads

OxFFFFFFFF
Operating
System
Application2 0x00020000
Application|
| 0x00000000 .
— Use Loader/Linker: Adjust addresses while program loaded into memory

(loads, stores, jumps)
» Everything adjusted to memory location of program
» Translation done by a linker-loader (relocation)
» Common in early days (... till Windows 3.x, 95?)

* With this solution, no protection: bugs In any program can cause
other programs to crash or even the OS

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 23

Multiprogramming (Version with Protection)

 Can we protect programs from each other without
translation?

OxFFFFFFFF
Operating
System |
« [LimitAddr=0x10000 |
| =
Application2 0x00020000 ¢ IBaseAddr=0x20000 |
Application|
0x00000000

— Yes: use two special registers BaseAddr and LimitAddr to prevent user
from straying outside designated area

» Cause error If user tries to access an illegal address

— During switch, kernel loads new base/limit from PCB (Process
Control Block)

» User not allowed to change base/limit registers

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 24

Recall: General Address translation

Virtual Physical ” N
ddresses Addresses %
.'.‘

Untranslated read or write

* Recall: Address Space:
— All the addresses and state a process can touch
— Each process and kernel has different address space

» Consequently, two views of memory:
— View from the CPU (what program sees, virtual memory)
— View from memory (physical memory)

— Translation box (Memory Management Unit or MMU) converts
between the two views

 [ranslation = much easier to implement protection!

— |f task A cannot even gain access to task B's data, no way for A to
adversely affect B

* With translation, every program can be linked/loaded into
same region of user address space
3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 25

Recall: Base and Bound (was from CRAY-1)

Base —
Virtual | |
Address
Physical
Bound N Add
(Limit) ress
» No: Error!

* Could use base/bounds for dynamic address translation —
translation happens at execution:

— Alter address of every load/store by adding “base”
— Generate error If address bigger than limit

* Gives program the illusion that it is running on its own
dedicated machine, with memory starting at O
— Program gets continuous region of memory

— Addresses within program do not have to be relocated when
program placed in different region of DRAM

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 26

Issues with Simple B&B Methoc

process 6

process 5

process 2

—>

OS

process 6

process 5

OS

—>

* Fragmentation problem over time

time

process 6

process 5

process 9

OS

* Missing support for sparse address space

etc)

* Hard to do inter-process sharing

3/5/20

— Want to share code segments when possible
— Want to share memory between processes
— Helped by providing multiple segments per process

Kubiatowicz CS162 ©UCB Spring 2020

process 6
)
u
process 9 process 11
process 10
O

— Not every process Is same size = memory becomes fragmented over

— Would like to have multiple chunks/program (Code, Data, Stack, Heap,

27

More Flexible Segmentation

|

subroutine stack § 4
symbol
table

2

Sqrt
main .
program . 3
: user view of physical
logical address § memorzf space memory space :

* Logical View: multiple separate segments
— Typical: Code, Data, Stack
— Others: memory sharing, etc

* Each segment is given region of contiguous memory
— Has a base and limit

— Can reside anywhere in physical memory
3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 28

Implementation of Multi-Segment Model

Virtual Offset | offset

| »Error
Address

Base0 |Limit0 |V
Limitl

Base3 |Limit3 > Physical
Base4 [Limit4 |V Address
Base5 [Limit5 |N
Base6 |Limité |N
Base7 [Limit7 |V Check Valid
|
* Segment map resides in processor Acce'ss
— Segment number mapped into base/limit pair Error

— Base added to offset to generate physical address
— Error check catches offset out of range

* As many chunks of physical memory as entries
— Segment addressed by portion of virtual address

— However, could be included in instruction instead:
» x86 Example: mov [esibx]ax.

* What is "V/N" (valid / not valid)?

— Can mark segments as invalid; requires check as well

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 29

Intel x86 Special Registers

15

80386 Special Registers

Seginent tegisiels

Tiidex f

RPL = Requestor Piivilege Level

TL=Table Indicator
(0=GDT,1=LDT)

Lhdex =Thdex into table

Protected Mode seginent selector

Typical Segment Register
Current Priority is RPL
Of Code Segment (CYS)

3/5/20

Code Seg. Data Seg.
15 CS 0 15 DS 0
Stack Seg. Exta Seg.
15 SS 0 15 ES 0
Extta Seg. Exita. Seg
15 ES 0 15 GS 0
N|1I0O |o|p|L|T|S]|Z A P C
XiT|PL |E|F|E|F|E|F|X|F|[X|F|[X|F
15 1413121110 9 & 7 6 § 4+ 3 2 1 0
P E[T[TMIP
& = ls |s [¢ |g | CRO Unused CR1
3130 S 43210 31 O Flags
Page Fault Page Ditectol Not
Linest Addtess CR2 Base Registef Used| CR3
31] 3 7 0
PG=Paging Enable ﬁfiﬁ;};ﬁd—mk

ET=Einulation Ty

TS=Task Switch

EM=Einulate Coplocessol
M P=¢ath coplocessol present
PE=Protecied hMode enable

Kubiatowicz CS162 ©UCB Spring 2020

LOPL=L'O Privilege Level
OF=Dveiflow Flag
DE=Ditection Flag
[F:lnlel'l'ulgi Flag
TE=Trap Flag

SE=Sigh Flag

ZEF=Zero Flag
AF=auxiliaty Flag
PE=Pauity Flag

CF=Carry Flag

30

Example: Four Segments (16 bit addresses)

Seg ID # Base Limit

[SeaJOffset | [0 (code) |0x4000 |0x0800

15 1413 O |1 (data) |0x4800 |Ox1400

Virtual Address Format 2 (shared) |[0xFO00 |0x1000

3 5stack) 0x0000 |[0x3000
0x0000

0x4000

0x8000

0xC000
Virtual Physical
Address Space Address Space

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

Example: Four Segments (16 bit addresses)

Seg ID # Base Limit

[SeaJOffset | [0 (code) |0x4000 |0x0800

15 1413 O |1 (data) |0x4800 |Ox1400

Virtual Address Format 2 (shared) |[0xFO00 |0x1000

SegID =0 3 5stack) 0x0000 |[0x3000
0x0000

0x4000
0x4000 > 0x4800
0x8000
0xC000
Virtual Physical
Address Space Address Space

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

Example: Four Segments (16 bit addresses)

- Offset

15 14 13
Virtual Address Format

0x0000 SeoD =0
0x4000 SeglD =1 |
0x8000
0xC000

Virtual

Address Space

Seg ID # Base Limit
0 (code) 0x4000 |0x0800
| (data) 0x4800 |0x1400
2 (shared) |O0xFO00 [Ox1000
3 (stack) 0x0000 |0x3000
-8360060
5, 0x4000 Might
0x4800 be shared
> 0x5C00
Space for
Other Apps
0xF000 Shared with
Other Apps
Physical

Address Space

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

33

Example of Segment Translation (| 6bit address)

0x240 main:
0x244

0x360 strlen:
0x364 loop:
0x368

0x4050 wvarx

la Sal0, varx
jal strlen

1i Sv0, 0 ;count
lb $t0, ($a0)
beqg $r0,St0, done

dw 0x314159

Let's simulate a bit of this code to see what happens (
|, Fetch 0x0240 (0000 0010 0100 0000).Virtual segment #! 0; Offset! 0x240

Physical address! Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

3/5/20

Kubiatowicz CS162 ©UCB Spring 2020

Seg ID # Base Limit

0 (code) 0x4000 |[0x0800

| (data) 0x4800 |0x1400

2 (shared) |OxFO00 |0x1000

3 (stack) |0x0000 [Ox3000
PC=0x240):

34

Let's simulate a bit of this code to see what happens (

|, Fetch 0x0240 (0000 0010 0100 0000).Virtual segment #! 0; Offset! 0x240

3/5/20

Example of Segment Translation (| 6bit address)

0x240 main: la Sal0, varx

0x244 jal strlen

0x360 strlen: 1i Sv0, 0 ;count
0x364 loop: lb $t0, ($ao0)
0x368 beqg $r0,St0, done
0x4050 wvarx dw 0x314159

Physical address! Base=0x4000, so physical addr=0x4240

Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

Fetch Ox244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

Kubiatowicz CS162 ©UCB Spring 2020

Seg ID # Base Limit

0 (code) 0x4000 |[0x0800

| (data) 0x4800 |0x1400

2 (shared) |OxFO00 |0x1000

3 (stack) |0x0000 [Ox3000
PC=0x240):

35

Example of Segment Translation (| 6bit address)

0x240 main: la Sa0, varx
0x244 jal strlen

0x360 strlen: 1i Sv0, 0 j;count

0x364 loop: lb $t0, ($ao0)
0x368 beqg $r0,St0, done
0x4050 wvarx dw 0x314159

Let's simulate a bit of this code to see what happens (

3/5/20

Fetch 0x0240 (0000 0010 0100 0000).Virtual segment #! 0; Offset! 0x240

Physical address! Base=0x4000, so physical addr=0x4240

Fetch instruction at 0x4240. Get “la $a0, varx”
Move 0x4050 — $a0, Move PC+4—PC

Fetch Ox244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

Fetch Ox360. Translated to Physical=0x4360. Get “li $v0, 0"

Move 0x0000 — $v0O, Move PC+4—PC

Kubiatowicz CS162 ©UCB Spring 2020

Seg ID # Base Limit

0 (code) 0x4000 |[0x0800

| (data) 0x4800 |0x1400

2 (shared) |OxFO00 |0x1000

3 (stack) |0x0000 [Ox3000
PC=0x240):

36

Example of Segment Translation (| 6bit address)

0x0240 main:
0x0244

0x0368

0x4050 wvarx

la Sa0, varx

jal strlen Seg ID # Base Limit
Ox.(.).360 strlen: 1i v0, 0 j;count 0 (code) 0x4000 |0x0800
beq $r0,5t0, done |7 hared) |0xFOOO |Ox1000
dw 0x314159 3 (stack) |0x0000 |0x3000

Let’s simulate a bit of this code to see what happens (PC=0x0240):
Fetch 0x0240 (0000 0010 0100 0000).Virtual segment #? O; Offset? 0x240
Physical address! Base=0x4000, so physical addr=0x4240
Fetch instruction at 0x4240. Get “la $a0, varx”

Move 0x4050 — $a0, Move PC+4—PC

Fetch 0x0244. Translated to Physical=0x4244. Get “jal strlen”
Move 0x0248 — $ra (return address!), Move 0x0360 — PC

Fetch Ox0360. Translated to Physical=0x4360. Get “li $vO, 0"
Move 0x0000 — $v0O, Move PC+4—PC

Fetch Ox0364. Translated to Physical=0x4364. Get “Ib $t0, ($20)"
Since $a0 is 0x4050, try to load byte from 0x4050

Translate 0x4050 (0100 0000 0101 0000).Virtual segment #! |; Offset? Ox50

Physical address! Base=0x4800, Physical addr = 0x4850,
Load Byte from 0x4850—%t0, Move PC+4—PC

3/5/20

Kubiatowicz CS162 ©UCB Spring 2020

37

Observations about Segmentation

Virtual address space has holes
— Segmentation efficient for sparse address spaces

— A correct program should never address gaps (except as mentioned
In moment)

» If it does, trap to kernel and dump core
When it is OK to address outside valid range!?
— This i1s how the stack and heap are allowed to grow

— For instance, stack takes fault, system automatically increases size of
stack

Need protection mode in segment table
— For example, code segment would be read-only
— Data and stack would be read-write (stores allowed)
— Shared segment could be read-only or read-write

What must be saved/restored on context switch?
— Segment table stored in CPU, not in memory (small)

— Might store all of process’ memory onto disk when switched (called
“swapping”)

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 38

What if not all segments fit into memory?

operating >
system
rocess P.
@ swap out P i
) process P,
@ swap in
———]
|
user
ghac backing store
main memorv

* Extreme form of Context Switch: Swapping

— In order to make room for next process, some or all of the previous
process Is moved to disk

» Likely need to send out complete segments
— This greatly increases the cost of context-switching

* What might be a desirable alternative?

— Some way to keep only active portions of a process in memory at
any one time

— Need finer granularity control over physical memory

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 39

Problems with Segmentation

* Must fit variable-sized chunks into physical memory
* May move processes multiple times to fit everything
* Limited options for swapping to disk

* Fragmentation: wasted space
— External: free gaps between allocated chunks
— Internal: don't need all memory within allocated chunks

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020

40

Recall: General Address Translation

Prog | Prog 2
Virtual Virtual
Address Address
Space | Space 2

OS heap &
Stacks

Physical Address Space

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 41

Translation Map | Translation Map 2

Paging: Physical Memory in Fixed Size Chunks

* Solution to fragmentation from segments?
— Allocate physical memory in fixed size chunks (“pages”)
— Every chunk of physical memory is equivalent

» Can use simple vector of bits to handle allocation:
00110001110001101 .. 110010

» Each bit represents page of physical memory
1 = allocated, 0 = free

 Should pages be as big as our previous segments!
— No: Can lead to lots of internal fragmentation
» Typically have small pages (|K-16K)
— Consequently: need multiple pages/segment

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 42

How to Implement Simple Paging?

Virtual Address:

Offset i |

PageTablePtr »[page #0 VR y-offset \/
> page #1 :
. é page #2 Physical Address
IP;ageTakalZe I_> 1 page #3 V.R,W Check Perm
v age #4 N ;
Access Error ge s T Aecas
Error

* Page Table (One per process)
— Resides in physical memor
— Contains physical page ancrpermission for each virtual page
» Permissions include:Valid bits, Read, Write, etc
* Virtual address mapEing
— Offset from Virtual address copied to Physical Address
» Example: 10 bit offset = [024-byte pages
— Virtual page # is all remaining bits
» Example for 32-bits: 32-10 = 22 bits, 1.e. 4 million entries
» Physical page # copied from table into physical address
— Check Page Table bounds and permissions

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 43

Simple Page Table Example
Example (4 byte pages)

oxo0 [0 0000 0x00 [—
b
: . _>0 — 00010000 3, 0x04 [—
: d_1 00000100 . | 0x05!
: 0x04 S >1[3 0000 1100 |
. f e |
: 2 0000 0100
: 0x067? |g |—> 1 0x08 F—
: h o
: 0x08 [—] 0000 1000 Page |
; 0x097 Table f
: < g OxOE!
L h
— 0x10 =i
Virtual 0000 0110 ===3>0000 1110 E
Memory 0000 1001 ===>> 0000 0101 (cj
Physical
: Memory

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 44

What about Sharing!?

Virtual Address
(Process A): EeIOtsee |

This physical page
appears in address
space of both processes

Virtual Address |

(Process B):

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 45

Where is page sharing used ?

The “kernel region™ of every process has the same page table
entries

— The process cannot access it at user level

— But on U->K switch, kernel code can access it AS WELL AS the
region for THIS user

» What does the kernel need to do to access other user processes!

Different processes running same binary!
— Execute-only, but do not need to duplicate code segments

User-level system libraries (execute only)

Shared-memory segments between different processes

— Can actually share objects directly between processes
» Must map page into same place in address space!

— This is a limited form of the sharing that threads have within a
single process

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 46

Example: Memory Layout for Linux 32-bit (Pre-Meltdown patch!)

Kernel space
User code CANNOT read from nor write to these addresses,
doing so results in a Segmentation Fault 0xC0000000 == TASK SIZE

1GB

~

} Random stack offset

Stack (grows down)
RLIMIT_STACK (e.g., 8MB)

} Random mmap offset

Memory Mapping Segment
File mappings (including dynamic libraries) and anonymous
mappings. Example: /lib/libc.so

3GB << program break
U brk
Heap start_brk

Random brk offset

BSS segment
Uninitialized static variables, filled with zeros.
Example: static char *userName;

Data segment end_data
Static variables initialized by the programmer.
Example: static char *gonzo = “God’s own prototype”; start data
Text segment (ELF) end_code
Stores the binary image of the process (e.g., /bin/gonzo) 0x08048000
- 0

http://static.duartes.org/img/blogPosts/linuxFlexibleAddressSpacelayout.png

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 47

Some simple security measures

e Address Space Randomization

— Position-Independent Code => can place user code region anywhere
In the address space

» Random start address makes much harder for attacker to cause jump to
code that it seeks to take over

— Stack & Heap can start anywhere, so randomize placement
» Kernel address space isolation
— Don't map whole kernel space into each process, switch to kernel page

table
— Meltdown:map none of Kernel page-table isolation
kernel into user mode!
Kernel space Kernel space
Kernel space
—)
User space User space User space

User mode Kernel mode User mode
Kernel mode

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 48

3/5/20

Summary: Paging

Physical memory view

\—S‘l‘ack—-'ﬁooooo
—"e2P— 4111 000

0001 0000

\%\

Virtual memory view Page Table
g T (T
1111 111 —— 11110 |11100
1111 0000 stack 11101 | null
l 11100 | null
11011 | null
11010 | null
11001 | null
1100 0000 11000 | null
10111 | null
10110 | null
10101 | null
I 10100 | null
10011 | null
Rean — 1001010000
1000 0000 T "j0001 | 01111
\.10000 01110
01111 | null
01110 | null
01101 | null
01100 (| null
01011 01101
0100 0000 01010 | 01100
01001 | 01011
1000 | 01010
00111 | null
00110 | null
00100 | null
0000 0000 00011 | 00101
— “r' 0010 | 00100
page # offset 0001 | 00011
0000 | 00010
Kt

49

Summary: Paging

/

Physical memory view

1110 0000

1l il

hpﬂp

i i ‘ ‘ A A y

A\ \

Virtual memory view Page Table

11111 (11101

L 1110 [11100
11100 | null

1110 0000 11011 | null
11010 | null

- 11001 | null
. 11000 | null

What happens if 10111 | null
10110 | null

stack grows to 10101 | null
1110 00007? 10100 | nuil
_ 10011 | null
Rean —_ 1001010000

1000 0000 T "j0001 | 01111
\.10000 01110

01111 | null

01110 | null

01101 | null

01100 (| null

01011 (01101

0100 0000 01010 | 01100
01001 | 01011

1000 | 01010

00111 | null

00110 | null

00100 | null

0000 08?_(’) \30011 00101

| 0010 | 00100
page # offset 0001 | 00011
0000 | 00010

3/5/20

0111 000

0101 000

0001 0000
0000 0000

50

Summary: Paging
Page Table_

W anm o Physical memory view
— 11110 (11100

—stack—]_——"11101 | 10111
»11100 | 10110

1110 0000 11011 | null

i 11010 | null
11001 | null
null
null

null Etf[f

=
|
::u Allocate new

o ; pages where

01110 room!

null
null
null
null
01101
01100
01011
01010
null
null

——code 00101 | null

00100 [null

‘21(2’0000 00011 (00101
page#o‘ﬂg’et 0010 | 00100

0001 | 00011

0001 0000
0000 | 00010

3/5/20 51

Virtual memory view
1111 1111

—Stack—4110 0000

1100 0000

2l

1000 0000

0101 000
0100 0000

\%\

How big do things get!?

32-bit address space => 232 bytes (4 GB)
— Note:"b" = bit,and "B"” = byte
— And for memory:
» “K’(kilo) = 210= 1024 ~ 103 (But not quite!)
» “M”(mega) = 220 = (1024)2= 1,048,576 = |06 (But not quite!)
» "“G’(giga) = 230 = (1024)3= 1,073,741,824 = 10 (But not quite!)
Typical page size: 4 KB
— how many bits of the address is that ! (remember 210 = [024)
— Ans — 4KB = 4x210 =212 = |2 bits of the address

So how big Is the simple page table for each process!
— 232/212 =)20 (that's about a million entries) x 4 bytes each =>4 MB
— When 32-bit machines got started (vax | /780, intel 80386), 16 MB was a LOT of memory

How big is a simple page table on a 64-bit processor (x86_64)?

— 264/212 =)52(that's 4.5x 101> or 4.5 exa-entries)x8 bytes each =
36x 10> bytes or 36 exa-bytes!lll This is a ridiculous amount of memory!

— This is really a lot of space — for only the page tablelll

Mostly, the address space is sparse, I.e. has holes in it that are not mapped to physical
memory

— S0, most of this space is taken up by page tables mapped to nothing

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 52

Page Table Discussion

* What needs to be switched on a context switch?
— Page table pointer and limit
* What provides protection here!?
— Translation (per process) and dual-mode!
— Can't let process alter its own page table!
* Analysis
— Pros
» Simple memory allocation
» Easy to share
— Con:What if address space Is sparse!
» E.g., on UNIX code starts at O, stack starts at (23!-1)

» With |K pages, need 2 million page table entries!
— Con:What if table really big?

» Not all pages used all the time = would be nice to have working
set of page table in memory

* Simple Page table is way too big
— Does 1t all need to be in memory?
— How about multi-level paging!
— or combining paging and segmentation

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 53

Fix for sparse address space:

The two-level Daﬁe table
- Physical

|0 bits |2 bits ddress:

|0 bits
Virtual

Address:

—> 4 bytes 4

* Tree of Page Tables

 Tables fixed size (1024 entries)
— On context-switch: save single Page TablePtr

register |
* Valid bits on Page Table Entries
— Don't need every 2nd-level table

— BEven when exist, 2nd-level tables can reside on
disk if not in use —> 4 bytes <— L

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 54

1111 1111

1171 0000

1100 0000

1000 0000

0100 0000-

page?2 #

Summary: Two-Level Paging

0111 000

0101 000

Virtual memory view Page Table Page Tables Physical memory view
(level 1) (level 2)
—stack— 11 (11101
10 (11100 110 0000
l 01 |10111
00 |10110 \
111 | o 11 | null
I 110 | null 10 {10000
101 | null 01 (01111
heap 100 o/ 00 |01110 \
= 011 | null
10| o__|
001 |pull | ———,
00| & 11 (01101 ——
10 01100 —
01 (01011
00 |01010
11 [00101
10 (00100 code
01 (00011 | —
—code— 00 {00010 ——

00d(-)l-6000
o

pagel # offset

3/5/20

Kubiatowicz CS162 ©UCB Spring 2020

0001 0000

0000 0000

55

Summary: Two-Level Paging

Virtual memory view

1001 0000
(0x90)

3/5/20

stack—

l

)
1)
©

Page Table
(level 1)

111
110
101

null
null

11
010
001
000

null

o
null

Page Tables

(level 2)

11 111101
10 111100
01 (10111
00 10110

™1 | null

0t

o1 (01111
00 01110

11 101101
10 |01100
01 (01011
00 (01010

11 100101
10 100100
01 (00011
00 (00010

Kubiatowicz CS162 ©UCB Spring 2020

Physical memory view

——code

%110 0000

1000 0000
(0x80)

0001 0000

0000 0000

56

Multi-level Translation: Segments + Pages

* \WWhat about a tree of tables?

— Lowest level page table = memory still allocated with bitmap
— Higher levels often segmented

* Could have any number of levels. Example (top segment):

Virtual
Address:
Base0 [Limit
Basel oticl |V
Base3 L!mit3 N page #4 N
Base4 L!m!t4 page #5 VRW
Base5 |Limith
Base6 |Limit6é |N \ 4
Base7 |Limit7 |V | (5>)—pAiccess

l

Physical Address

?Check Permissions

|
v

Access
Error

* What must be saved/restored on context switch?

— Contents of top-level segment registers (for this example)
— Pointer to top-level table (page table)

3/5/20

Kubiatowicz CS162 ©UCB Spring 2020

57

What about Sharing (Complete Segment)!?

Process A:

Process B:

3/5/20

Base0

Vv

Limit3 [N

Base4 |[Limit4 |V
Base5 |Limit5 |N
Base6 |[Limit6 |N
Base7 |Limit7 |V

Kubiatowicz CS162 ©UCB Spring 2020

Base4

Base5

Baseb

<1Z1ZI<1ZI<I<|<

page #0 VR
page #| VR
page #H2 V,R,W
page #3 V,R,W
page #4 N
page #5 VR,W

Shared Segment

58

Multi-level Translation Analysis

* Pros:

— Only need to allocate as many page table entries as we need for
application

» In other wards, sparse address spaces are easy
— Easy memory allocation
— Easy Sharing

» Share at segment or page level (need additional reference
counting)

» Cons:
— One pointer per page (typically 4K — 16K pages today)
— Page tables need to be contiguous
» However, previous example keeps tables to exactly one page
N size
— Two (or more, if >2 levels) lookups per reference
» Seems very expensivel

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 59

Summary

* Segment Mapping
— Segment registers within processor

— Segment ID associated with each access
» Often comes from portion of virtual address
» Can come from bits in instruction instead (x86)

— Each segment contains base and limit information
» Offset (rest of address) adjusted by adding base
» Page Tables
— Memory divided into fixed-sized chunks of memory

— Virtual page number from virtual address mapped through page table
to physical page number

— Offset of virtual address same as physical address

— Large page tables can be placed into virtual memory

e Multi-Level Tables
— Virtual address mapped to series of tables
— Permit sparse population of address space

3/5/20 Kubiatowicz CS162 ©UCB Spring 2020 60

