
CS162 
Operating Systems and 
Systems Programming 

Lecture 1 
 

What is an Operating System?

January 21st, 2020

Prof. John Kubiatowicz

http://cs162.eecs.Berkeley.edu

Acknowledgments: Lecture slides are from the Operating Systems course
taught by John Kubiatowicz at Berkeley, with few minor updates/changes.
When slides are obtained from other sources, a a reference will be noted on
the bottom of that slide, in which case a full list of references is provided on the
last slide.

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 2

Greatest Artifact of Human Civilization…

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 3

Internet Scale: Over 3.8 Billion Users!

2.0 B 1/26/11

1969

A
R

PA
N

et

WWW

H
T

T
P

0.
9

19901974

R
FC

 6
75

 T
C

P/
IP

Internet

3.8 B
% of world’s

population

2017

http://www.w3.org/Protocols/HTTP/AsImplemented.html

1/21/20 Kubiatowicz CS162 © UCB Fall 2020

• Provide abstractions to apps

– File systems

– Processes, threads

– VM, containers

– Naming system

– …

• Manage resources:

– Memory, CPU, storage, …

• Achieves the above by implementing specific algorithms and techniques:

– Scheduling

– Concurrency

– Transactions

– Security

– …..

4

Operating Systems are at the Heart of it All!

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 5

Example: What’s in a Search Query?

• Complex interaction of multiple components in multiple
administrative domains

– Systems, services, protocols, …

Datacenter

Load
balancer

Ad Server

DNS
Servers

Search
Index

DNS

request create

result

page

Page
store

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 6

Why take CE424?

• Some of you will actually design and build operating systems or
components of them.

– Perhaps more now than ever

• Many of you will create systems that utilize the core concepts

in operating systems.

– Whether you build software or hardware

– The concepts and design patterns appear at many levels

• All of you will build applications, etc. that utilize operating
systems

– The better you understand their design and implementation, the
better use you’ll make of them.

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 7

Goals for Today

• What is an Operating System?

– And – what is it not?

• What makes Operating Systems so exciting?

• Oh, and “How does this class operate?”

Interactive is important!

Ask Questions!

Slides courtesy of David Culler, Anthony D. Joseph, John Kubiatowicz, AJ Shankar,
George Necula, Alex Aiken, Eric Brewer, Ras Bodik, Ion Stoica, Doug Tygar, and David
Wagner.

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 8

What is an operating system?
• Special layer of software that provides application software access to

hardware resources

– Convenient abstraction of complex hardware devices

– Protected access to shared resources

– Security and authentication

– Communication amongst logical entities

Hardware

applnapplnappl n

OS

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 9

Operator …

Switchboard Operator

Computer Operators

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 10

CE323 – Machine Structures

storage

Processor

Hardware Memory

Networks

DisplaysInputs

ISA

OS

Ctrlr

Cache

Page Table

(TLB)

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 11

What is an Operating System?
• Illusionist

– Provide clean, easy to use abstractions of physical
resources

» Infinite memory, dedicated machine

» Higher level objects: files, users, messages

» Masking limitations, virtualization

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 12

OS Basics: “Virtual Machine” Boundary

storage

OS Hardware Virtualization

Hardware

Software

Processor

Memory

Networks

Displays

Inputs

Processes
Address Spaces

Files

Instruction Set

Architecture (ISA)

Windows
Sockets

Threads

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 13

OS Basics: Program ⇒ Process

storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Networks

Displays
Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 14

Defn: Process

• Address Space

• One or more threads of control

• Additional system state associated with it

• Thread:

– locus of control (PC)

– Its registers (processor state when running)

– And its “stack” (SP)

» As required by programming language runtime

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 15

For Example …

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 16

OS Basics: Context Switch

storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Networks

Displays
Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 17

What is an Operating System?

• Referee

– Manage sharing of resources, Protection, Isolation

» Resource allocation, isolation, communication

• Illusionist

– Provide clean, easy to use abstractions of physical
resources

» Infinite memory, dedicated machine

» Higher level objects: files, users, messages

» Masking limitations, virtualization

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 18

OS Basics: Scheduling, Protection

storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Networks

Displays
Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 19

What is an Operating System?

• Referee

– Manage sharing of resources, Protection, Isolation

» Resource allocation, isolation, communication

• Illusionist

– Provide clean, easy to use abstractions of physical
resources

» Infinite memory, dedicated machine

» Higher level objects: files, users, messages

» Masking limitations, virtualization

• Glue

– Common services

» Storage, Window system, Networking

» Sharing, Authorization

» Look and feel

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 20

OS Basics: I/O

storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Networks

Displays
Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 21

OS Basics: Creating Process/Loading Program

storage

Processor

OS Hardware Virtualization

Hardware

Software

Memory

Networks

Displays
Inputs

Processes
Address Spaces

Files

ISA

Windows
Sockets

OS

Threads

Protection
Boundary

Ctrlr

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 22

What makes Operating Systems
Exciting and Challenging?

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 23

Technology Trends: Moore’s Law

2X transistors/Chip Every 1.5 years

Called “Moore’s Law”

Moore’s Law

Microprocessors have become
smaller, denser, and more
powerful

Gordon Moore (co-founder of
Intel) predicted in 1965 that the
transistor density of semiconductor
chips would double roughly every
18 months

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 24

P
er

fo
rm

an
ce

 (v
s.

 V
A

X
-1

1/
78

0)

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

25%/year

52%/year

??%/year

Big Challenge: Slowdown in Joy’s law of Performance

• VAX	 : 25%/year 1978 to 1986
• RISC + x86 : 52%/year 1986 to 2002
• RISC + x86 : ??%/year 2002 to present

From Hennessy and Patterson, Computer Architecture: A
Quantitative Approach, 4th edition, Sept. 15, 2006

⇒ Sea change in chip design:
multiple “cores” or processors per
chip

3X

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 25

Another Challenge: Power Density

• Moore’s law extrapolation

– Potential power density reaching amazing levels!

• Flip side: battery life very important

– Moore’s law yielded more functionality at equivalent  

(or less) total energy consumption

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 26

ManyCore Chips: The future arrived in 2007

• How to program these?

– Use 2 CPUs for video/audio
– Use 1 for word processor, 1 for browser
– 76 for virus checking???

• Parallelism must be exploited at all levels

• Amazon X1 instances (2016)

– 128 virtual cores, 2 TB RAM

• Intel 80-core multicore chip (Feb 2007)

– 80 simple cores
– Two FP-engines / core
– Mesh-like network
– 100 million transistors
– 65nm feature size

• Intel Single-Chip Cloud  
Computer (August 2010)
– 24 “tiles” with two cores/tile
– 24-router mesh network
– 4 DDR3 memory controllers
– Hardware support for message-passing

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 27

But then Moore’s Law Ended…

• Moore’s Law has (officially) ended -- Feb 2016

– No longer getting 2 x transistors/chip every 18 months…

– or even every 24 months

• May have only 2-3 smallest geometry fabrication plants left:

– Intel and Samsung and/or TSMC

– Vendors moving to 3D stacked chips

– More layers in old geometries

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 28

Storage Capacity Still Growing

(source: https://www.networkworld.com/article/3153244/data-center/solid-state-drives-are-now-larger-than-
hard-disk-drives-the-impact-for-your-data-center.html)

HDD

https://www.networkworld.com/article/3153244/data-center/solid-state-drives-are-now-larger-than-hard-disk-drives-the-impact-for-your-data-center.html
https://www.networkworld.com/article/3153244/data-center/solid-state-drives-are-now-larger-than-hard-disk-drives-the-impact-for-your-data-center.html

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 29

Network Capacity Still Increasing

(source: http://www.ospmag.com/issue/article/Time-Is-Not-Always-On-Our-Side)

http://www.ospmag.com/issue/article/Time-Is-Not-Always-On-Our-Side

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 30

Internet Scale: 1.06 Billion Hosts (Jan 2017)

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 31

Internet Scale: Over 3.8 Billion Users!

(source: http://www.internetworldstats.com/stats.htm)

http://www.internetworldstats.com/stats.htm

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 32

• In 2011, smartphone shipments exceeded PC shipments!

• 2011 shipments:

– 487M smartphones
– 414M PC clients

» 210M notebooks
» 112M desktops
» 63M tablets

– 25M smart TVs

• 4 billion phones in the world ! smartphones over
next few years

• Then…

Not Only PCs connected to the Internet

1.53B in 2017

262.5M in 2017

164M in 2017

39.5M in 2017

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 33

People-to-Computer Ratio Over Time

years

Computers

Per Person

103:1

1:106

Laptop

PDA

Mainframe

Mini

Workstation

PC

Cell

1:1

1:103

Mote!

Bell’s Law: new computer class per 10 years
The Internet of

Things!

Number
crunching, Data
Storage, Massive
Inet Services,

ML, …

Productivity,

Interactive

Streaming from/
to the physical
world

http://images.google.com/imgres?imgurl=http://static.howstuffworks.com/gif/cell-phone-nokia.jpg&imgrefurl=http://electronics.howstuffworks.com/cell-phone.htm&h=200&w=200&sz=22&tbnid=ftqjm3_El-gJ:&tbnh=99&tbnw=99&start=7&prev=/images?q=cell+phone&hl=en&lr=&ie=UTF-8

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 34

Vast Range of Timescales

Jeff Dean: "Numbers Everyone Should Know"

Key Stroke / Click

100 ms

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 35

Societal Scale Information Systems 
(Or the “Internet of Things”?)

Scalable, Reliable,
Secure Services

MEMS for
Sensor Nets

Internet 
Connectivity

Databases
Information Collection
Remote Storage
Online Games
Commerce

…

• The world is a large distributed system

– Microprocessors in everything

– Vast infrastructure behind them

Clusters

Massive Cluster

Gigabit Ethernet

Clusters

Massive Cluster

Gigabit Ethernet

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 36

Infrastructure, Textbook & Readings
• Infrastructure

– Website: http://sharif.edu/~kharrazi/courses/40424-002
– Discord

• Textbook: Operating Systems: Principles and Practice  
(2nd Edition) Anderson and Dahlin

• Recommend: Operating Systems Concepts,  
9th Edition Silbershatz, Galvin, Gagne

• Online supplements

– See course website
– Includes Appendices, sample problems, etc.
– Networking, Databases, Software Eng, Security
– Some Research Papers!

http://sharif.edu/~kharrazi/courses/40424-002

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 37

Syllabus
• OS Concepts: How to Navigate as a Systems Programmer!

– Process, I/O, Networks and Virtual Machines

• Concurrency

– Threads, scheduling, locks, deadlock, scalability, fairness

• Address Space

– Virtual memory, address translation, protection, sharing

• File Systems

– I/O devices, file objects, storage, naming, caching, performance, paging,
transactions, databases

• Distributed Systems

– Protocols, N-Tiers, RPC, NFS, DHTs, Consistency, Scalability, multicast

• Reliability & Security

– Fault tolerance, protection, security

• Cloud Infrastructure

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 38

Learning by Doing
• Individual Homework: Learn Systems Programming

1. Tools, Autograding, recall C, executable

2. Simple Shell

3. Web server

4. Memory Management

• Three Group Projects (Pintos in C)

1. Threads & Scheduling

2. User-programs

3. File Systems

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 39

Group Projects
• Project teams have 4 members

• Must work in groups in “the real world”

• Communicate with colleagues (team members)

• Communication problems are natural

• What have you done?

• What answers you need from others?

• Dividing up by Task is the worst approach. Work as a team.

• You must document your work!!!

• Communicate with supervisor (TAs)

• What is the team’s plan?

• What is each member’s responsibility?

• Short progress reports are required

• Design Documents: High-level description for a manager!

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 40

Getting started
• Start homework 0 right away (hopefully Today!)

– Vagrant virtualbox – VM environment for the course

» Consistent, managed environment on your machine

– Get familiar with all the tools

– Submit to autograder via git

• Early Drop

– Given the assignments, this is a highly rewarding but time consuming course

– If you are not serious about taking, please drop early

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 41

Preparing Yourself for this Class

• The projects will require you to be very comfortable with programming
and debugging C

– Pointers (including function pointers, void*)

– Memory Management (malloc, free, stack vs heap)

– Debugging with GDB

• You will be working on a larger, more sophisticated code base than
anything you've likely seen in previous classes

• C programming reference (still in beta):

– https://cs162.eecs.berkeley.edu/ladder/

https://cs162.eecs.berkeley.edu/ladder/

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 42

Grading

• 15% Midterms

• 20% Final

• 25% Homework

• 40% Group HWs

• Group HWs grading

• [10 pts] Initial design

• [10 pts] Design review

• [10 pts] Design document

• [60 pts] Code (3 checkpoints)

• [10 pts] Final design

• Submission via git push to release branch

• Regular git push so TA sees your progress

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 43

CE424 Collaboration Policy

Explaining a concept to someone in another group

Discussing algorithms/testing strategies with other groups

Helping debug someone else’s code (in another group)

Searching online for generic algorithms (e.g., hash table)

Sharing code or test cases with another group

Copying OR reading another group’s code or test cases

Copying OR reading online code or test cases from prior years

We compare all project submissions against prior year submissions
and online solutions and will take actions (described on the course
overview page) against offenders

More rules on the course website.

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 44

What is an Operating System?
• Referee

– Manage sharing of resources, Protection, Isolation

» Resource allocation, isolation, communication

• Illusionist

– Provide clean, easy to use abstractions of physical

resources

» Infinite memory, dedicated machine

» Higher level objects: files, users, messages

» Masking limitations, virtualization

• Glue

– Common services

» Storage, Window system, Networking

» Sharing, Authorization

» Look and feel

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 45

Challenge: Complexity

• Applications consisting of…

– … a variety of software modules that …

– … run on a variety of devices (machines) that

» … implement different hardware architectures

» … run competing applications

» … fail in unexpected ways

» … can be under a variety of attacks

• Not feasible to test software for all possible environments and
combinations of components and devices

– The question is not whether there are bugs but how serious are
the bugs!

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 46

The World Is Parallel: Intel SkyLake (2017)
• Up to 28 Cores, 56 Threads

– 694 mm² die size (estimated)

• Many different instructions

– Security, Graphics

• Caches on chip:

– L2: 28 MiB

– Shared L3: 38.5 MiB  

(non-inclusive)

– Directory-based cache coherence

• Network:

– On-chip Mesh Interconnect

– Fast off-chip network directly supports 8-

chips connected

• DRAM/chips

– Up to 1.5 TiB

– DDR4 memory

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 47

HW Functionality comes with great complexity!

Proc

Caches
Busses

Memory

I/O Devices:

Controllers

adapters

Disks
Displays
Keyboards Networks

Intel Skylake-X
I/O Configuration

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 48

Increasing Software Complexity

Linux 2.2.0

Mars Curiosity Rover

Firefox

Android

Linux 3.1 (recent)

Windows 7

Microsoft Office 2013

Windows Vista

Facebook

Mac OS X "Tiger"

Modern Car

Mouse Base Pairs

0 30 60 90 120

Millions of Lines of Code

(source https://informationisbeautiful.net/visualizations/million-lines-of-code/)

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 49

Example: Some Mars Rover (“Pathfinder”) Requirements
• Pathfinder hardware limitations/complexity:

– 20Mhz processor, 128MB of DRAM, VxWorks OS
– cameras, scientific instruments, batteries,  

solar panels, and locomotion equipment
– Many independent processes work together

• Can’t hit reset button very easily!

– Must reboot itself if necessary
– Must always be able to receive commands from Earth

• Individual Programs must not interfere

– Suppose the MUT (Martian Universal Translator Module) buggy
– Better not crash antenna positioning software!

• Further, all software may crash occasionally

– Automatic restart with diagnostics sent to Earth
– Periodic checkpoint of results saved?

• Certain functions time critical:

– Need to stop before hitting something
– Must track orbit of Earth for communication

• A lot of similarity with the Internet of Things?

– Complexity, QoS, Inaccessbility, Power limitations … ?

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 50

How do we tame complexity?

• Every piece of computer hardware different

– Different CPU

» Pentium, PowerPC, ColdFire, ARM, MIPS

– Different amounts of memory, disk, …

– Different types of devices

» Mice, Keyboards, Sensors, Cameras, Fingerprint readers

– Different networking environment

» Cable, DSL, Wireless, Firewalls,…

• Questions:

– Does the programmer need to write a single program that performs
many independent activities?

– Does every program have to be altered for every piece of hardware?

– Does a faulty program crash everything?

– Does every program have access to all hardware?

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 51

OS Tool: Virtual Machine Abstraction

• Software Engineering Problem:

– Turn hardware/software quirks ⇒  

what programmers want/need

– Optimize for convenience, utilization, security, reliability, etc…

• For any OS area (e.g. file systems, virtual memory, networking,
scheduling):

– What’s the hardware interface? (physical reality)

– What’s the application interface? (nicer abstraction)

Application

Operating System

Hardware
Physical Machine Interface

Virtual Machine Interface

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 52

Virtual Machines
• Software emulation of an abstract machine

– Give programs illusion they own the machine

– Make it look like hardware has features you want

• Two types of “Virtual Machine”s

– Process VM: supports the execution of a single program; this

functionality typically provided by OS

– System VM: supports the execution of an entire OS and its applications

(e.g., VMWare Fusion, Virtual box, Parallels Desktop, Xen)

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 53

Process VMs

• Programming simplicity

– Each process thinks it has all memory/CPU time

– Each process thinks it owns all devices

– Different devices appear to have same high level interface

– Device interfaces more powerful than raw hardware

» Bitmapped display ⇒ windowing system

» Ethernet card ⇒ reliable, ordered, networking (TCP/IP)

• Fault Isolation

– Processes unable to directly impact other processes

– Bugs cannot crash whole machine

• Protection and Portability

– Java interface safe and stable across many platforms

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 54

System Virtual Machines: Layers of OSs
• Useful for OS development

– When OS crashes, restricted to one VM

– Can aid testing programs on other OSs

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 55

What is an Operating System,… Really?

• Most Likely:

– Memory Management

– I/O Management

– CPU Scheduling

– Communications? (Does Email belong in OS?)

– Multitasking/multiprogramming?

• What about?

– File System?

– Multimedia Support?

– User Interface?

– Internet Browser? ☺

• Is this only interesting to Academics??

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 56

Operating System Definition (Cont.)

• No universally accepted definition

• “Everything a vendor ships when you order an operating

system” is good approximation

– But varies wildly

• “The one program running at all times on the computer” is
the kernel

– Everything else is either a system program (ships with the
operating system) or an application program

1/21/20 Kubiatowicz CS162 © UCB Fall 2020 57

“In conclusion…”
• Operating systems provide a virtual machine abstraction to handle

diverse hardware

– Operating systems simplify application development by providing

standard services

• Operating systems coordinate resources and protect users from

each other

– Operating systems can provide an array of fault containment, fault

tolerance, and fault recovery

• CE424 combines things from many other areas of computer science:

– Languages, data structures, hardware, and algorithms

