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Slab Waveguides 

• Consider a dielectric slab of thickness 2a 
and refractive index n1 

• Let the dielectric be sandwiched between 
two semi-infinite regions of index n2 

• Note that n2 < n1 

• The high refractive index is called the core 

• The low refractive index is called the 
cladding 
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A planar dielectric waveguide has a central rectangular region of
higher refractive index n1 than the surrounding region which has
a refractive index n2. It is assumed that the waveguide is
infinitely wide and the central region is of thickness 2 a. It is
illuminated at one end by a monochromatic light source.
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• Only a very thin light beam with a diameter much less than the slab thickness, 2a,  will 
make it into the dielectric slab to reflect off of the cladding. 

• The remaining light used to illuminate the structure is “lost” 

• Also note that for ease of calculation we will use light that enters the slab waveguide 
from another medium of  index n1. 

• Mode coupling is required to assess the amount of light entering the waveguide from 
a generic medium of n that will reflect and transmit off the surface of n1 at the front 
of the slab 



Wave Propagation in Slab Waveguides 

• If TIR occurs, then light entering the waveguide easily propagates along in a zigzag fashion  

• The zigzag pattern generated by reflection propagates in phase leading to constructive 
interference within the waveguide 

• Light entering the waveguide or reflecting out of phase generates destructive interference and 
cancels out the propagation amplitude of the EM field. 

• Let us suppose that k1 = kn1 = 2n1/ 

• For constructive interference, the phase difference between the two points A and C in the 
diagram below must be multiples of 2 
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Two arbitrary waves 1 and 2 that are initially in phase must remain in phase
after reflections. Otherwise the two will interfere destructively and cancel each
other.
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• For constructive interference: 

 

 

• Only certain angles of   and  
satisfy this equation for a given 
integer multiple, m (mode number) 

• However,  depends on  and the 
polarization state of the incident 
waves 

• Therefore for each m, there will be 
only 1 allowable m and m  

  mdk  22cos21 



Waveguide Condition 
• If we divide the equation for 

constructive interference by 2 and 
rewrite, then we have the waveguide 
condition: 

 

 

• Where the constructed phase of the 
wave packet, m is a function of the 
incidence angle, m 

• This condition is generic for different 
waveguide shapes, incidence angles, 
and incident wavelengths. 

• Remember:  both rays must initially start 
in phase  with one another and remain 
so after reflection or they will 
destructively interfere and prevent 
propagation 

• Field in the waveguide 

 

• Em(y) is the mode of propagation 
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direc tion which propagates along z.
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Field of evanescent wave

(exponential decay)

Field of guided wave

The electric field pattern of the lowest mode traveling wave along the
guide. This mode has m = 0 and the lowest . It is often referred to as the
glazing incidence ray. It has the highest phase velocity along the guide.
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Allowed modes in the waveguide 
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The electric field patterns of the first three modes (m = 0, 1, 2)
traveling wave along the guide. Notice different extents of field
penetration into the cladding.
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Schematic  illustration of light propagation in a slab dielectric waveguide. Light pulse
entering the waveguide breaks up into various modes  whic h then propagate at different
group velocities  down the guide. At the end of  the guide, the modes combine to
constitute the output light pulse which is  broader than the input light pulse.
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Single and Multimode Waveguides 

• By imposing both TIR and the waveguide 
condition on the solution for waveguide 
propagation, we find that only a certain 
number of modes are allowed in the 
waveguide 

• From  

 

 

 we can find an expression for sin(m) 

• Applying the TIR condition,  

 

 

• The mode number, m, must satisfy  

• The V-number, V,  also called the normalized 
thickness or normalized frequency is defined 
by 

 

 

• Note: the term thickness is more common for 
planer waveguides 

• The 2a in the term refers to the waveguide 
geometry, and thus will change with the 
shape of the waveguide 

• Question how does one get V such that only a 
single mode of propagation exists? 

– At grazing incidence m =90o and m = 

– Solving for V as a function of m 

– At V </2 only the m=0 mode propagates 

– At V  = /2 gives the free space cut-off 
wavelength.  Above this wavelength, only 
the single mode propagation exists 
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TE and TM Modes 
• All discussion up to now have assumed a propagating wave 

• However we have two types of propagating waves that generate different phase changes 
upon reflection and refraction 

• So let us now consider TE modes perpendicular to the cross section of the slab: E=Ex 

• And TM modes parallel to the cross section of the slab: E|| = Ey +Ez 

– It is interesting that Ez exist along the direction of propagation. It is apparent that Ez is a 
propagating longitudinal electric field.  In free space this is IMPOSSIBLE for such a field 
to exists, however in a waveguide the interference allows such a phenomenon 

– Note that the same occurs for B in the TE mode 

• Because the phase change that accompanies TIR depends on polarization yet is negligible for 
n1-n2<<1, the waveguide condition and the cut-off condition can be taken to be identical for 
both TE and TM 
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Possible modes can be classified in terms of (a) transelectric field (TE)
and (b) transmagnetic field (TM). Plane of incidence is the paper.
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Modes in a planar dielectric waveguide can be determined by
plotting the LHS and the RHS of eq. (11).
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Waveguide Modes 

• Planer waveguide:  2a=20um, N1 = 1.455, 
N2 = 1.440,  = 900nm (9x10-7m) 

• Using waveguide equation and TIR for the 
TE mode: 

 

 

• Using a graphical solution, find the angles 
for all of the modes. 

• Consider: 

 

 

 

 

• The left hand side reproduces itself for     
m = 0,2,4,…   and becomes a cot function 
for odd m 
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Schematic dispers ion diagram,   vs.   for the slab waveguide for various TE m. modes.

cut–off corresponds to V = /2. The group velocity vg at any  is  the slope of the   vs. 

curve at that frequency.
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Dispersion Diagram 
• Propagating modes in a waveguide are 

determined by the waveguide condition 

• Each choice of m = 0… mmax results in one 
distinct and only one possible propagation 
constant,  =k1sinm 

• Also each mode propagates along a different 
propagation constant even if the initial wave is a 
monochromatic plane wave 

• The top left figure gives the impression that 
lower order modes travel faster in the 
waveguide 

•  This is not exactly the case.  Group velocity 
defines the speed of the wave packet and is 
dependent on mode 

 

 

• Furthermore higher modes penetrate more into 
the cladding where the refractive index is 
smaller yielding higher velocities over short time 
intervals 
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Schematic  illustration of light propagation in a slab dielectric waveguide. Light pulse
entering the waveguide breaks up into various modes  whic h then propagate at different
group velocities  down the guide. At the end of  the guide, the modes combine to
constitute the output light pulse which is  broader than the input light pulse.
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Dispersion Diagram 
• So group velocity of a give mode is a 

function of the light frequency and the 
waveguide properties 

• So even if the refractive index was 
frequency independent, then the group 
velocity would still depend on the 
waveguide structure 

• For a given waveguide we can use the 
refractive indices, and the slab 
thicknesses to calculate the propagation 
constant for each frequency to obtain a 
plot of  vs.  

• This plot is called the dispersion diagram 

• The slope of the plot is the group 
velocity 

• All allowable modes generate group 
velocities between the ideal slopes 
defined by the speed of light divided by 
the refractive indices of the waveguide 

• The cut-off frequency corresponds to 
single mode propagation 
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Schematic dispers ion diagram,   vs.   for the slab waveguide for various TE m. modes.

cut–off corresponds to V = /2. The group velocity vg at any  is  the slope of the   vs. 

curve at that frequency.
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Modal Dispersion 

• In multimode operation, the lowest mode has the slowest group velocity 

• The highest group velocity is in the highest mode where a good portion of the field is carried 
by the cladding 

• Modes therefore take different times to travel through the waveguide.  This is called modal 
dispersion 

• The modal dispersion  is the time required for an input plane wave to completely exit the 
waveguide 

 

 

• The lowest order mode has a group velocity vgmin=c/n1. 

• The highest order mode has a group velocity almost equal to =c/n2 

• Thus in the most simple terms, the modal dispersion is  
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